Меню Рубрики

Электрофорез белков и его виды

Метод электрофореза является одним из самых распространенных, мощных и доступных методов исследования белков. Этот метод широко применяется как в научных исследованиях, так и при экспертизе качества продуктов питания и медицинских препаратах, а также в клинических лабораториях.

С помощью метода электрофореза производят:

1) анализ сложных смесей белков (в генетических исследованиях, при выделении и биотехнологической наработке белков)

2) обнаружение определенного белка (при проведении экспертизы, контроле биотехнологических процессов, клинических анализах)

3) определение молекулярной массы белков (в фундаментальных исследованиях)

4) исследование структуры белков (анализ расположения в биологических мембранах, взаимодействия с другими белками, изучение вопросов фолдинга белков)

В основе метода электрофореза лежит тот факт, что молекулы белков в водных растворах заряжены, то есть фактически представляют собой ионы. Как любая частица, несущая электрический заряд, молекулы белков способны перемещаться в электрическом поле. Таким образом, если к раствору белка приложить электрическое поле (опустить в него электроды и подать постоянное напряжение), то все молекулы белков начнут двигаться. Вследствие разницы в аминокислотном составе разные белки заряжены разноименно — положительно или отрицательно. По этой причине различные белки будут двигаться в разных направлениях: положительно заряженные – к катоду (отрицательный электрод), отрицательно заряженные – к аноду (положительный электрод). Кроме того, величина заряда белковых молекул также неодинакова – молекулы одних белков заряжены сильнее, других – меньше. Белки, молекулы которых имеют больший заряд, будут двигаться быстрее, чем те, что несут меньший заряд. Также на разделение белков методом электрофореза большое влияние оказывает размер молекул белков. Более крупные белки движутся медленнее, чем белки небольших размеров, вследствие того, что вода оказывает сопротивление перемещению (является вязкой средой).

По причине того, что аминокислотный состав белков и их масса различаются достаточно сильно, электрофорез позволят анализировать очень сложные смеси белков. Для решения различных исследовательских задач было предложено множество различных вариантов электрофореза.

4.9 Электрофорез по Леммли

Электрофорез по Леммли — один из методов электрофореза в геле, применяемый для анализа сложных белковых смесей. Данный метод позволяет разделять белки по их молекулярной массе. Также электрофорез по Леммли может быть использован для определения молекулярной массы белков.

Белки, подлежащие анализу методом электрофореза по Леммли, предварительно обрабатывают концентрированным 5%-ным раствором додецилсульфата натрия (рис. 15) при 100С в присутствии β-меркаптоэтанола. При этом белковые молекулы приобретают отрицательный заряд, значительно превышающий её собственный. При последующем разделении в полиакриламидном геле белковые зоны распределяются на электрофоре граммах в соответствие с логарифмом их молекулярной массы

Рис. 15. Додецилсульфата-анион, присутствует в растворах додецилсульфата натрия

В качестве геля для электрофореза по Леммли используются полиакриламидные гели, что позволяет достичь высокой разрешающей способности данного метода. Полиакриламидный гель представляет собой продукт сополимеризации акриламида (рис. 16)

и сшивающего агента N,N- метиленбисакриламда (рис. 17)

Рис. 17. N,N- метиленбисакриламид

В результате процесса сополимеризации образуется прочный, упругий, термостабильный гель, обладающий высокими механическими свойствами и химической инертностью. Пространственная структура геля представляет собой сетку со структурой (рис. 18). Пористость геля зависит от концентрации мономеров и её можно варьировать в значительных пределах от 40 до 0,1 нм (2-30% мономеров). Регулярно чередующиеся амидные группы делают гель гидрофильным. Отсутствие ионизирующихся групп существенно снижает эндосмос, а также взаимодействие белков со структурой геля.

Рис. 18. Структура полиакриламидного геля

В качестве катализатора реакции сополимеризации применяют источник свободных радикалов — персульфат аммония или калия. Катализатором реакции выступает N,N,N,N-тетраметилэтилендиамин.

Полимеризацию геля ведут в стеклянных трубочках длиной 70-100 мм с внутренним диаметром 5 мм либо плоских пластинах. Для этого в одной трубке последовательно полимеризуют два геля для электрофореза, располагая их один под другим: 1) верхний – крупнопористый гель в котором образец сжимается в узкую полосу (концентрирующий гель), 2) нижний — мелкопористый гель, в котором происходит разделение белковой смеси на компоненты под действием эффекта «молекулярного сита».

Для проведения электрофореза гелевыми столбиками соединяют расположенные друг над другом резервуары с буферами, в которые введены электроды и подают на электроды напряжение 40-800 вольт.

В качестве отчета о проделанной работе:

1. Зарисуйте структурные формулы додецилсульфата натрия, акриламида, N,N- метиленбисакриламида, структуру полиакриламидного геля

2. Зарисуйте расположение белковых полос, полученных в результате электрофореза по Леммли, сделайте вывод о составе выданного вам раствора белка (количество компонентов, примерная доля главных компонентов и их число, примерная доля минорных компонентов и их число)

Подготовить пробу белка для электрофореза. Для этого в эппендорф объемом 2 мл поместить 100 мкл раствора белка с концентрацией 4 мг/мл и добавить 100 мкл буфера пробы. Содержимое перемешать инжектированием.

Поместить пробирки в поплавок и поместить в водяную баню. Нагреть до кипения и кипятить 5 минут, затем охладить

Растворить навеску персульфата калия в 2,5 мл ДВ. Для этого внести автоматической пипеткой 2,5 мл ДВ и перемешивать инжектированием до полного растворения соли (растворение идет медленно)

Собрать трубку для электрофореза и поместить её вертикально в штатив

В центрифужной пробирке приготовить смесь для разделяющего геля

Раствор Мономеров 1250 мкл

1,5 М Трис-HCl рН8,8 167 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

Смесь для разделяющего геля вносят в трубку для электрофореза тремя порциями по 800 мкл. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 15-20 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации слить воду с геля, остатки жидкости убрать с поверхности геля фильтровальной бумагой, скрученной в трубочку

В центрифужной пробирке приготовить смесь для концентрирующего геля

Раствор Мономеров 340 мкл

0,5 М Трис-HCl рН6,8 125 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

250 мкл смеси для концентрирующего геля вносят в трубку для электрофореза. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 5-10 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации геля с трубки снимаю заглушку и устанавливают трубки для электрофореза в катодную камеру прибора (рис. 19) так, чтобы граница концентрирующего и разделяющего геля была видна в верхней (катодной камере)

Рис. 19. Прибор для вертикального гель-электрофореза в трубках.

1- верхняя, анодная камера, 2 – нижняя, катодная камера, 3 – трубки с гелем для электрофореза, 4 – положительный электрод, анод, 5 — отрицательный электрод, катод.

Приготовить 1,2 л анодного буфера. Для этого разбавить исходный анодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л.

Заполнить анодную камеру анодным буфером. Поместить в камеру анод (красный провод). Поместить катодную камеру над анодной и зафиксировать её винтами. При этом нижние концы трубок должны быть погружены в буфер в нижней камере (анодный буфер).

