Меню Рубрики

Что такое электрофорез анионов

Обычная гальванизация в настоящее время постепенно уступает место методу

лекарственного электрофореза — введению в организм лекарственных веществ с помощью постоянного тока. В этом случае на организм действует два фактора — лекарственный препарат и гальванический ток.

В растворе, как и в тканевой жидкости, многие лекарственные вещества распадаются на ионы и в зависимости от их заряда вводятся при электрофорезе с того или иного электрода.

Проникая при прохождении тока в толщу кожи под электродами, лекарственные вещества образуют так называемые кожные депо, из которых они медленно поступают, в организм.

Лекарственные вещества могут находиться в коже от 1—2 до 15—20 дней. Продолжительность депонирования во многом определяется физико-химическими свойствами веществ и их взаимодействием с белками кожи. Находящиеся в коже лекарственные ионы являются источником длительной нервной импуль-сации, что также способствует более длительному действию лекарственных веществ.

Однако не все лекарственные вещества могут быть использованы для электрофореза.

Некоторые лекарственные средства под действием тока изменяют фармакологические свойства, могут распадаться или образовывать соединения, оказывающие вредное действие.

Поэтому при необходимости использования для лекарственного электрофореза какого-либо вещества следует изучить его способность проникать через кожу под действием гальванического тока, определить оптимальную концентрацию раствора лекарственного вещества для электрофореза, особенности растворителя. Концентрация большинства лекарственных растворов, применяемых для электрофореза, составляет 1—5 %.

С прокладки положительного электрода (анода) в ткани организма вводятся ионы металлов, а также положительно заряженные частицы более сложных веществ, например кальций, магний, натрий, новокаин, хинин, витамин Biz,. лидаза, дикаин, димедрол и др. С прокладки отрицатель- \ ного электрода (катода) вводят кислотные радикалы и отрицательно заряженные частицы сложных соединений, например хлор, бром, йод, пенициллин, салицилат, эуфиллйн, гидрокортизон, никотиновую кислоту. При применении сложных. химических соединений, содержащих несколько ионов разноименного заряда (минеральная вода, лечебная грязь и грязевой раствор), активными являются оба электрода, т. е. ионы этих соединений вводятся одновременно с двух полюсов. Введение лекарственных веществ методом электрофореза имеет ряд преимуществ по сравнению с обычными способами их использования:

1) лекарственное вещество действует на фоне измененного под влиянием гальванического тока электрохимического режима клеток и тканей;

2) лекарственное вещество поступает в виде ионов, что повышает его фармакологическую активность;

3) образование «кожного депо» увеличивает продолжительность действия лекарственного средства;

4) высокая концентрация лекарственного вещества. создается непосредственно в патологическом очаге;

5) не раздражается слизистая оболочка желудочно-кишечного тракта;

6) обеспечивается возможность одновременного введения нескольких (с разных полюсов) лекарственных веществ.

Благодаря этим преимуществам лекарственный электрофорез находит все большее применение, в том числепри лечении заболеваний сердечно-сосудистой системы, в онкологической практике, при лечении туберкулеза. Возникают новые перспективные разработки этого лечебного метода, например электрофорез лекарственных веществ из растворов, предварительно введенных в полостные органы.

Однако имеются и ограничения для использования электрофореза, обусловленные прежде всего особенностями самих лекарственных веществ. Многие из них являются электрически нейтральными, имеют низкую электро-форетическую подвижность либо теряют свою активность под действием электрического тока.

Показания к применению лекарственного электрофореза складываются из показаний к гальванизации и переносимости назначенных препаратов. Противопоказания аналогичны таковым: для гальванизации с учетом индивидуальной переносимости лекарственного вещества.

Интенсивность воздействия при гальванизации и лекарственном электрофорезе

определяются используемой силой тока, выражаемой в миллиамперах (мА). Расчет максимально допустимой силы тока производят по показателю плотности тока, т. е. силе тока, приходящейся на 1 см2 площади активного электрода (мА/см2). Чтобы рассчитать максимальную силу тока, следует значение его плотности умножить на площадь электрода, т.е. величину поверхности прокладки. Выбор значения плотности тока зависит от площади

активного электрода, места воздействия, индивидуальной чувствительности к току, возраста и пола больного. Чем больше площадь электрода, тем меньше должна быть плотность тока.

Если используются электроды разной площади, то для расчета силы тока учитывают площадь меньшего электрода. В случаях, когда катод или анод представлены сдвоенным электродом, для расчета берут сумму площадей этих электродов. Плотность тока при общих и сегментарных воздействиях не должна превышать 0,01—0,05 мА/см2, а при местных процедурах — 0,05—0,1 мА/см2, для детей дошкольного возраста — 0,03 мА/см2, школьного — 0,05 мА/см2.

При дозировании постоянного тока необходимо учитывать ощущения больного. Во время процедуры больной должен испытывать легкое покалывание в области наложения электродов. Продолжительность процедуры может быть различной: 10—15 мин при общих и рефлекторно-сегментарных методиках воздействия и 30—40 мин — при местных. Курс лечения 10—20 процедур, ежедневно или через день.

Источником постоянного тока при гальванизации служат аппараты, в которых

переменный ток промышленно-осветительной сети выпрямляется и сглаживается, затем по гибким изолированным проводам, на концах которых закреплены зажимы, соединенные с электродами, подводится к больному. Сила тока контролируется миллиамперметром, предусматривающим переключение используемой силы тока до 5 или 50 мА.

Правила эксплуатации аппаратов для гальванизации одинаковы. В качестве примера приводим описание одного из аппаратов «Поток-1». Портативный аппарат «Поток-1» работает от сети переменного тока частотой 50 Гц при напряжении 127 иди 220 В. Аппарат изготовлен по II классу защиты и не требует заземления. К аппарату может прилагаться приставка, позволяющая использовать его для гальванизации конечностей с помощью камерных ванн. При назначении врачом процедуры гальванизации или лекарственного электрофореза должны быть указаны название метода, наименование препарата, концентрация раствора, полюс введения, место воздействия, методика, сила тока (мА), продолжительность (мин), интервалы (ежедневно или через день), число процедур на курс лечения.

Ознакомившись с назначением врача-физиотерапевта, медицинская сестра должна подготовить больного к процедуре.

Гальванизацию и лекарственный электрофорез проводят в положении больного лежа или сидя в зависимости от назначения. Медицинской сестре необходимо осмотреть поверхность кожи в месте наложения электродов. На коже не должно быть ссадин, царапин и других повреждений. Загрязненную сальную кожу перед процедурой необходимо обмыть теплой водой с мылом или очистить и обезжирить ватой, смоченной спиртом. На соответствующем участке тела больного размещают электроды, состоящие из металлической пластинки, обычно свинцовой, и влажной матерчатой гидрофильной прокладки.