Приготовить 1,2 л катодного буфера. Для этого разбавить исходный катодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л. заполнить катодную камеру катодным буфером. При этом концы трубок должны оказаться под слоем электродного буфера.

Промыть нижние и верхние концы трубок для удаления остатков растворов для полимеризации гелей и пузырьков воздуха.

60 мкл подготовленного раствора белка в эппендорфе смешивают со 180 мкл ДВ и перемешивают инжектированием. 200 мкл полученной смеси вносят в трубки для электрофореза, осторожно наслаивая на поверхность геля.

Включают напряжение 250 вольт, через 10 минут поднимают его до 300 вольт, а еще через 10 минут до 400.

Примерно через 40 минут, когда фронт бромфенолового синего пройдет практически всю трубку, напряжение выключают, внимают электрод из катодной камеры. Разбирают прибор и выливают катодный буфер. Затем вынимают трубки для электрофореза и выталкивают столбики геля из трубок стеклянным штоком. Концентрирующий гель отрезают скальпелем.

Разделяющий гель окрашивают коллоидным раствором кумасси бриллиантового голубого в течение 20 мин на кипящей водяной бане. Затем переносят окрашенный гель в кипящую воду и отмываю до проявления белковых полос.

Вопросы для самоподготовки

В чем практическое значение электрофореза?

Что можно установить с помощью электрофореза?

В чем суть метода электрофореза?

От каких параметров зависит скорость перемещения молекулы белка?

В чем особенность электрофореза по Леммли?

По какому параметру разделяются белки при проведении электрофореза по Леммли?

Вопросы к коллоквиуму по теме «Белки»

2. Элементный состав белков

3. Какие органические соединения называют аминокислотами, химические свойства аминокислот

4. Кислотно-основные свойства аминокислот (амфотерность аминокислот, биполярные ионы, кривые титрования)

5. Классификация аминокислот (биологическая, физико-химическая, химическая)

6. Физические свойства аминокислот, стереоконфигурация аминокислот

7. Специфические реакции на аминокислоты

8. Связь аминокислот в белках, пептидная связь – структура и свойства

9. Биуретовая реакция. Определение белка биуретовым методом.

10. Аминокислотный анализ. Методы хроматографии аминокислот.

11. Нингидриновая реакция. Практическое значение

12. Первичная структура белка. Методы установления первичной структуры белка

13. Вторичная структура белка, α-спираль, β-слой

14. Третичная и четвертичная структура белка

15. Химические связи, стабилизирующие структуру белка (первичную, вторичную, третичную и четвертичную)

16. Растворимость и осаждение белков. Силы удерживающие белок в растворе, условия осаждения белков.

17. Реакции обратимого и необратимого осаждения белков, их практическое значение.

18. Белки как носители электрических зарядов, кислотно-основные свойства белков, изоэлектрическая точка

19. Диализ. Электрофорез. Изоэлектрическое фокусирование

21. Выделение белков из тканей. Методы выделения и очистки белков

Использованная литература

The protein protocols handbook, 2 nd edition – edited by Walker J.M. – Humana press, 2002

Петров К.П. – Методы биохимии растительных продуктов – Киев: Вища школа, 1978.

Шапиро Д.К. – Практикум по биологической химии, 2-е изд. перераб. и доп. – Минск: Высшая школа, 1976

Практикум по биохимии: учебное пособие, 2-е изд. пререаб и доп. – под ред. Северина — М.: МГУ, 1989

Р.Досон, Д.Элиот и др. – Справочник биохимика, пер. с англ. – М.: Мир, 1991

Скурихин И.М., Нечаев А.П. – Все о пище с точки зрения химика: справочное издание. — М.: высшая школа, 1991

Степин Б.Д. — Техника лабораторного эксперимента в химии: учеб пособи для ВУЗов – М.: Химия, 1999

Химическая энциклопедия ТТ.1-5., гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1988-1998

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с) .

источник

Для разделения белков сыворотки крови на их составляющие используют метод электрофореза, основанный на различной подвижности белков сыворотки крови в электрическом поле.

Принцип разделения белков сыворотки крови на фракции состоит в том, что в электрическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровом гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц.

Вследствие этого белки сыворотки крови разделяются обычно на пять основных фракций: альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины, гамма-глобулины, содержание которых определяется с помощью фотометрии или денситометрии.

Электрофорез в агаровом, крахмальном и особенно полиакриламидном геле дает лучшие результаты: четкое разделение и большое количество белковых фракций сыворотки. Недостатки метода: сложность процедуры приготовления геля (дороговизна готовых гелевых пластин).

Преимущества электрофореза на ацетатцеллюлозной пленке:

1. Химическая однородность пленки и одинаковый размер пор

2. Требует малый объем пробы (0,2-2 мкл) для разделения

3. Быстрота разделения и окраски белков, легкость отмывания фона

В сыворотке крови здорового человека при электрофорезе можно обнаружить шесть белковых фракций: преальбумины, альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины и гамма-глобулины.

Это исследование в диагностическом отношении более информативно чем определение только общего белка или альбумина. При многих заболеваниях изменяется процентное соотношение белковых фракций, хотя общее содержание белка в сыворотке крови остается в пределах нормы.

Анализ фореграммы белков позволяет установить, за счет какой фракции происходит увеличение или дефицит белка, а также судить о специфичности изменений, характерных для данной патологии. Исследование белковых фракций, позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Белковые фракции сыворотки крови в норме:

Фракции Содержание, %
Преальбумины 2-7
Альбумины 52-65
Альфа-1-глобулины 2,5-5,0
Альфа-2-глобулины 7,0-13,0
Бета-глобулины 8,0-14,0
Гамма-глобулины 12,0-22,0

При анализе результатов исследования сыворотки крови на белковые фракции выявляются три типа нарушений:

1. Диспротеинемия (изменение соотношения белковых фракций)

2. Генетические дефекты синтеза белков

3. Парапротеинемия (аномальные белки в крови)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9790 — | 7665 — или читать все.

Читайте также:  Электрофорез для детей до года платно

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Белки представляют собой ключевые элементы всех клеток и тканей организма. Они образуются за счет цепей аминокислот. В организме человека присутствует больше 100 видов молекул белка. Все они реализуют разнообразные функции. Среди молекул выделяют фибриноген, трансферрин, иммуноглобулины, липопротеины, альбумины и прочие. Выделение фракций белков осуществляется различными способами, но наибольшую популярность приобрел электрофорез. Рассмотрим его особенности подробнее.

Суммарно белки крови формируют «общий белок». Он, в свою очередь, включает в себя такие компоненты, как глобулины и альбумины. Электрофорез белков крови разделяет их на эти элементы. Этот способ разделения позволил вывести диагностику на совершенно новый уровень.

Молекулы приобретают отрицательный либо положительный заряд, который зависит от среды, в которой выполняется электрофорез белковых фракций крови . На их перемещение влияет величина заряда. Характер движения определяется и формой, и размером самих молекул, их веса. Элементы с положительным зарядом обладают лучшей адсорбцией, чем с отрицательным.