Свинцовые пластинки должны быть ровными и гладкими (для этого их разглаживают металлическим валиком), края должны быть закруглены, толщина пластинок должна составлять 0,3—1 мм. Со временем пластины покрываются налетом оксида свинца, что ухудшает электропроводность, в связи с чем их следует периодически чистить наждачной бумагой. В настоящее время все большее распространение получают электроды из токопроводящей (графитизированной) ткани разной формы и размеров. Чаще используют прямоугольные электроды, а также электроды в виде полумаски, воротника или специальные для полостных процедур (вагинальные, ректальные и др.). Гидрофильные прокладки должны соответствовать форме пластин и выступать за их края на 1—2 см со всех сторон. Они предохраняют кожу от повреждающего влияния продуктов электролиза, повышают ее электропроводность, обеспечивают хороший контакт электродов с телом больного. Прокладки изготавливают из белой фланели, байки, бязи и другой гидрофильной ткани. Они имеют вид тетради, составленной из 8—16 слоев ткани.

Для проведения процедуры прокладки смачивают теплой водой, отжимают, вкладывают в них электроды, помещают на соответствующие участки кожи и фиксируют с помощью резиновых бинтов, мешочков с песком либо тяжестью тела больного. После наложения электродов больного, лежащего на кушетке, накрывают простыней или легким одеялом. При этом электропровода, идущие от больного к аппарату, не должны провисать и натягиваться.

Электрические провода, соединенные с электродами, подсоединяют к аппарату соответственно полярности, указанной в назначении врача.

Перед включением аппарата переключатель напряжения следует установить в положение, соответствующее напряжению в сети (127 или 220 В), ручку регулятора силы тока — в положение «О», переключатель шунта миллиамперметра — в положение «5» или «50» соответственно силе тока, указанной в назначении врача. Для включения аппарата необходимо вставить штепсельную вилку в сетевую розетку, повернуть выключатель в положение «Вкл.», после чего на панели аппарата загорается сигнальная лампочка. Затем,

медленно и плавно поворачивая ручку регулятора силы тока, наблюдая за показаниями миллиамперметра и ориентируясь на ощущения больного, устанавливают необходимую для процедуры силу тока. Во время процедуры больной должен ощущать в области наложения электродов легкое жжение, покалывание, о чем он должен быть предупрежден. При появлении сильного жжения, болезненного ощущения под электродами силу тока следует уменьшить, а если эти явления не исчезают, то следует прервать процедуру и-вызвать врача или направить к нему больного. В зависимости от места наложения электродов различают поперечную и продольную методики. При поперечной методике электроды располагаются друг против друга на противоположных участках тела, при этом ток воздействует на глубоколежащие ткани, при продольной — электроды находятся на одной стороне тела, воздействию подвергаются поверхностно расположенные ткани.

Специальную методику представляет воздействие гальваническим током в камерных ваннах. В этом случае больной помещает конечности в фаянсовые ванночки, которые заполняют водой. В офтальмологической практике для гальванизации и электрофореза используют глазные ванночки.

После окончания процедуры ручку регулятора силы тока медленно и плавно

поворачивают против часовой стрелки до нулевого положения стрелки потенциометра, переводят переключатель в положение «Выкл.», снимают с больного электроды. У детей под влиянием гальванического тока на месте расположения электродов кожа грубеет и становится сухой, могут образоваться трещины, поэтому после каждой процедуры ее следует смазывать питательным кремом или глицерином, разведенным наполовину водой. После каждой процедуры гидрофильные прокладки необходимо промыть под струёй воды, в конце дня стерилизовать кипячением. Причем прокладки для гальванизации и лекарственного электрофореза в зависимости от заряда иона стерилизуют раздельно.

источник

Капиллярный электрофорез (КЭ) — интенсивно развивающийся метод разделения сложных смесей, позволяющий анализировать ионные и нейтральные компоненты различной природы с высокой экспрессностью и уникальной эффективностью.

В основе капиллярного электрофореза лежат электрокинетические явления — электромиграция заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно, высокого напряжения. Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время, такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и т. п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений. Скачать книгу (1,7 Mb pdf).

ДОСТОИНСТВА МЕТОДА

Метод капиллярного электрофореза обладает рядом преимуществ по сравнению с другими методами разделения:

  • в кварцевом капилляре достигается высокая эффективность разделения компонентов смесей – сотни тысяч теоретических тарелок;
  • благодаря многообразию вариантов метода КЭ разделяются ионные, нейтральные, гидрофильные, гидрофобные, хиральные компоненты, от наночастиц до макромолекул;
  • быстрота проведения анализа;
  • крайне низкий расход реактивов и растворителей (микролитры);
  • дозируется минимальный объеманализируемого образца;
  • для большинства объектов используется простая подготовка пробы – в основном лишь фильтрование, дегазирование и разбавление;
  • отсутствие дорогостоящих колонок с сорбентами и проблем с их старением и заменой;
  • низкая стоимость единичного анализа.
  • Анализ объектов окружающей среды:
    • природные, питьевые, сточные воды (неорганические катионы и анионы, гербициды);
    • почвы, грунты, донные отложения (водорастворимые формы неорганических катионов и анионов).
  • Контроль качества, подлинности и безопасности напитков (органические кислоты (в том числе индивидуальные формы D- и L- изомеров), сахара, неорганические катионы и анионы, консерванты, подсластители, синтетические красители, витамины, аминокислоты, фурфуролы, ароматические альдегиды, амины, флавоноиды, антоцианы, пестициды, фунгициды);
  • Контроль качества и безопасности пищевой продукции, продовольственного сырья и БАД (консерванты, подсластители, кофеин, теобромин, органические кислоты, аминокислоты, амины, белки);
  • Ветеринария и контроль качества кормов и комбикормового сырья (аминокислоты, витамины, органические кислоты, неорганические катионы и анионы, антибиотики, кокцидиостатики);
  • Фарминдустрия (контроль безопасности и качества синтетических субстанций, природного сырья, активных фармацевтических ингредиентов, вспомогательных веществ и готовых лекарственных средств);
  • Криминалистическая экспертиза (наркотические средства, взрывчатые вещества, оптические отбеливатели);
  • Клиническая биохимия (ионы, аминокислоты, амины, пептиды в биожидкостях);
  • Химическая промышленность (определение основного компонента на фоне примесей, контроль сырья и побочных продуктов).

С 1998 Системы капиллярного электрофореза «КАПЕЛЬ®» являются первым и единственным в России серийно выпускаемым семейством приборов, предназначенных для реализации метода КЭ.

Пройдя долгий путь от создания прибора «КАПЕЛЬ®-103Р» (наиболее простой системы в семействе с полностью ручным управлением и одной рабочей длинной волны) до прибора «КАПЕЛЬ®-105М» (с полным управлением от компьютера и возможностью работы в среднем и ближнем УФ-диапазоне), группа компаний «Люмэкс» продолжает расширять аппаратурные возможности метода с помощью нового прибора «КАПЕЛЬ®-205» (со значительно увеличенным автосемплером и автоматической сменой полярности).

источник

Электрофорез лекарственных веществ – особый электрофармакологический метод, основанный на сочетанном использовании постоянного тока и вводимых с его помощью лекарственных веществ. Из электрических токов для лекарственного электрофореза применяются гальванический (в 80-85 %), диадинамические, синусоидальные модулированные (в выпрямленном режиме), прямоугольный импульсный и флюктуирующий (форма № 3) токи.

Теоретическую основу лекарственного электрофореза составляет теория электролитической диссоциации, предложенная в 1887 г. Сванте Аррениусом. Согласно ей электролиты при растворении распадаются (диссоциируют) на положительные (катионы) и отрицательные (анионы) ионы. В электрическом поле ионы перемещаются в соответствии со своей полярностью: катионы двигаются к отрицательному полюсу (катоду), а анионы – к положительному (аноду). Направленное движение ионов под действием сил электрического поля и положено в основу лекарственного электрофореза.

Читайте также:  Электрофорез с эуфиллином при задержке речевого развития

При электрофорезе лекарственные вещества в организм проникают через выводные протоки потовых и сальных желез, межклеточные промежутки, волосяные фолликулы и в меньшей степени – чресклеточно. Патологические процессы и терапевтические воздействия, способствующие разрыхлению межуточного вещества и повышению пористости кожи, ведут к увеличению количества вводимого электрофорезом лекарства.

Во время процедуры лекарственные вещества проникают неглубоко: сразу после элекрофореза основная часть лекарства обнаруживается в эпидермисе и дерме. Более глубокому проникновению лекарств препятствуют барьерные свойства кожи, в особенности ее электрохимическая активность. Разумеется, от процедуры к процедуре глубина электрогенного перемещения вводимого препарата возрастает. К тому же следует иметь в виду, что за счет диффузии часть лекарственных веществ быстро достигает кровеносных и лимфатических сосудов, разносясь ко всем органам и тканям. Весьма важно, что из кровотока лекарственные вещества вторично поступают преимущественно в органы и ткани, расположенные в зоне проведения процедуры. Это обосновывает целесообразность использования лекарственного электрофореза для лечения как поверхностно, так и глубоко расположенных патологических процессов, а также заболеваний внутренних органов.

Барьерные свойства кожи препятствуют свободному передвижению лекарственных ионов, как это имеет место в растворах, а поэтому при чрескожном электрофорезе в организм вводится лишь небольшая часть нанесенного на прокладку лекарственного вещества. Для различных веществ эта величина существенно колеблется (от 1 до 10 %), но чаще составляет 4-6 %. Поэтому при проведении процедур важно строго соблюдать технику и методику лекарственного электрофореза, а также прибегать к дополнительным мероприятиям, способствующим повышению его эффективности. На количество вводимого электрофорезом лекарства влияют многие факторы: возраст пациента, место проведения процедуры, состояние кожи, концентрация вещества в растворе, используемый растворитель, знак заряда и размеры вводимых ионов, сила тока и продолжительность процедуры. При прочих равных условиях при электрофорезе через слизистые оболочки в организм вводится на 25-50 % лекарства больше, чем через кожу. Введению большего количества вещества в организм способствует использование специальных методик (электродрегинг, внутритканевой и пролонгированный электрофорез), особых растворителей (ДМСО) или сочетанных методов (вакуум-, фоно-, магнито-, фотоэлектрофорез и др.).

Действие лекарственного электрофореза как электрофармакологического метода складывается из сочетанного действия физического фактора (гальванический или другие токи) и введенного лекарственного вещества. Ответная реакция организма при этом не является простой суммацией эффектов, вызванных этими двумя факторами, составляющими единый терапевтический комплекс. Она значительно сложнее и разнообразнее. Важно помнить, что действие вводимых электрофорезом лекарств развивается несколькими путями (рефлекторное, местное и гуморальное) и, варьируя технику и методику проведения процедуры, ими можно управлять.

Лекарственный электрофорез как лечебно-профилактический метод обладает рядом особенностей и достоинств, которые и обусловливают неослабевающий к нему интерес не только ученых и врачей, но и пациентов.

1. Лекарственные вещества, вводимые электрофорезом, задерживаются в поверхностных слоях кожи и образуют здесь так называемое кожное депо ионов. В нем лекарства могут сохраняться от 12-24 ч до 15-20 суток (адреналин, цинк, медь и др.). Задержка введенных веществ в кожном депо способствует их более длительному действию и медленному выведению из организма.
2. Метод лекарственного электрофореза позволяет создавать высокую локальную (в патологическом очаге) концентрацию препарата, не насыщая им весь организм. Согласно имеющимся данным, после электрофореза содержание лекарств в тканях области воздействия в несколько раз выше, чем после общепринятых способов введения той же дозы препарата.
3. В отличие от инъекционных способов введения электрофорез позволяет доставить лекарства к патологическому очагу, в котором имеются нарушения микроциркуляции и регионарного кровообращения в виде капиллярного стаза, тромбоза сосудов, инфильтрации и некроза. Такие патологические очаги плохо поддаются лечению традиционными фармакотерапевтическими методами, т.к. поступление лекарственных веществ в них затруднено. При электрофорезе же лекарственные вещества могут поступать в патологический очаг не только гематогенным, но и электрогенным путем.
4. При электрофорезе побочные и аллергические реакции наблюдаются во много раз реже, чем при пероральном или парентеральном применении этих же лекарств. Уменьшение или полное отсутствие побочных реакций при электрофорезе обусловлено рядом причин: невысокой концентрацией лекарства в крови; введением их в наиболее чистом виде; положительным влиянием физического фактора на общую реактивность и иммунобиологический статус организма и др.
5. При электрофорезе в организм вводятся только те лекарственные ионы или ингредиенты лекарств, на терапевтическое действие которых рассчитывают. Противоионы и различные примеси, которые могут тормозить действие основного лекарственного иона, в организм при этом не попадают, а остаются на прокладке.
6. В соответствии с сущностью метода при электрофорезе в организм лекарства поступают в виде ионов. И это очень важно, т.к. в ионной форме лекарства значительно активнее, чем в молекулярной, в которой они вводятся при обычных способах их применения.
7. Многих пациентов, прежде всего детей, пожилых пациентов и обожженных больных, привлекает абсолютная безболезненность метода при его правильном проведении.
8. При лекарственном электрофорезе исключается введение в организм растворителя. Это немаловажное достоинство метода, ибо вводимый при других способах лекарственной терапии растворитель деформирует кожу, нарушает микроциркуляцию и метаболизм в ней, может служить причиной развития постинъекционных инфильтратов.
9. При всей важности приведенных выше особенностей метода все же основным достоинством лекарственного электрофореза, думается, является то, что лекарственное вещество здесь действует на фоне различных, имеющих терапевтическое значение изменений, вызываемых используемым электрическим током. Именно благодаря этому отчетливое специфическое и выраженное лечебное действие вводимых электрофорезом лекарств проявляется при более низких концентрациях, которые при обычных путях их введения были бы малоэффективны. Названные преимущества и достоинства лекарственного электрофореза реализуются лишь тогда, когда лекарства правильно подобраны, метод всесторонне обоснован и соблюдаются техника и методика его проведения. При несоблюдении этих простейших требований лекарства или вообще не вводятся в организм, или частично разрушаются, или их действие не потенцируется физическим фактором, что в конечном счете ведет к резкому уменьшению терапевтической эффективности метода.

Для проведения процедур используются аппараты, являющиеся источником токов, которые пригодны для лекарственного электрофореза. Чаще всего используются аппараты для гальванизации и лекарственного электрофореза. Техника лечебного электрофореза состоит в расположении на пути тока (между телом человека и токонесущими электродами) растворов лекарственных веществ (рис. 2). Она зависит от способа лекарственного электрофореза.