Они считаются самыми большими белковыми молекулами среди всех фракций в сыворотке. Число альбуминов отражает протеиновый статус многих внутренних органов. В качестве одной из ключевых задач молекул выступает сохранение осмотического коллоидного давления. Оно способствует удержанию жидкой системы в кровеносном русле. В соответствии с этим, можно объяснить развитие таких патологических состояний, как легочные отеки, асцит и пр.

Они подразделяются на несколько групп. Метод электрофореза белков позволяет провести их количественное разделение в лаборатории. Среди составляющих глобулинов выделяют:

  1. Альфа-1. Они содержат элементы альфа-1-антитрипсина, а также тироксинсвязывающего глобулина.
  2. Альфа-2. В них присутствуют части церулоплазмина, гаптоглобина и пр.
  3. Бета-элементы. Среди них выделяют компоненты комплемента, трансферрина, бета-липопротеидов.
  4. Гамма-часть. В ней присутствуют иммуноглобулины А, Е, М, G, D.

Электрофорез белков с увеличением частей альфа-1 и альфа-2 указывает на начало воспалительного процесса.

Электрофорез белков здорового организма отражают следующие показатели (в г/дл):

  1. Альбумин 3.4-5.
  2. Альфа-1 глобулин — от 0.1 до 0.3.
  3. Альфа-2 – от 0.6 до 1.
  4. Бета-глобулин – от 0.7 до 1.2.
  5. Гамма-глобулин – от 0.7 до 1.6.
  6. Общие показатели – от 6.4 до 8.3.

Как выше было сказано, в медицине используется достаточно много способов разделения протеиновых молекул по тем или иным критериям. Однако наиболее распространенным является электрофорез белков. Белковые фракции, содержащиеся в определенных биологических средах, могут выделяться только этим способом. В частности, он позволяет обнаружить парапротеины. Электрофорез белка – специальный клинический способ анализа. Он дает возможность выявить любые изменения в молекулах, которые могут выступать в качестве признаков тех или иных патологий. Электрофорез белковых фракций – доступный способ диагностики. Он выполняется во всех лабораториях. В качестве несомненных его преимуществ стоит назвать точность и быстроту получения результата. Электрофорез белков сыворотки позволяет выявить изменения:

Капиллярный электрофорез позволяет выявить некоторые виды протеинов. Однако некоторые молекулы нельзя обнаружить этим способом. Исключение составляет альбумин. Для более глубокого анализа используется электрофорез фракций. Уровень тех или иных групп можно измерить по количеству общего показателя протеинов, умноженному на относительный % доли каждой из них.

Электрофорез белков обязательно должен выполняться одновременно с измерением содержания иммуноглобулинов М, А и G. Варианты с большей концентрацией первых двух, которые не могут отдельно исследоваться, необходимо направить на повторный анализ. Это необходимо для исключения иммунофиксации незначительных парапротеиновых групп.

Электрофорез белков позволяет обнаружить начало течения патологий почек и печени, генетические деформации, формирование опухолей злокачественного характера, активацию хронических и острых инфекций. На практике выделен ряд «синдромов», которые показывает расшифровка анализа:

    Повышенная доля альфа-1 и альфа-2 глобулинов, фибриногена, С-реактивного белка, а также ряда острофазных протеинов указывает на начало острого воспалительного процесса с активацией системы комплемента. При проведении простого гематологического анализа в такой ситуации будет выявлено только повышение СОЭ и лейкоцитоз.

Он диагностируется, если расшифровка исследования указывает на повышение уровня фильтрации белковых молекул почечных канальцев и селективную протеинурию. Последняя представляет собой выведение большого числа альбуминов и незначительного количества низкомолекулярных глобулинов с мочой. Вместе с прогрессированием синдрома обнаруживается интенсивный синтез больших молекул группы альфа-2-глобулина в печени. Они скапливаются в кровяной жидкости. В связи с этим формируется такая картина. Снижается содержание альбумина, и повышается количество альфа-2-глобулина.

Значительные белковые потери характерны не только для нефротического синдрома. Они отмечаются и при болезни Лаэлла, обширных ожогах, патологиях системы пищеварения и пр. При нарушениях в ЖКТ расшифровка протеинограммы указывает на снижение содержания альбумина и одновременном увеличении процента всех групп глобулинов. Регулировать уровень протеина можно путем регулярного выполнения электрофореза. При этом целесообразно вводить препараты, заменяющие протеиновые элементы. При выраженном снижении гамма-глобулинов диагностируется тяжелый иммунодефицит приобретенного либо врожденного характера. В таких случаях для выявления полной клинической картины рекомендуется дополнительно определить содержание иммуноглобулинов М, А, G.

Электрофорез считается единственным способом, позволяющим ее выявить. Парапротеинемия – симптом, сопровождающий прогрессивный рост опухолей добро- и злокачественного характера. Накопление в крови моноклональных иммуноглобулинов, а также фрагментов их связей свойственно миеломной болезни и ряду лейкозов. Для дифференциации парапротеинов и установления белковых цепей рекомендуется выполнять модифицированный электрофорез – иммунофиксацию. Для проведения исследования используются гелиевые пластины с антисывороткой.

  1. Транстиретин (преальбумин). Представляет собой почечный белок. Он располагается под альбумином, отличается непродолжительным периодом полувыведения. Преальбумин связывает гормоны щитовидки, транспортный белок для А-витамина. Его содержание позволяет проанализировать обеспеченность протеинами периферических тканей. При дефиците питания и печеночных патологиях отмечается снижение его доли.
  2. Альфа-1-липопротеины. Представляют собой слабоокрашенную однородную область между альфа-1-глобулином и альбумином. Размеры зоны первого определяются по уровню других элементов. В частности, это альфа-1- антитрипсин, -фетопротеин, -микроглобулин. При остром воспалении отмечается видимое затемнение.

Моноклональные иммуноглобулины обнаруживаются только при наличии патологии.

источник

Основный белок

+ NH 3 — белок — COO – + ОН – + NH 3 — белок — COO – + ОН – NH 2 — белок –СОО –

Водный раствор рН = р I pH > pI

Основный белок белок заряженотрицательно

В кислой среде заряжен положительно

+ NH 3 — белок — COO – + Н + + NH 3 — белок – COOН

рН 10 ) белки заряжены отрицательно, нейтральный заряд имеет белок в изоэлектрической точке, которая у каждого белка своя. Наименьшей устойчивостью обладают растворы белков в изоэлектрической точке. Белки, объединяются в более крупные частицы, начинается седиментация( осаждение) под действием собственной силы тяжести.

Значение рН крови равно 7,4, в крови присутствуют, в основном, кислые белки

При наличии заряда белки перемещаются в электрическом поле. Смеси белков можно разделять методом электрофореза – направленного движения белков от одного электрода к другому под действием постоянного электрического тока. Скорость движения зависит от массы белка и величины его заряда.

Метод электрофореза широко применяется в медицине, биохимии, биологии для изучения ферментов, тканевых и плазменных белков , при изготовлении лекарственных препаратов белковой природы.

8.4.2. Денатурация белка

Макроструктура белка является весьма чуткой к изменению условий среды, в которой существует белок.

В белковой молекуле существует постоянное равновесие между силами, формирующими третичную( четвертичную) и силами отталкивания. которые возникают внутри самой молекулы и при взаимодействии с окружающей средой. При нарушении этого равновесия изменяются четвертичная, третичная и даже вторичная структура( кроме первичной! ).