Наиболее распространенным является чрескожный способ, осуществляемый с помощью контактно накладываемых электродов. При этом способе раствором лекарственного вещества равномерно смачивается специальная лекарственная прокладка, которая затем помещается на подлежащий воздействию участок тела, указанный врачом. Поверх нее располагается такой же формы и таких же размеров смоченная водопроводной водой гидрофильная прокладка, а затем токонесущий электрод. Все компоненты электрода для электрофореза тщательно укрепляются на теле пациента любым из известных способов. Второй электрод, состоящий из гидрофильной прокладки и токонесущей пластинки, располагается поперечно или продольно (в зависимости от терапевтических задач) по отношению к первому. Электрод, на котором располагается лекарственная прокладка, называют активным. Он подключается к полюсу аппарата, одноименному со знаком заряда вводимого лекарственного иона. Иногда лекарственные вещества наносят на оба полюса: тогда говорят о биполярном электрофорезе (бифорез).

Бифорез проводят в двух случаях:
а) когда одновременно нужно ввести два лекарства, имеющих разную полярность;
б) если для электрофореза используют препараты сложного состава, содержащие как катионы, так и анионы (например, грязевой раствор или экстракт алоэ).

Лекарственная прокладка готовится из одного-двух слоев фильтровальной бумаги или двух – четырех слоев марли. Фильтровальная бумага после употребления выбрасывается, а прокладки из марли обрабатываются как и гидрофильные: тщательно моются, а затем стерилизуются кипячением и сушатся.

Известен и такой вариант, как камерный электрофорез. Он проводится из растворов, которыми заполняют электроды различной конструкции. В такие электродные сосуды погружают часть тела больного (электрофорез по типу камерной гальванизации) или их прикладывают к подлежащей воздействию области тела (ванночковый электрофорез в офтальмологии).

Следующий способ называют внутриполостным электрофорезом. Его используют в основном в гинекологии и гастроэнтерологии. При этом полость органа заполняется раствором лекарственного вещества, затем сюда же вводится электрод (чаще изготовленный из графита и обернутый марлей), который подсоединяют к соответствующему (одноименному с полярностью вводимого иона) полюсу источника электрического тока. Второй простой электрод располагают накожно, обычно поперечно по отношению к активному.

Сегодня получает широкое распространение так называемый внутритканевой электрофорез, основанный на электроэлиминации (выведении) введенных обычным путем (внутривенно, ингаляционно и др.) лекарств из кровотока в ткани патологического очага или какого-либо органа. Впервые научно обоснован в наших исследованиях (B.C. Улащик, 1970-1974).

По сравнению с традиционными этот вариант электрофореза имеет ряд существенных преимуществ:
а) при внутритканевом электрофорезе используется вся терапевтическая доза лекарственного вещества, что позволяет метод назначать в более ранние сроки и при более тяжелом течении патологического процесса;
б) этот способ не требует определения и соблюдения полярности введения лекарственного вещества, что исключительно важно для традиционного варианта проведения лекарственного электрофореза;
в) для внутритканевого электрофореза без особых ограничений могут использоваться многокомпонентные смеси лекарственных веществ;
г) терапевтическая эффективность внутритканевого электрофореза выше, чем его классического варианта, особенно при лечении заболеваний внутренних органов.

Суть метода состоит в том, что одним из известных способов в организм вводится лекарство, а затем в области патологического очага проводится гальванизация (электризация). Чтобы в полной мере реализовать вышеперечисленные преимущества внутритканевого электрофореза, необходимо соблюдать ряд методических условий:
а) гальванизация (электризация) должна проводиться на высоте концентрации лекарства в крови (при внутривенном струйном введении – сразу после инъекции; при внутривенном капельном – после израсходования 1/2-2/3 частей рабочего раствора; при ингаляционном способе введения лекарства – во время или сразу после ингаляции; при других способах применения лекарств – через 1-2 ч);
б) воздействие электрическим током должно осуществляться при поперечном расположении электродов, обеспечивающем его прохождение через патологический очаг;
в) в области патологического очага не должно быть нарушений кровообращения; чем лучше кровоток в патологически измененных тканях, тем активнее будет идти электроэлиминация в них циркулирующих в крови лекарств.

Для электрофореза могут использоваться лекарственные вещества, которые при растворении в воде диссоциируют на ионы.

За рубежом для электрофореза широко применяют и специальные лекарственные гели. Лекарственный раствор (или гель) наносится на прокладку электрода, имеющего ту же полярность, что и подлежащий введению ион. Полярность простых соединений легко определить теоретически: ионы всех металлов имеют положительный заряд и вводятся с анода; ионы всех металлоидов (хлор, бром, йод и др.) и кислотные остатки подлежат введению с катода, т.к. приобретают при диссоциации отрицательный заряд.

Положительный заряд в растворе имеют алкалоиды, местноанестезирующие средства, большинство антибиотиков и сульфаниламидов. Полярность сложных лекарств можно определить только в специальных исследованиях, а поэтому сведения о них всегда приводятся в учебниках, монографиях и руководствах. У некоторых веществ (например, белков или аминокислот), относящихся к амфотерным соединениям, полярность зависит от рН среды: в кислых растворах они приобретают положительный заряд, в щелочных соответственно отрицательный. Поскольку катионы при электрофорезе лучше вводятся через кожу, чем анионы, то амфотерные соединения целесообразнее готовить на кислых растворах и вводить в организм с анода.

Важную роль при проведении лекарственного электрофореза играет растворитель. Для большинства лекарств (водорастворимых) наилучшим растворителем является вода: она ввиду высокой диэлектрической постоянной обеспечивает хорошую их диссоциацию и меньше других растворителей препятствует электрогенному переносу лекарств.

Если лекарственное вещество плохо растворимо в воде, то при его электрофорезе в качестве растворителя можно использовать спирты и особенно диметилсульфоксид (димексид, ДМСО). Димексид: = 0 – препарат, обладающий уникальными физико-химическими свойствами: способностью растворять многие соединения, высокой проникающей способностью, выраженными транспортными свойствами и др. ДМСО не изменяет полярности других веществ, содействует их лучшему проникновению через кожу и слизистые оболочки, в т.ч. и при электрофорезе (И.Е. Оранский, 1977). При оценке ДМСО как растворителя обязательно следует иметь в виду, что ему также присущи противовоспалительное, спазмолитическое, дегидратирующее, антикоагулянтное и бактериостатическое действие. При приготовлении лекарственных растворов для электрофореза используется ДМСО, разбавленный водой. Если лекарство не растворимо в воде, то применяют 25-50%-ные водные растворы аптечного димексида; если же лекарство растворимо или плохо растворимо в воде, то можно использовать более разбавленные растворы ДМСО – 10-25%-ные. Особенно целесообразно использование электрофореза из среды ДМСО при заболеваниях, при которых диметилсульфоксид показан как фармпрепарат (ушибы, растяжения связок, отеки воспалительные, гнойные раны, болевые синдромы, трофические язвы и др.).

В отдельных случаях (при электрофорезе белков, ферментов, реже аминокислот) в качестве растворителя разрешается использовать буферные растворы с определенным рН.

Однако всегда нужно помнить, что любой буфер уменьшает (по сравнению с водой) введение лекарственного препарата в организм.

Читайте также:  При каких болезнях назначают электрофорез

Не должны использоваться для приготовления рабочих лекарственных растворов неполярные растворители, а также растворы электролитов (NaCl, NаНСО3 и др.).
Лекарственные вещества, предназначенные для электрофореза, должны быть максимально чистыми, свободными от примесей и содержать только подлежащие введению препараты. Присутствие в рабочих растворах других веществ или электролитов растворителя препятствует введению основного лекарственного иона и снижает терапевтическую эффективность метода. Поэтому не следует применять для лекарственного электрофореза препараты в виде таблеток или других лекарственных форм, содержащих заполняющие и связующие вещества.

Лекарственные растворы для электрофореза рекомендуется заготавливать не более чем на 7-10 дней. Растворы неустойчивых лекарств (прежде всего ферментов) лучше готовить непосредственно перед процедурой и хранить в холодильнике. Количество расходуемого лекарства определяется из расчета 5-10 мл на каждые 100 см2 площади матерчатой лекарственной прокладки (для прокладки из фильтровальной бумаги соответственно 2-3 мл) и учета количества и характера проводимых процедур. Сильнодействующие лекарства наносятся на прокладку в количестве, не превышающем его высшей разовой дозы.

Дозируют лекарственный электрофорез, как и другие электротерапевтические методы, по плотности тока и длительности процедуры. Дозирование по количеству вводимого лекарственного вещества (B.C. Улащик, 1974), как более сложное, в практической медицине не применяют. Плотность тока при электрофорезе зависит от вида используемого электрического тока и полностью соответствует подходам, принятым для его дозирования при применении в чистом виде, т.е. при гальванизации, диадинамотерапии или флюктуоризации. При дозировании тока обязательно учитывают и ощущения больного. Например при использовании постоянного тока во время процедуры больной должен испытывать легкое покалывание в области наложенных электродов.

Продолжительность процедуры зависит от локализации воздействия и вида используемого тока. При общих и сегментарно-рефлекторных методиках она обычно не превышает 15-20 мин, а при местных процедурах – 30-40 мин. Использование флюктуирующих или синусоидальных модулированных токов (в выпрямленном режиме) требует некоторого уменьшения продолжительности лекарственного электрофореза, а при проведении его по методике электросна длительность воздействия, наоборот, обычно удлиняется. Курс лечения лекарственным электрофорезом в зависимости от тяжести состояния больного может быть различным по продолжительности: от 10-12 до 16-20 процедур, проводимых ежедневно или через день.

Показания для лекарственного электрофореза определяются фармакотерапевтическими свойствами вводимого препарата, а также показаниями к использованию физического фактора (гальванического или других постоянных токов). В связи с широким перечнем лекарств, пригодных для электрофореза, и разнообразием используемых электрических токов показания для назначения метода весьма разнообразны. В принципе трудно найти заболевание, при котором не мог бы быть назначен лекарственный электрофорез. Наиболее целесообразно лекарственный электрофорез применять при тех заболеваниях, при которых показаны как лекарственные вещества, так и используемый при этом электрический ток.

Противопоказаниями для лекарственного электрофореза являются индивидуальная непереносимость лекарственного вещества, противопоказания к использованию лекарства и самого электрического тока (см. Гальванизация, Диадинамотерапия, Флюктуоризация).

Несмотря на сравнительную простоту техники и методики лекарственного электрофореза, при его проведении нередко допускаются ошибки, что снижает эффективность лечения, а иногда оборачивается и неприятностями для пациента. Ошибки могут быть вызваны упущениями врача, оформляющего физиотерапевтический рецепт, или допущены медсестрами при выполнении процедур.

Остановимся на ошибках, которые наиболее часто встречаются в практической физиотерапии.
1. Сестра физиотерапевтического кабинета периодически должна проверять полярность клемм аппарата (особенно нового или поступившего из ремонта). Понятно, что при перепутывании полярности зажимов аппарата в организм будут вводиться не те ионы, которые назначены врачом.
2. В аппаратах для гальванизации и лекарственного электрофореза (особенно импортных), а также в аппаратах для амплипульстерапии иногда некачественно работает система выпрямления, и тогда ими генерируется частично переменный ток. Последний, разумеется, не обеспечивает введения в организм терапевтически значимого количества лекарственного вещества.
3. Иногда для лекарственного электрофореза используются немаркированные или плохо обработанные прокладки. В таких прокладках со временем накапливаются различные (паразитарные) ионы и при проведении очередной процедуры в организм наряду с лекарственными ионами будут вводиться и паразитарные, что совершенно недопустимо. Такие прокладки часто вызывают чрезмерное раздражение кожи и ее аллергизацию.
4. При лекарственном электрофорезе образуются продукты электролиза (чаще всего кислота или щелочь), которые могут достигать лекарственной прокладки и отрицательно влиять на лекарственное вещество. Поэтому при электрофорезе лекарств, чувствительных к рН среды (антибиотики, белки, ферменты и др.), необходимо принимать защитные меры. С этой целью пользуются: защитными целлофановыми пленками; приготовлением рабочих растворов на буферных смесях; увеличением толщины гидрофильных прокладок или применением защитной прокладки, смоченной 5%-ным раствором глюкозы или 1%-ным раствором гликокола.
5. При проведении многих процедур (особенно на область сустава) нередко слишком сближают края прокладок или пользуются прокладками излишне большой площади. В этом случае значительная часть тока проходит по краям сустава, и лекарственное вещество не поступает в полость сустава (в глубь тканей). То же самое происходит и при пользовании чрезмерно смоченными водой и лекарственным раствором прокладками.
6. Часто допускаются ошибки при выборе и расположении электродов на теле больного. Например при электрофорезе на воротниковую область индифферентный электрод берут слишком малых размеров и он, по существу, оказывается активным. При проведении процедур в области головы (глазнично-затылочная или лобно-затылочная методики) индифферентный электрод располагают не на задней поверхности шеи, как следует делать, а в межлопаточной области и т.д.
7. По просьбам лечащих врачей в лечебной практике нередко используются случайные или мало обоснованные методики. Делать этого не следует, ибо без тщательных предварительных исследований, проводимых по определенному алгоритму, нельзя быть уверенным, что используемое вещество вводится в организм, не разрушается током, сохраняет свою специфическую фармакологическую активность и т.д.
8. Несмотря на кажущуюся ясность в вопросе выбора растворителя для электрофореза, во многих клиниках и сегодня продолжают использовать для этих целей физиологический раствор, растворы глюкозы, бикарбоната натрия или других электролитов. Ионы этих растворителей будут являться паразитарными по отношению к вводимым лекарствам и многократно уменьшать их электрофоретическое введение в организм.
9. Не всегда должное внимание уделяется выбору формы препарата. Например вместо норсульфазола натрия используют норсульфазол, вместо этазол-натрия – этазол, растворимого фурагина – фурагин и т.д. Ошибочным является и использование для электрофореза растворов, приготовленных из таблетированных форм препарата (интал, бутадион, аминалон и др.).
10. Во многих клиниках злоупотребляют использованием для электрофореза сложных лекарственных смесей, нередко составленных произвольно. Во-первых, при этом часто нарушаются правила совместимости (химической, физической или фармакологической) лекарств. Во-вторых, нанесение на прокладку смеси лекарств ведет к заметному уменьшению электрофоретической подвижности каждого из них, что снижает в итоге терапевтический результат.
11. Встречаются нарушения техники и методики электрофореза, обусловленные несоблюдением полярности введения лекарств. В одних случаях эта ошибка обусловлена тем, что полярность того или иного вещества неправильно либо определена, либо описана в книге (руководстве). Еще более грубой ошибкой считаются те случаи, когда полярность введения лекарств не соблюдается по халатности или незнанию.