Возникает потеря природных свойств белка- денатурация.

Денатурация может быть обратимой и необратимой.

Часто видимым следствием денатурации белка является осаждение белка из раствора.

Общими факторами денатурации являются :

а) изменение температуры. Повышение температуры приводит к необратимой денатурации, большинство белков организма человека теряют свою активность при температуре выше 50 0 С, а белки крови- даже при 43 – 45 0 С. На этом основаны стерилизация медицинских препаратов и пастеризация пищевых продуктов.

При снижении температуры денатурация является обратимой.

Биологический белковый материал можно сохранять долго при низких температурах

( кровь, образцы тканей, растворы белковых гормонов , защитных γ-глобулинов,

б) изменение рН среды. При изменении рН среды изменяется характер ионизации кислотных и основных групп в радикалах, изменяется характер ионного взаимодействия и количество водородных связей — изменяется пространственное строение белка и организация его активных участков. В организме человека поддерживается кислотно-основный гомеостаз. Значение рН крови равное 7,4 обеспечивает необходимую организму биологическую активность всех белковых молекул.

в) действие окислителей и восстановителей. Изменяется соотношение восстановленных тиольных групп и дисульфидных связей, что вызывает изменение третичной структуры белка. Свободные тиольные группы белков содержатся и в активных участках ферментов, участвуют в химических реакциях( образование тиополуацеталей происходит в процессе окисления биоактивных альдегидов в карбоновые кислоты . См тему «Механизмы реакций. Реакции нуклеофильного присоединения»)

Лекарственные препараты, обладающие свойствами восстановителей. используются в медицине для поддержания структуры белка( аскорбиновая кислота- витамин С, раствор тиосульфата натрия ). Для химической завивки используют препараты, создающие дополнительные дисульфидные связи ; волосы после фиксации на круглой палочке( бигуди) становятся кудрявыми.

г) ионы тяжелых металлов( свинца, меди, ртути , цинка ), которые образуют соли с тиольными группами на поверхности белковой молекулы. Попадание в желудочно-кишечный тракт солей тяжелых металлов и затем всасывание их в кровь вызывает тяжелые последствия. Различают хроническое воздействие и острое отравление. Заболевание « сатурнизм», связанное с накоплением ионов свинца в организме человека, сопровождается тяжелыми патологическими изменениями со стороны центральной нервной и кровеносной системы. Отравление ионами ртути сопровождается ранним старением организма, и приводит быстро к смерти ( в древние времена было характерно для иконописцев, которые использовали красную краску киноварь HgS, а для тонкого точного мазка обязательно брали кисточку в рот, чтобы получился острый кончик кисти).

В связи с аналогичным токсическим действие свинца запрещено этилирование бензина.

д) присутствие различных поверхностно-активных веществ, детергентов, которые влияют на гидрофобное взаимодействие в молекуле белка. Гидролиз фосфолипидов в составе мембраны сопровождается образованием солей высших карбоновых кислот- поверхностно-активных веществ, и это вызывает потерю эластических свойств мембраны ( изменение «текучести» мембраны).

е) действие веществ, которые конкурируют за образование водородных связей, например, мочевины. Высокое и низкое содержание мочевины в крови способствует изменению свойств белков крови и внутриклеточных белков, особенно в составе белков мембран нейронов.

ж) действие электролитов, которые разрушают гидратную оболочку белка( процесс «высаливания»). На этом основаны рекомендации полоскать горло солевыми растворами во время заболевания и в профилактических целях. Уже в древние времена знали, что засыпание солью( сильнейшая боль ! ) огнестрельной или резаной раны в условиях боя предотвращает развитие гангрены.

з) физические воздействия ( ультразвук, лазерное воздействие, электрокоагуляция. ). Используется в медицинских целях в косметологии, лечении кожных, стоматологических болезней, в хирургии для остановки кровотечения. В современных медицинских технологиях используют лазерный луч.

8.5.Качественные реакции обнаружения белков в биологических объектах.

Биуретовая реакция – обнаруживает пептидные связи. При добавлении иона Си(+2) в щелочной среде сопровождается развитием цветной фиолетовой окраски. Интенсивность окраски пропорциональна количеству пептидных связей( содержанию белка в биологической жидкости). В биохимической лабораторной диагностике на основе биуретовой реакции используют методики Фолина или Лоури.

Ксантопротеиновая реакция- при действии азотной кислоты и последующем нагревании смеси получается осадок желтого цвета. Обнаруживает ароматические аминокислоты в составе белка ( фенилаланин и тирозин)

Подробно методики приведены в «Практикуме по биоорганической химии»

авторы Каминская Л.А., Перевалов С.Г.

8. 6. Приложение. История развития химии белков

Термин белковый ( albumineise) был впервые применен французским химиком Ф. Кене в 1747 г. Так стали называть все биологические жидкости организма по аналогии с яичным белком. «Энциклопедия» Д. Дидро и Ж. Д ‘ Аламбера в 1751 году именно так объясняла этот термин. В дальнейшем начались систематические исследования белков.В 1759г. А.Кессель-Майер выделил клейковину из растений, в 1762г. А. Халлер изучал процесс образования и свертывания казеина молока, в 1777г. А. Тувенеель, работавший в С-Петербурге, назвал творог белковой частью молока. В тот же период французский химик А. Фуркруа доказал единую химическую природу белков растительного и животного происхождения.

В 1803 г. физик и химик Дж. Дальтон( ему принадлежит формулировка закона кратных отношений, исследование газовых законов и описание дефекта цветового зрения) отнес белки к азотсодержащим соединениям. В 1810г. известный всем школьникам Ж. Гей-Люссак провел химический анализ фибрина крови. Предполагают, что первым провел гидролиз белков А. Браконно в 1820 г. и получил аминокислоты, в том числе глицин и лейцин.

Первая теория строения белков принадлежит химику Г. Мульдеру, он сформулировал ее в 1836г.Он предположил, что существует минимальная структурная единица, из которой простроены все белки , состав ( 2 С8 Н12 N2 + S0) и назвал ее протеином.

Позднее теория была опровергнута, но термин остался и прочно вошел не только в научный язык химиков.

В 1882г. В.Даль в «Толковом словаре русского языка» объясняет слово протеин- вещество, найденное в животных тканях.

В книге Д.И.Меделева( 2-е изд. СанктПетербург, Изд. Товарищества «Общественная польза» 1863г.), упоминаются термины белки и протеиновые вещества :

Читайте также:  Электрофорез и киста спайки

« Из органическихъ веществъ общи всемъ организмамъ протеновыи или белковыя вещества, отличающиеся сложным составомъ, способностью легко изменяться и даже способствовать измененiю других веществъ. Белковое вещество, производящее эти изменения, называется ферментомъ»( сохранено правописание).

Близок к открытию структуры белка был российский биохимик А.В. Данилевский

( 1838 – 1923), который много занимался изучением ферментов и проблемой питания.

В 1902 г. работы Т. Курциуса по синтезу пептидов привели к созданию пептидной гипотезы : « все белки состоят из аминокислот, соединенных между собой связью

Окончательно «пептидную теорию» сформулировали Э.Фишер и В. Гофмейстер( Нобелевская премия Э. Фишера 1902 г.)

ь Успешное изучение состава белков началось благодаря работам английского биохимика Ф.Сэнгера, который в 1945 разработал метод определения аминокислотной последовательности( лауреат Нобелевских премий 1958, 1980) и С. Мура, который сконструировал в 1958 г. автоматический аминокислотный анализатор.( Нобелевская премия 1972)

Строение пептидной группы стало возможным изучить после открытия метода рентгеноструктурного анализа.

Теорию строения а- спирали — и термин »вторичная структура» белка создал Л.Полинг ( 1951г. совместно с Р. Кори). Л. Полинг- лауреат Нобелевских премий ( по химии 1954, мира 1962).

Структура « складчатый» лист исторически была открыта раньше , У. Астбери в

1941 г. при рентгеноструктурных исследованиях белка кератина

Термин « четвертичная» структура был введен в 1958 г. английским кристаллографом Дж. Берналом в дополнение к принятым понятиям первичной, вторичной, и третичной структуры, а в 1965г. Ж. Моно ввел понятие «протомер» для названия наименьшей структурной единицы сложной белковой молекулы( чаще теперь называют «субъединица»)

Метод рентгеноструктурного анализа долгое время оставался самым точным для расшифровки пространственного строения белка: в 1936г Дороти Ходжкин исследовала и предложила пространственную структуру инсулина, в 1960Д.К.Кендрью – пространственное строение миоглобина. Сейчас используются компьютерное моделирование и приборные методы исследования: методы ЯМР

( ядерного магнитного резонанса) , ПМР протонного магнитного резонанса).

Для проверки усвоения темы рекомендуем ответить на вопросы:

1. Анализ дипептида показал, что он состоит из двух различных аминокислот : глицина и аланина. Сколько различных дипептидов можно составить?

2. Трипептид состоит из двух аминокислот: глицина и аланина. Запишите все возможные варианты строения этого трипептида.

3. Последовательность аминокислот в трипептиде: ала – глу — вал. Определите среду его водного раствора и заряд пептида в растворе.

4. Последовательность аминокислот в пептиде гли – лиз – сер. Этот пептид находится в растворе кислоты, рН= 3, 5. Определите величину заряда пептида.

5. Пептид состава асп – арг – фен находится в растворе в изоэлектрической точке.

Составьте формулу трипептида и определите область значения изоэлектрической точки ( кислая, нейтральная, щелочная). Какую надо создать среду, чтобы этот трипептид при электрофорезе двигался к катоду ?

6.Трипептид глутатион — антиоксидант крови и тканей – состоит из последовательно соединенных аминокислот : γ –глутамат- цистеин –аланин. Запишите формулу соединения и реакцию окисления этого соединения пероксидом водорода . .

Дата добавления: 2014-01-04 ; Просмотров: 759 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

ЭЛЕКТРОФОРЕЗ — направленное перемещение электрически заряженных частиц дисперсной фазы в дисперсионной среде (или ионов в электропроводящем растворе) под действием внешнего электрического поля. Метод электрофореза широко используется в биологии и медицине для выделения и анализа индивидуальных белков (см.), нуклеиновых кислот (см.) и других биополимеров, вирусов, надмолекулярных клеточных структур, а также целых клеток. В иммунологии одним из наиболее употребляемых методов исследования является иммуноэлектрофорез (см.) — электрофоретическое разделение смеси антигенов или антител в геле с последующий их преципитацией. Путем микроэлектрофореза(см. Микроионофорез) в клетку можно ввести или к ней подвести любые вещества, способные диссоциировать на ионы (см.). Микроионофорез является одним из основных современных методов в нейрофизиологических, нейрофармакологических, нейрохимических исследованиях. Большое диагностическое значение имеют электрофоретическое разделение ферментов (см.) на коферменты (см.) и их количественная и качественная оценка. Введение лекарственных веществ в организм путем Э. широко применяется в физиотерапии (см.).

Электрофорез наряду с электроосмосом (см.) был открыт в 1807 году профессором Московского университета Рейссом. Электрокинетические явления (см.), к которым относят электрофорез, обусловлены наличием на границе раздела фаз двойного электрического слоя и способностью диффузной части этого слоя смещаться относительно адсорбционно связанной (неподвижной) его части. Электрический потенциал поверхности, разделяющей подвижную и неподвижную части двойного электрического слоя, носит название электрокинетического или ζ (дзета)-потенциала. Частицы дисперсной фазы, находящиеся в буферном растворе (см. Буферные растворы), несут определенный суммарный электрический заряд, величина и знак которого зависят от величины pH среды (см. Водородный показатель). Если через буферный раствор, заключенный в сосуд с электроизолирующими стенками, например, в стеклянную трубку, пропускать электрический ток, то результатом этого будет появление определенного градиента напряжения (см. Градиент), или электрического поля. Под действием этого поля частицы дисперсной фазы в соответствии со знаком суммарного заряда движутся в направлении катода, то есть происходит катафорез, или анода — анафорез. В зависимости от величины заряда и своих размеров частицы в электрическом поле приобретают разные скорости. Смесь разнородных частиц, внесенная в узкую зону, в этих условиях разделяется на зоны, образуемые частицами, движущимися с одинаковой скоростью, то есть обладающими одинаковой электрофоретической подвижностью.

Электрофоретическая подвижность частиц, имеющих сферическую форму (V), выражается формулой Смолуховского: V = ( ζD)/(4πη), где ζ — электрокинетический потенциал двойного электрического слоя, окружающего частицу, D — диэлектрическая проницаемость и η — вязкость среды. В том случае, когда электрофоретическое разделение смеси частиц (или молекул) производят в буферных растворах с не слишком низкими (например, около 0,1) значениями ионной силы раствора (полусуммы произведений концентраций всех находящихся в растворе ионов на квадрат величины их заряда), частицы группируются по фракциям лишь по величине заряда без учета размеров или молекулярных весов (масс), если речь идет о молекулах.

Использование электрофореза в биологии и медицине началось в 30-е годы 20 века, когда А. Тизелиус разработал метод электрофореза в свободной жидкости и сконструировал прибор для электрофоретического разделения и анализа смеси белков так называемым методом подвижных, или свободных, границ. В медико-биологических исследованиях применяют множество вариантов двух главных модификаций электрофоретического метода — электрофореза в свободной жидкости (свободнопроточный электрофорез) и зонального электрофореза (зонный электрофорез, или электрофорез на инертных носителях). Первым был разработан электрофорез в свободной жидкости (метод подвижных границ, электрофорез по Тизелиусу), который позволял измерять электрофоретическую подвижность испытуемого вещества по перемещению подвижной границы между чистым буферным раствором и буферным раствором, содержащим исследуемое вещество. В приборе Тизелиуса используется оптический метод регистрации положения такой границы по определению показателя преломления среды (см. Нефелометрия, Рефрактометрия), а в некоторых случаях — прямое микроскопирование. При разделении смеси веществ с различными изоэлектрическими точками (см. Изоэлектрическая точка) оптические устройства регистрируют несколько движущихся пиков (рис. 1). Основным недостатком электрофореза в свободной жидкости является ее тепловое движение, мешающее четкому разделению фракций и размывающее границы зон. Этот недостаток частично преодолевается созданием градиентов плотности буферных растворов (например, с помощью сахарозы). При фракционировании низкомолекулярных веществ, чтобы избежать чрезмерного размывания зон, применяют высоковольтный электрофорез, иногда в сочетании с хроматографией (см.) — так называемый метод «отпечатков пальцев».