источник

Электрофорез, гальванизация и ионотерапия. Механизм действия. Методика проведения. Показания и противопоказания

Электрофорез — физиотерапевтический метод, основанный на совокупности действия гальванического тока и вводимого с его помощью активного вещества.

Это один из древнейших методов в физиотерапии. Около 200 лет назад итальянский физик А. Вольта создал генератор непрерывного тока, а Луиджи Гальвани исследовал его действие для начала на лягушках. Ток в честь исследователя принято называть гальваническим. Очень скоро гальванический ток, как новейшее слово в науке XIX в., стал применяться в медицине и уже примерно 100 лет гальванический ток верно служит косметологам

Применение гальванического тока достаточно разнообразно. В современной косметологии выделяют следующие процедуры: гальванизации электрофорез, дезинкрустацию и ионную мезотерапию.

Гальванический ток — это непрерывный ток с низким напряжением и с низкой, но постоянной интенсивностью, который проходит всегда в одном направлении (не меняет полярности, напряжение 60-80 Вт, сила тока до 50 мА). Воздействие на организм гальваническим током посредством различных электродов называют гальванизацией.

Совокупность действия гальванического тока и вводимого с его помощью активного вещества является основой электрофореза. Электрофорез можно проводить с помощью постоянного (гальванического) тока, а также помощью некоторых видов импульсных токов. В косметологии электрофорез лекарственных препаратов чаще называют ионофорезом. Этот термин не совсем точный (при помощи электрофореза можно вводить не только ионы, но и молекулы, их части, имеющие заряд), но часто употребляемый. Таким образом, технически электрофорез отличается от гальванизации только наличием под электродом лекарственного вещества.

Способность гальванического тока доставлять лекарственные вещества вглубь кожи используется в процедуре «ионной мезотерапии», или ионотерапии.

Ионотерапия представляет собой электрофорез лекарственных веществ при помощистационарных электродов (как активных, так и пассивных). Термин имеет исключительно коммерческий характер, процедура проводится по классической методике электрофореза (процедура проводится без инъекций). Аналогия с мезотерапией помогает возобновить интерес к данному методу. Показания, лечебная тактика и рецептура составления коктейлей соответствуют принятым в мезотерапии схемам с поправкой на форетичность препаратов.

Таким образом, методы, использующие гальванический ток в своей основе, это:

  1. Гальванизация = лечебное действие постоянного тока.
  2. Электрофорез = гальванизация + лекарственное вещество.
  3. «Ионная мезотерапия» = электрофорез стационарными электродами.
  4. Дезинкрустация = поверхностный электрофорез с омыляющими средствами.

Механизм действия гальванизации

В основе действия постоянного тока лежит процесс электролиза. Вещества, находящиеся возле электродов, распадаются на ионы. Существует 2 вида ионов: анионы и катионы. Ионы перемещаются под действием тока: анионы (-) стремятся к аноду, а катионы (+) стремятся к катоду. Молекулы воды распадаются на ионы Н + и ОН. Возле электродов ионы взаимодействуют с водой, образуя продукты электролиза — кислоту и щелочь. Продукты электролиза могут вызывать химические ожоги в месте наложения электродов — щелочной ожог под катодом и кислотный под анодом. Это особенно актуально при использовании стационарно расположенных электродов. Чтобы избежать этого, между электродом и кожей располагают толстую гидрофильную прокладку (продукты электролиза скапливаются на прокладке и кожа остается интактной). После процедуры прокладку нужно промыть или сменить. Изменение концентрации ионов ведет к раздражению рецепторов кожи, при этом возникает легкое жжение и покалывание. Прохождение тока через ткани вызывает поляризацию — накопление ионов на биологических Мембранах.

Электролиз и поляризация оказывают сильнейшее воздействие на ткани и клетки. При определенной концентрации ионов клетки переходят в возбужденное (электрически активное) состояние. Меняются скорость обмена и возбудимость клетки. При этом увеличивается пассивный транспорт крупных белковых молекул и других веществ, не несущих заряда (электродиффузия), и гидратированных ионов (электроосмос). Это означает ускорение клеточного и внутриклеточного обновления: быстрое поступление строительного материала, питательных и регулирующих веществ, а также своевременное выведение продуктов обмена из клетки.

Гальванизация проводится стационарными, подвижными электродами или с помощью ванночек. В процедуре всегда присутствуют два электрода: положительный и отрицательный. Для проведения тока используется физиологический раствор или токопроводяший гель. Следует помнить, что отрицательный и положительный электроды оказывают разное действие на ткани.

Влияние отрицательно и положительно заряженных электродов на различные ткани

Повышение возбудимости и чувствительности

Понижение возбудимости и чувствительности

Секреторная активность (сальные и потовые железы)

Ощелачивание (повышение рН)

Повышение кислотности (снижение рН)

Механизм действия электрофореза

Известно, что электрический ток вызывает перемещение ионов. Постоянный ток можно сравнить с ветром, который дует в одном направлении и переносит мелкие частицы. Гальванический ток действует непрерывно, а импульсные токи продвигают вещества «рывками». При помощи постоянного тока можно вводить через кожу и слизистые оболочки как мелкие, так и более крупные частицы лекарственных веществ, несущие электрический заряд. При этом заряженные частицы отталкиваются от одноименного электрода и уходят вглубь кожи. Таким образом, с отрицательного электрода вводятся отрицательно заряженные ионы, а с положительного — положительно заряженные. Существуют и амфотерные (биполярные) вещества, их вводят альтернативным током — меняется с (+) на (-). Наибольшая подвижность — у лекарственных веществ, растворенных в воде. Вводимые лекарственные ионы проникают в эпидермис и накапливаются в верхних слоях дермы, из которых диффундируют в интерстиций, эндотелии сосудов микроциркуляторного русла и лимфатические сосуды.

При электрофорезе вещества уходят на глубину до 1,5 см. В зоне воздействия после процедуры образуется «депо», из которого препарат проникает в клетки постепенно. Период выведения различных веществ из кожного «депо» — от 3 до 15-20 ч, что обусловливает продолжительное пребывание активных веществ в организме и пролонгированное действие.

На количество введенного вещества и глубину его проникновения влияют следующие параметры:

  1. Сила тока.
  2. Концентрация препарата.
  3. Длительность процедуры
  4. Физиологическое состояние кожи.

Электрофорез проводится как стационарными, так и подвижными электродами. Необходимо соблюдать единую полярность электрода и вводимого вещества в течение всего курса процедур. Следует помнить, что попеременное использование электродов разной полярности может резко нарушить процесс перемещения заряженных частиц на тканевом и клеточном уровне. В зависимости от того, какие лекарственные или косметические препараты применяют при электрофорезе, процедура может иметь рассасывающее, подсушивающее, тонизирующее и другие действия.

Читайте также:  Ванночки для глазного электрофореза

Для проведения процедуры всегда используют два электрода — положительный и отрицательный. Отрицательный электрод называют катодом. Обычно все провода и соединения от отрицательного полюса выполняют в черном цвете. Положительный электрод называют анодом и маркируют красным цветом.

Электроды, которые используются в процедуре, могут быть равными или неравными по площади. На меньшем электроде плотность тока выше и действие его более выражено. Меньший электрод называют активным.

Активным электродом воздействуют на проблемную зону. Пассивный (индифферентный) — электрод большей площади. Обычно он находится в руке пациента или закрепляется на теле. Пассивный электрод может также нести лечебную нагрузку. Можно проводить двуполярный электрофорез — с отрицательного электрода будут попадать в кожу отрицательно заряженные ионы, а с положительного, соответственно, положительно заряженные. Если электроды по площади равны, более выраженные ощущения возникают под отрицательным электродом.

Полярность вещества — заряд его активных частиц. От электрода отталкиваются одноименные ионы и уходят вглубь тканей Поэтому отрицательные ионы вводятся с отрицательного электрода.

Для проведения процедур используется три основных вида электродов: лабильные, стационарные и электроды для гальванических ванночек.

Лабильные электроды используют для скользящей обработки кожи лица, шеи, декольте. Это металлические электроды разной формы. Форма подбирается для удобства работы. Конический электрод обычно используют для проработки зоны вокруг глаз. Сферический или электрод-валик — для щек, шеи и декольте. Лабильные электроды обязательно должны скользить по гелю или водному раствору. Высыхание раствора снижает проводимость кожи и пациент чувствует неприятные покалывания.

Стационарные электроды — токопроводящие пластины, которые закрепляют на коже. Стационарные электроды бывают металлическими (свинцовые или другие металлические пластины), резиновыми (из токопроводящего латекса) и графитовыми (одноразовые пластины графитизированной бумаги). Стационарный электрод находится на коже 10-30 мин. Поэтому под электродом обязательно должна быть прокладка из ткани или бумаги толщиной 0,5-1 см. Прокладку смачивают водой или физраствором. При проведении электрофореза прокладку смачивают раствором лекарственного вещества. Назначение прокладки — улучшить проведение тока и защитить кожу от раздражающих веществ, которые скапливаются под электродами. Прокладку необходимо после каждой процедуры промыть или продезинфицировать. Удобнее использовать одноразовые прокладки.

Электроды для гальванических ванночек представляют собой графитовые пластины, которые укладывают в емкость с водой. В этом случае вся вода или раствор ведут себя как электрод. Впитывание лекарственных веществ в кожу происходит из воды.

Необходимо ознакомить пациента с характером ощущений в ходе процедуры. Обычно чувствуют равномерное, неболезненное покалывание. При проведении процедур на лице появляется легкий металлический привкус во рту. Силу тока во время процедуры необходимо подбирать именно по субъективным ощущениям, добиваясь их отчетливости и комфортности. В физиотерапии силу тока принято измерять в миллиамперах (мА). Перед проведением процедуры обычно задают целевой диапазон силы тока. Для процедур на лице используют диапазон от 0 до 5 мА, на теле — от 0 до 50 мА. Чувствительность кожи лица к току отличается в разных участках. Шея, нос, и веки обычно более чувствительны, чем щеки и лоб. Порог чувствительности индивидуален и может меняться в течение дня. Если ощущения стали болезненными, следует плавно уменьшить силу тока. При проведении процедуры ионофореза важно учитывать электропроводность тканей. Она зависит от концентрации ионов и интенсивности обмена жидкостей. Роговой слой кожи является главным барьером на пути прохождения тока. Сопротивление его не так велико, как у электроизоляции, но тоже значительно. Проводимость кожи во многом зависит от состояния рогового слоя.

Приведенные выше сведения применяют на практике следующим образом:

  • перед процедурой необходимо проводить обезжиривание кожи;
  • участки кожи с микротравмами могут быть более чувствительными к воздействию током;
  • попадание под лабильный электрод волосков, а также места выхода нервов может давать неприятные ощущения;
  • на разных участках лица (и тела) сила тока для процедуры может быть разной.

Противопоказания к гальванизации.

Назначая электропроцедуры, нужно учитывать состояние здоровья пациента, так как существует ряд противопоказаний к проведению таких процедур.

Противопоказаниями к электрофорезу являются все противопоказания v проведению гальванизации, а также непереносимость вводимого вещества.

Методы проведения процедур

Методика с использованием лабильных электродов применяется как для электрофореза, так и для гальванизации. Особенности применения лабильных электродов следующие:

  • большая площадь охвата — за одну процедуру можно проработать все лицо и шею;
  • точная дозировка силы тока для разных участков лица;
  • зрительный контроль сосудистой реакции при проведении процедуры;
  • простота и удобство в применении;
  • введение меньшего, по сравнению со стационарными электродами, количества вещества.

Перед проведением процедуры следует провести демакияж, обезжирить кожу лица тоником или лосьоном. Полярность активного электрода подбирают в соответствии с полярностью вводимого вещества. Вид электрода выбирают в зависимости от зоны воздействия. Вокруг глаз обычно используют конический электрод, для щек и шеи — конический, для шеи и области декольте — электрод-валик.

Пассивный электрод можно фиксировать на теле, но чаще пациент держит его в руке. Пациента просят снять с рук украшения. Необходимо обернуть цилиндрический электрод влажной салфеткой слоем 0,5-1 см, после процедуры салфетку обязательно нужно сменить или тщательно промыть и продезинфицировать. В ткани накапливаются продукты электролиза. Поэтому, если толщина слоя недостаточна или салфетка не обработана после Предыдущей процедуры, у пациента могут возникнуть неприятные покалывания и раздражение в месте контакта с пассивным электродом.

Активный электрод перемещают по проблемным зонам мелкими круговыми движениями. Нужно следить за тем, чтобы участок под электродом был хорошо увлажнен. На небольшом участке лабильный электрод «работает» 1-2 мин до первых признаков покраснения кожи. Общее время воздействия на лицо и шею — 10-15 мин. После процедуры желательно сделать маску, соответствующую типу кожи. Действие маски после электрофореза более выражено, так как ткани более активны. Кроме того, кожа с незначительным покраснениями от воздействия током за 15-20 мин успевает успокоиться.

Существует несколько способов нанесения лекарственного вещества н кожу при работе лабильными электродами. В первую очередь это связано с удобством работы. Гели и водные растворы быстро высыхают на коже. Чтобы избежать неприятных ощущений и более экономно расходовать пpeпaраты, рекомендуют следующее:

  • Вещества в форме гелей можно наносить на пол-лица или по частям
  • Водные растворы рекомендуется наносить на лицо покапельно. Для этого содержимое ампулы можно переместить в шприц без иголки. Раствор наносится на небольшие участки в процессе процедуры.
  • Гальванизацию лабильными электродами можно проводить по влажной марлевой маске, смоченной активным ампульным концентратом.

Аналогично процедуру проводят по коллагеновым листам.

Применение стационарных электродов.

Особенности применения данной методики:

  • длительное воздействие на проблемную зону (30-15 мин в отличие от 1 мин при лабильной методике);
  • большие, по сравнению с лабильной методикой, глубина проникновения и количество лекарственных веществ;
  • ограниченная площадь воздействия.