Зональный электрофорез отличается от электрофореза в свободной жидкости главным образом использованием нейтральной поддерживающей среды (инертных носителей) для жидкой фазы (буферного раствора), что сводит к минимуму эффект теплового движения и позволяет при необходимости выделить тот участок носителя, который содержит индивидуальное вещество. В качестве инертных носителей в зональном электрофорезе используют специальную хроматографическую бумагу, полоски ацетата целлюлозы, тонкие слои силикагеля, порошка целлюлозы или гели сефадексов (см. Декстран). Зональный электрофорез на инертных полимерах-носителях позволяет фракционировать вещества не только по величине заряда, но и по молекулярному весу. Особое место среди таких носителей занимают гели полиакриламида (ПААГ) и агарозы. Преимущество полиакриламидных гелей заключается в возможности изменения диаметра их пор при изменении концентрации полимера, а также в отсутствии явлений адсорбции и электроосмоса при электрофорезе.

При электрофоретическом разделении гетерогенной смеси в полиакриламидном геле колонку небольшого сечения (около 1 см 2 ) заполняют буферным раствором, содержащим растворенный мономер (акриламид; CH2—CH— CONH2, небольшое количество вещества-сшивателя (бис-N-метиленметакриламида — НС(СН2)—CONH—CH2-NHCO-(CH2)CH ) и вещество-инициатор полимеризации. Через некоторое время при комнатной температуре в колонке образуется однородный гель (рис. 2). Если с помощью электрофореза в свободной жидкости по Тиэелиусу в сыворотке крови обнаруживают 5 белковых фракций (см. рис. 1), то при электрофоретическом разделении сыворотки крови в полиакриламидном геле их насчитывают не менее 25 (рис. 3).

Разрешающая способность электрофореза в полиакриламидном геле значительно повышается при использовании в качестве носителя системы гелей (обычно двух — «рабочего» мелкопористого и непосредственно над ним «формирующего» крупнопористого). Кроме степени пористости, эти гели резко различаются по величине pH и молярности буферных растворов, в которых они полимеризуются. Такой электрофорез называют ступенчатым, или дискэлектрофорезом (английский (discontinuous — прерывистый).

Вариантом электрофореза в полиакриламидном геле является электрофорез смеси биополимеров после предварительной обработки денатурирующим агентом с целью изменения конфигурации молекул. Белки в этом случае обрабатывают ионным детергентом (см.) — додецилсульфатом натрия, разрушающим дисульфидные связи в их молекулах и образующим с ними отрицательно заряженные мицеллы, заряд которых пропорционален молекулярному весу белка; нуклеиновые кислоты подвергают электрофорез в присутствии щелочи, мочевины, формамида или других агентов, разрушающих водородные связи в полинуклеотидных цепях нуклеиновых кислот. При этих условиях электрофоретическая подвижность биомолекул начинает строго коррелировать с их молекулярным весом.

Для наблюдения за ходом электрофореза в геле в исследуемую смесь добавляют химически инертный в отношении разделяемых веществ низкомолекулярный краситель (см. Красители), молекулы которого несут электрический заряд того же знака, что и молекулы разделяемых веществ, но обладают электрофоретической подвижностью, которая несколько выше подвижности белковой фракции, продвигающейся первой. Такой краситель называют лидирующим. Чаще всего в щелочных и нейтральных буферных растворах используют бромфеноловый синий, в кислой среде — метиловый зеленый или пиронин. Когда окрашенная зона доходит до конца геля, электрофорез прекращают, после фиксации гель на определенное время погружают в р-р специфического красителя, после чего избыток красителя отмывают (рис. 4) Для выявления на электрофореграмме белков-ферментов иногда пользуются их каталитической активностью в отношении хромогенных субстратов. Широко применяется обнаружение электрофоретических зон по их радиоактивности (см. Авторадиография).

Многие исследователи в качестве инертных носителей предпочитают гели в виде тонких пластин. Электрофорез в гелевой пластине делает более достоверным сравнение отдельных препаратов, позволяет проводить двухмерное разделение и др. Для анализа аминокислот, пептидов и сахаров (в виде их боратных комплексов) используют высоковольтный электрофорез на бумаге, в тонком слое силикагеля, ацетата целлюлозы и других красителей.

Разделение сложной смеси белков не всегда удается осуществить даже при использовании перечисленных выше приемов электрофореза. Поэтому в сложных случаях применяют так называемый двухмерный электрофорез, когда после первого электрофоретического фракционирования смеси белков каждую полосу используют как исходный препарат для электрофореза в перпендикулярном направлении по отношению к направлению первого разделения. В результате на второй пластине появляется большое число зон, соответствующих индивидуальным белкам (иногда их число достигает 2 тысячи).

Существуют методы, объединяющие, например, электрофорез и хроматографию (см.); иногда разделение смеси белков проводят в перпендикулярных направлениях, или в одном направлении белки разделяют электрофорез в полиакриламидном геле с додецилсульфатом натрия, а в перпендикулярном ему — с помощью изоэлектрического фокусирования (см.). Последний метод позволяет на одной гелевой пластине выявить до 7 тысяч индивидуальных белков. Вариантами электрофореза являются также электрофорез в градиенте значений pH и электрофорез в градиенте пористости геля, иммуноэлектрофорез, аффинный электрофорез, сочетающий в себе преимущества электрофореза и аффинной хроматографии, и др.

С помощью электрофореза белков определяют их первичную структуру, молекулярный вес, патогенность и наличие множественных форм. Для электрофореза клеток используют свободнопроточный электрофорез в его аналитических и препаративных вариантах. Так фракционируют бактериальные клетки, вирусы, а также лизосомы, митохондрии, комплексы Глльджи и другие клеточные органеллы. Молекулы нуклеиновых кислот отличаются от молекул белков сильным отрицательным зарядом. Фракционирование их смесей осуществляют за счет различий мол. веса нативных высокомолекулярных ДНК и РНК. Для электрофоретического фракционирования их низкомолекулярных фрагментов используют крупнопористые гели агарозы или гели полиакриламида с концентрацией от 5 до 20%, а также их смеси. Анализ фрагментов нуклеиновых кислот, полученных при расщеплении молекул ДНК нуклеазами и химическими агентами, дает возможность определить первичную структуру этих биополимеров, то есть структуру генов (см. Ген).

Метод электрофореза позволил обнаружить нормальный наследственный полиморфизм белков человека. Стали известны десятки вариантов гемоглобинов (см. Гемоглобин), глюкозо-6-фосфат-дегидрогеназы и других белков. Были получены данные о множественных формах ферментов (см. Изоферменты), последовательно экспрессируемых в ходе онтогенеза и генетически независимых. В результате исследования крови, мочи, цереброспинальной жидкости электрофореза были выявлены изменения нормальной экспрессии генов, кодирующих синтез определенных белков при различных патологических состояниях (рис. 5).