Для проведения процедуры применяют многоразовые или одноразовые стационарные электроды. Под электродом обязательно должна быть защитная гидрофильная прокладка толщиной около 1 см. Основные требования к прокладке; она должна соответствовать форме пластины и выступать за ее края не менее чем на 0,5-1 см с каждой стороны. Назначение прокладки — предохранение кожи от ожогов и раздражения кислыми и щелочными продуктами электролиза. Перед процедурой гидрофильную прокладку хорошо смачивают теплой водопроводной водой или раствором используемого препарата. После каждой процедуры прокладку промывают проточной водой и стерилизуют кипячением. Удобнее использовать одноразовые марлевые или бумажные гидрофильные прокладки.

Популярность метода мезотерапии и многолетний опыт использования гальванического тока в косметологии привели к новому подходу в применении фореза лекарственных веществ — ионной мезотерапии. По сути это электрофорез лекарственных веществ при помощи стационарных электродов.

Преимущества данной методики следующие:

  • Ткани не повреждаются и не деформируются. Поэтому никогда не бывает последствий в виде гематом, выраженной отечности или точечных царапин.
  • Безболезненность процедуры. Пациент может испытывать лишь легкое жжение или покалывание под электродами.
  • Вещества в ионизированном состоянии более активны. Поэтому доза ионизированного вещества может быть значительно меньше, чем при инъекционном введении.
  • Не происходит введения в ткани растворителя, в отличие от инъекционного способа, что исключает деформацию тканей и местные расстройства кровообращения. Аллергические реакции, часто зависящие от степени очистки препарата, практически исключены.

Сочетание действия вещества и тока. Под действием гальванического тока усиливается образование биологически активных веществ (гистамина, серотонина, ацетилхолина), активизируются окислительные процессы в коже, ускоряется восстановление эпителиальных и соединительных тканей, изменяется проницаемость биологических мембран. К недостаткам ионной мезотерапии относят ограниченную площадь воздействия и то, что не все вещества можно вводить с помощью тока. Кроме того, некоторым пациентам противопоказаны электропроцедуры.

Достаточно перспективным представляется сочетание ионной и классической мезотерапии — воздействие постоянным током непосредственно до проведения инъекций. Используя этот метод, можно значительно улучшить усвоение веществ в зоне наложения электродов, а также провести предварительное обезболивание.

При проведении ионной мезотерапии два (реже один) активных электрода необходимо разместить на коже лица, а пассивный — на предплечье или в зоне между лопатками. Площадь пассивного электрода должна быть в два раза больше площади активных. Первая процедура — 10 мин, сила тока — до минимальных выраженных ощущений. Последующие процедуры — 15-20 мин.

Полярность активных электродов во время курса процедур не меняется Для активного вещества, проникающего в организм путем электрофореза 5-10% (10-20%), концентрация раствора не должна быть больше 35%.

План проведения процедур на лице:

  • демакияж;
  • молочко;
  • тоник;
  • можно дополнительно — механический или ферментативный пилинг (химические пилинги с электропроцедурой несовместимы, кроме микротоков);
  • дезинкрустация — (-) электродом по раствору-дезинкрустанту;
  • электрофорез по активному веществу (электрод выбирается в зависимости от полярности средства);
  • маска;
  • завершающий крем

У ряда пациентов могут возникать неприятные ощущения в ходе процедуры. Основные причины этих ощущений следующие:

  1. Слишком большая сила тока.
  2. Плохой контакт электрода и кожи:
    • недостаточно плотно лабильные электроды прижимаются к коже;
    • высох гель или раствор под лабильным электродом; для пассивного электрода — недостаточно влажная или тонкая салфетка;
    • под лабильный электрод попадают участки с волосками (например, возле брови).
  3. Нарушение целости кожного барьера:
    • микротравмы (после чистки, мезотерапии, участки очень cyxoй кожи с микротрещинками);
    • зоны воспаления (воспаленные элементы угревой сыпи, ультрафиолетовые ожоги и аллергические реакции);
    • истончение рогового слоя кожи (после поверхностного и срединного пилинга, активного броссажа, маски-пленки).
  4. Накопление продуктов электролиза:
    • для пассивного электрода — тонкая или не обработанная салфетка;
    • для активного электрода — слишком длительное воздействие на одну зону; на небольшом участке лабильный электрод «работает» 1-2 мин или до первых признаков покраснения кожи.

Препараты для электрофореза

В настоящее время косметическая промышленность предлагает различные препараты для электрофореза. Это могут быть ампулированные вещества, гели и растворы. Поляризованные препараты имеют маркировку (+) или (-) на упаковке. Это означает, что вводить их следует с соответствующего полюса. При отсутствии маркировки полярности необходимо сверяться с таблицей веществ для электрофореза.

В косметологии активно используются ампулированные растворы коллагена, эластина, травяные сборы. Эти вещества не обладают подвижностью в электрическом поле. Электрофореза, например, коллагена не происходит. Рекомендуется использовать раствор коллагена в качестве токопроводящего вещества при проведении гальванизации.

Вещества, которые не могут быть введены с помощью тока, с успехом используются в процедурах гальванизации. Косметический эффект таких процедур значительно выше эффекта простого нанесения вещества на кожу зя счет активизации сосудов и увеличения проницаемости клеточных мембран. При проведении ионной мезотерапии (так же, как и классической) можно пользоваться одним готовым препаратом (монотерапия) или составлять коктейли. При одновременном введении вещества часто оказывают более выраженное действие. Такой эффект называют потенцированием.

Существуют определенные правила составления коктейлей для ионотерапии:

  • в виде водных, солевых, реже лекарственные препараты применяют в слабых спиртовых растворов;
  • растворители в коктейле должны быть одинаковыми;
  • концентрация вещества в каждом растворе не превышает 10%;
  • коктейль составляется из ионов одной полярности.

К основным используемым веществам относят следующие:

  • Лидаза — препарат, содержащий фермент гиалуронидазу.
  • Гиалуронидаза вызывает увеличение проницаемости тканей и облегчает движение жидкостей в межтканевых пространствах. Основные показания к применению лидазы — рубцы после ожогов и операций, гематомы; рубцы, спайки, фиброзные изменения в тканях.
  • Биогенные стимуляторы, применяемые в медицинской практике, — препараты из:
    • растений (экстракт алоэ);
    • тканей животных (взвесь плаценты);
    • лиманньх грязей (ФиБС, пелоидин, гумизоль).
  • Аскорбиновая кислота. Одной из важных физиологических функций аскорбиновой кислоты является ее участие в синтезе коллагена и проколлагена и в нормализации проницаемости капилляров.
  • Кислота никотиновая (витамин РР). Оказывает стимулирующее и сосудорасширяющее действие. Гиперемия способствует усилению процессов регенерации и рассасыванию продуктов тканевого распада. Раскрываются резервные капилляры, повышается проницаемость их стенок.
  • Кислота салициловая. Применяют как антисептическое, отвлекающее, раздражающее и кератолитическое средство. Применяется для лечения себореи
  • Неорганические йодиды — калия и натрия йодид. Рассасывающее средство. Способствует рассасыванию инфильтратов и рубцов.
  • Цинк. Применяется как антисептическое и вяжущее средство.

источник