Читайте также:  Электрофорез на оба глаза

С помощью электрофоретического анализа ферментов (см.) возможна диагностика, в том числе пренатальная, некоторых врожденных заболеваний.

При молекулярной патологии происходит изменение плотности относительного заряда на поверхности клеток, поэтому методом электрофореза можно, например, выявить и разделить субпопуляции B- и Т-лимфоцитов.

Начаты исследования по получению особо чистых препаратов (например, интерферона) методом электрофореза в условиях невесомости при космических полетах.

Лекарственный электрофорез (устаревший ионофорез, ионтофорез, ионотерапия, гальваноионотерапия, ионогальванизация) — метод электролечения, заключающийся в сочетанном воздействии на организм постоянного тока и вводимых с его помощью лекарственных веществ. В лечебную практику лекарственный электрофорез был введен с 1802 году, когда Росси (Rossi) впервые применил для воздействия на организм больного лекарственные вещества в сочетании с постоянным током (см. Гальванизация). Долгое время для лекарственного электрофореза использовали только постоянный непрерывный ток (гальванический). В настоящее время широко применяют диадинамические токи (см. Диадинамоэлектрофорез), синусоидальные модулированные (амплипульсфорез) и флюктуирующие (флюктуофорез) токи в выпрямленном режиме.

Принципиальной основой лекарственного электрофореза является теория электролитической диссоциации (см. Диссоциация в химии, Электролиз). Лекарственные вещества, способные диссоциировать в растворе на положительные (катионы) и отрицательные (анионы) ионы, направленно перемещаются в поле постоянного электрического тока и могут поступать в организм, преодолевая кожный барьер (см. Кожа). При этом с электродной прокладки вводятся лишь те ионы, которые имеют одноименный знак с электродом.

При электрофорезе основными путями проникновения лекарственных веществ в организм через кожу являются выводные протоки потовых и, в меньшей степени, сальных желез. Часть лекарственного вещества проникает в организм через межклеточные пространства и часть — через сами клетки (особенно при электрофоретическом введении лекарственных веществ через слизистую оболочку).

При электрофорезе лекарственные вещества проникают на небольшую глубину: сразу после процедуры они обнаруживаются в основном в эпидермисе и дерме, в небольшом количестве — в подкожной клетчатке. Отсюда введенные путем электрофореза лекарственные вещества поступают в лимфо- и кровоток и разносятся по всему организму, хотя преимущественно они накапливаются в тканях и органах области воздействия.

Электрофорез лекарственных веществ через кожу и слизистые оболочки количественно не подчиняется законам электролиза, так как живые ткани обладают электрокапиллярной активностью (см. Электроосмос) и барьерными свойствами (см. Барьерные функции). При электрофорезе в организм вводится всего от 1 до 10% вещества, находящегося в растворе (на прокладке). На количество вводимого путем электрофореза вещества существенно влияют физико-химические свойства самих лекарственных средств и свойства их растворов (степень диссоциации вещества, размеры, величина и знак заряда иона, возможность и степень его гидратации, используемый растворитель, концентрация и др.), условия проведения физиотерапевтической процедуры (плотность тока, длительность воздействия возраст пациента и др.), функциональное состояние организма в целом и кожи в особенности.

Лекарственное вещество, вводимое методом электрофореза может действовать на организм рефлекторным путем (так называемый понный рефлекс по Щербаку), гуморальным путем и кроме того, оказывать местное действие. Это зависит от типа и количества лекарственного вещества, методики и условий проведения процедуры, параметров физического фактора и др.

Электрический ток, используемый для электрофореза, вызывает в организме разнообразные физико-химические, метаболические и клеточно-тканевые реакции (см. Гальванизация, Диатермия, Диатермоэлектрофорез), на фоне которых действие вводимых с помощью электрофореза лекарственных веществ приобретает ряд особенностей и преимуществ по сравнению с обычными способами фармакотерапии (см.). Наибольшее практическое значение при лекарственном электрофорезе имеют следующие факторы:

  1. более длительное действие лекарственного средства и более медленное выведение его из организма благодаря, прежде всего, образованию в коже депо ионов, обладающих фармакологической активностью;
  2. возможность создания высокой локальной концентрации лекарственного вещества без насыщения им крови и других сред организма;
  3. меньшая вероятность возникновения побочных реакций;
  4. введение лекарственного вещества в наиболее фармакологически активной форме — в виде ионов;
  5. безболезненность введения лекарственных средств и отсутствие деформации тканей, возникающей при других способах фармакотерапии из-за введения растворителя.

Благодаря стимулирующему действию электрического тока отчетливое специфическое и выраженное терапевтическое действие вводимых путем электрофореза лекарственных веществ проявляется при таких концентрациях, которые при обычных способах фармакотерапии оказались бы малодейственными или неэффективными.

Назначение лекарственного электрофореза определяется, с одной стороны, благоприятным лечебным эффектом постоянного непрерывного тока или других видов электрического тока (см. Импульсные токи), а с другой стороны — показаниями к применению соответствующих лекарственных средств.

Лекарственный электрофорез нельзя применить в тех случаях, когда имеются объективные противопоказания к применению электролечения и соответствующих лекарственных средств, а также при их индивидуальной непереносимости.

Техника лекарственного электрофореза сводится к расположению на пути тока (между телом человека и электродами) раствора лекарственного вещества. В зависимости от способа нанесения лекарственного вещества и подведения тока различают несколько вариантов лекарственного электрофореза. Наиболее распространено электрофоретическое введение лекарственных веществ из растворов, которыми смачиваются специальные прокладки между телом пациента и электродом. Техника выполнения лекарственного электрофореза в этой модификации мало отличается от техники гальванизации (см.). Единственное отличие заключается в том, что электродную прокладку смачивают не водопроводной водой, как при гальванизации, а раствором лекарственного вещества. Этот раствор с помощью бюретки или другого дозирующего устройства количественно наносят на гидрофильную прокладку или, чаще, на специальную лекарственную прокладку, располагаемую при процедуре между кожей и защитной прокладкой. Лекарственные прокладки готовят из 1—2 слоев фильтровальной бумаги или 2—4 слоев марли. По форме и площади они должны соответствовать защитной прокладке. Раствором лекарственного вещества смачивают обычно одну прокладку, однако лекарственные вещества, диссоциирующие на ионы с противоположными зарядами, могут наноситься на обе (катодную и анодную) прокладки.

Раствор лекарственного вещества наносят на прокладку электрода (положительно заряженного — анода или отрицательно заряженного — катода), одноименного с подлежащим электрофоретическому введению ионом. При выборе полярности следует учитывать следующее: ионы всех металлов, местноанестезирующие средства, большинство алкалоидов, антибиотиков и сульфаниламидных препаратов имеют положительный заряд, поэтому при электрофорезе они должны вводиться с анода, а ионы всех металлоидов и кислотные радикалы приобретают в растворах отрицательный заряд и, следовательно, должны вводиться в организм с катодного электрода. Суммарный заряд амфотерных соединений (белки, аминокислоты и др.) зависит от их ионного состава и величины pH среды (см. Водородный показатель): при низких значениях pH заряд становится более положительным, при высоких — более отрицательным.

При так называемом ванночковом электрофорезе в ванночку (стеклянную, фаянсовую, пластмассовую) с вмонтированными электродами, заполненную раствором лекарственного вещества, погружают подлежащую воздействию обнаженную часть тела больного.

Полостной лекарственный электрофорез заключается в том, что перед введением электрода, соединенного с соответствующим полюсом аппарата для лекарственного электрофореза, в полость желудка, мочевого пузыря, прямой кишки, влагалища, носа вводят раствор лекарственного вещества.

В медицинской практике, особенно при лечении заболеваний бронхолегочной системы, получает распространение так называемый внутритканевой электрофорез. При этом после введения лекарственного вещества в организм одним из общепринятых способов (внутривенно, подкожно, внутримышечно, ингаляционным путем) проводят гальванизацию области патологического очага при перпендикулярном расположении электродов. Время проведения процедуры должно соответствовать времени достижения максимальной концентрации лекарственного вещества в крови.

При сочетанных способах лечения лекарственный электрофорез можно проводить одновременно с другим физиотерапевтическим воздействием. К таким сочетанным способам относятся ультразвук — электрофорез (электрофонофорез), дозированный вакуум — электрофорез (вакуум-электрофорез), индуктотермия — электрофорез (индуктотермоэлектрофорез), магнитное поле — электрофорез (магнитоэлектрофорез) и др. Сочетание лекарственного электрофореза с другими физиотерапевтическими воздействиями позволяет вводить в организм лекарственное вещество в большем количестве и на большую глубину, чем при одном электрофорезе, и потенцирует его действие.

Для лечебного электрофореза применяют лекарственные средства, относящиеся к самым различным группам. Нам более часто употребляют местноанестезирующие средства, витаминные, ферментные препараты, химиотерапевтические, сосудорасширяющие и сосудосуживающие средства, седативные средства, природные соединения и др. Лекарственные вещества, предназначенные для электрофоретического введения, должны быть чистыми, не содержать наполняющих и связующих соединений, по возможности их растворы надо готовить непосредственно перед применением. В качестве растворителя при приготовлении растворов для лекарственного электрофореза лучше всего использовать дистилированную воду. При плохой растворимости лекарственного вещества в воде в качестве растворителя можно применять спирт, димексид и другие полярные растворители, разрешенные ГФ. Приготовление лекарственных средств на изотоническом растворе натрия хлорида и других растворах электролитов (см.) является нежелательным, так как это резко уменьшает введение в организм лекарственного иона. При электрофорезе ферментов в качестве растворителей используют буферные растворы (см.).

Дозируют лекарственный электрофорез так же, как и гальванизацию: по длительности процедуры от 10 до 30 минут и плотности тока 0,03—0,08 ма/см 2 . Для детей и пожилых людей дозиметрические параметры уменьшают в зависимости от возраста на 25— 30%. На курс лечения назначают от 10—12 до 15—20 процедур, которые проводят ежедневно или через день.

Для лекарственного электрофореза применяют различные аппараты. Источниками гальванического тока (см. Гальванизация) и импульсных диадинамических токов являются аппарат Поток-1, АГН-32, АГП-33, СНИМ-1 Модель-717, Тонус-1 и Тонус-2, синусоидальных модулированных токов — аппараты Амплипульс-ЗТ. Амплипульс-4, флюктуирующих токов — аппарат АСБ-2.

Библиогр.: Бабский В. Г., Жуков М. Ю. и Юдович В. И. Математическая теория электрофореза, Применение к методам фракционирования биополимеров, Киев, 1983; Гааль Э., Медьеши Г. и Верецкси X. Электрофорез в разделении биологических макромолекул, пер. с англ., М., 198* Остерман Л. А. Методы исследования белков и нуклеиновых кислот, Электрофорез и ультрацентрифугирование, 1981; Парфенов А. П. Элестрофорез лекарственных веществ, Л., 1973, ; Улащик В. С. Теория и практика лекарственного электрофореза, Минск, 1976, библиогр.; он же, Физикофармакологические методы лечения и профилактики, Минск, 1979; Cell electroptoresis in cancer and other clinical reearch, ed. by A. W. Preece a. P. Light, Amsterdam, 1981; Dunn M. Affinity electrophoresis, Lab. Pract., 33, p. 13, 1984; Electrophoresis’83, Advanced methods biochemical and clinical applications, ed. by H. Hlrai, B.— N. Y., 1984.

E. В. Раменский; В. С. Улащик (физиотер.).

источник

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

· дробление биологического материала и разрушение клеточных мембран;

· фракционирование органелл, содержащих те или иные белки;

· экстракцию белков (перевод их в растворённое состояние);

· разделение смеси белков на индивидуальные белки.

Для разрушения биологического материала используют методы: гомогенизации (измельчения) ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком. Наиболее трудоёмкий этап получения индивидуальных белков — их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.

После достижения полной экстракции белков, т.е. перевода белков в растворенное состояние, приступают к разделению – фракционированию смеси белков на индивидуальные белки. Для этого применяют разнообразные методы: высаливание, тепловую денатурацию, осаждение органическими растворителями, хроматографию, электрофорез, распределение в двухфазных системах, кристаллизацию и др.

Электрофорез – явление перемещения частиц коллоидных растворов под действием внешнего электрического поля.

Виды: электрофорез в жидкостях, на бумаге и в блоках (крахмальном, полиакриламидном и т.д.)

Электрофорез на бумаге осуществляется на листах (полосках) хроматографич. или фильтровальной бумаги, концы которой опущены в электродные камеры. Разделяемая смесь наносится на бумагу в виде пятна либо узкой зоны. По способу отведения теплоты, выделяющейся при прохождении через бумагу электрич. тока, используют приборы: с охлаждающими пластинами из изолирующих материалов; с охлаждающей несмешивающейся с водой орг. жидкостью (рис. 3), например керосином; с естеств. охлаждением бумаги на воздухе или во влажной камере.

В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. При электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций. Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций.

В настоящее время электрофорез в полиакриламидном геле (ПААГ) в присутствии додецилсульфата натрия (ДСН) является общепринятым методом определения гомогенности белковых препаратов. Метод основан на свойстве заряженных частиц (молекул) перемещаться под действием электрического поля. Обычно скорость миграции зависит от трех параметров анализируемых белков: величины молекул, формы молекул и суммарного заряда. Поэтому предварительно белки денатурируют с тем, чтобы скорость миграции зависела только от молекулярной массы. Для этого анализируемую смесь обрабатывают додецилсульфа-том натрия [ДСН (SDS)] (C12H25OSO3Na). Под действием ДСН олигомерные белки диссоциируют на субъединицы и денатурируют. Развернутые полипептидные цепи связывают ДСН (примерно 0,4 г/г белка) и приобретают отрицательный заряд. Для полной денатурации в среду добавляют тиолы, которые расщепляют дисульфидные мостики.

Электрофорез проводят в тонком слое полиакриламида. После завершения электрофореза, зоны белков выявляют c помощью красителя.

Дата добавления: 2015-11-05 ; просмотров: 1672 | Нарушение авторских прав

источник