Меню Рубрики

Электрофорез на бумаге это

Электрофорез

2. Электрофорез с подвижной границей.

4. Изоэлектрическая фокусировка.

Белки, нуклеиновые кислоты, полисахариды, находясь в растворе несут определенный электрический заряд благодаря наличию групп, способных к электролитический диссоциации. Общий заряд данной частицы определяется, прежде всего, концентрацией Н + -ионов в среде. Под действием электрического тока заряженные частицы перемещаются к катоду или аноду в зависимости от знака их суммарного заряда. Такое явление носит название электрофореза. Скорость движения частиц (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью.Она имеет размерность см 2 /с -1 ·в -1 .

Различия в подвижности частиц служат основой для разделения смесей веществ.

Если приложить к электропроводящему раствору равномерное электрическое поле (Е), то на частицу будет действовать сила ускорения:

где d– расстояние между электродами, q – заряд молекулы. Так как молекула перемещается не в вакууме, то на неё действует противоположно направленная сила трения, которая зависит от размеров, формы молекулы, вязкости среды и описывается уравнением Стокса:

где f– коэффициент трения, v скорость движения молекулы. Для сферических частиц коэффициент трения равен 6πηr, где r – радиус частиц и η – коэффициент вязкости растворителя. В растворе силе ускорения противодействует сила трения, поэтому:

Е/d·q = 6πηrv, преобразуя выражение, получим:

Таким образом, скорость молекулы (v) пропорциональна напряженности электрического поля Е/d и заряду молекулы и обратно пропорциональна размеру молекулы и вязкости среды. Заряд и размер являются строго индивидуальными характеристиками молекулы. Следовательно, и путь, который пройдет та или иная молекула при электрофорезе за определенный интервал времени, тоже будет характерен для данной молекулы.

Существуют три основных типа электрофоретических систем – электрофорез с подвижной границей, зональный электрофорез и стационарный электрофорез.

Элекрофорез с подвижной границей

Электрофорез макромолекул, растворенных в буфере с соответствующим значением рН, проводится в V-образной кювете с прямоугольным поперечным сечением. Раствор макромолекул в буфере заливают в нижнюю часть кюветы, доливают оба конца трубки тем же буфером и монтируют в них электроды. Если вести электрофорез в щелочном буфере, то все белки заряжаются отрицательно и начинают перемещаться к аноду: скорость перемещения данного белка зависит от его рН, и от величины суммарного заряда при данном рН буфера. Как видим, в данном методе электрическое поле прикладывается к исходно разной границе между раствором молекул и буфером. Скорость миграции заряженных частиц определяется путем наблюдения за перемещением этой границы. Если раствор содержит гетерогенную смесь ионизированных макромолекул, то можно увидеть множество движущихся границ. Способы наблюдения за пограничными изменениями концентрации вещества основаны на измерении градиента показателя преломления, который пропорционален градиенту концентрации.

Сконструирование Филпонтом и Свенссоном астигматической фотокамеры со специальной оптической системой, называемой шлирен-оптикой, позволяет непосредственно регистрировать градиент показателя преломления вдоль кюветы.

Электрофорез по методу подвижной границы нашел широкое применение при исследовании белков. Этот метод в основном используется для определения подвижностей и изоэлектрических точек белков, т.к. количественно трудно оценить подвижности. Метод электрофореза с подвижной границей используется редко.

Зональный элекрофорез

В зональном электрофорезе пятно или тонкий слой раствора, нанесенного на полутвердый или гелеобразный материал, помещают в электрическое поле, в результате чего молекулы перемещаются по или через материал носитель. В первую очередь функцией носителя является предотвращение механических воздействий и конвекции, которая происходит в результате температурных или высокой плотности концентрированных растворов.

Однако, носитель может действовать в качестве молекулярного сита, приводя тем самым к хроматографическим эффектам, что может или улучшить разделение, или ухудшать его.

а) электрофорез на бумаге.

В качестве носителя здесь используется фильтровальная бумага, которая должна содержать 96% α-целлюлозы, нерастворимой в концентрированном растворе NaOH. Приборы для электрофореза состоят из двух электродных сосудов и устройства для поддержания полосок фильтровальной бумаги. В качестве электродов обычно применяются платиновые проволоки. Можно использовать и угольные электроды. Для предотвращения чрезмерного испарения всю систему помещают в закрытую камеру, что обеспечивает создание влажной атмосферы.

Перед анализом электрофоретическую бумагу погружают в буферный раствор, слегка промокают между чистыми листами промокательной бумаги, а затем помещают на подставку.

Пробу наносят либо капиллярной пипеткой с закрученным носиком, либо с помощью различных аппликаторов, обеспечивающих быстрое и равномерное нанесение исследуемого раствора.

После нанесения проб к кювете подключают напряжение. Для наблюдения за ходом электрофореза на бумагу наносят пятно определенного стандартного вещества. По окончании процедуры бумагу высушивают при 105-110°С. Макромолекулы затем можно обнаружить при помощи соответствующего метода окрашивания.

Б) электрофорез в ПААГ.

В качестве среды для электрофоретического разделения макромолекул наиболее широкое распространение получил ПААГ, обладающий рядом преимуществ. Среди них можно отметить химическую стабильность, инертность, прозрачность в широком диапазоне длин волн, возможность получения пор с заданной величиной, отсутствием адсорбции. С помощью ПААГ можно разделить вещества с молекулярной массой от 2500 до 2000000 дальтон.

Системы электрофореза в ПААГ можно разделить на две группы по применяемым буферным системам. К первой относятся системы вертикального и горизонтального электрофореза, в которых применяется один тип буфера в электродных камерах и геле. Ко второй группе относятся системы вертикального «диск-электрофореза»: в них используются разные виды буферов (2-3) и гели разной концентрации. Название данного метода происходит от английского слова discontinuty (прерывистый), обозначающего в данном контексте неоднородность электрофоретической среды. Для диск-электрофореза характерны скачкообразные изменения рН, концентрации геля и градиента напряжения.

Прибор для диск-электрофореза состоит из верхнего и нижнего резервуара для электродного буфера и вертикальной стеклянной трубки. Нижняя часть трубки заполняется разделяющим гелем с мелкими порами, которые действуют как молекулярное сито по отношению к изучаемым макромолекулам. Над разделяющим гелем находится концентрирующий гель, имеющий крупные поры и поэтому не обладающий свойствами молекулярного сита, а еще выше расположен стартовый гель, содержащий пробу и краситель, используемый в качестве свидетеля.

Принцип диск-электрофореза основан на эффекте подвижной границы Кольрауша, суть которого состоит в использовании двух разных буферов: в электродных камерах трис-глициновый буфер (рН 8,3) , а в концентрирующих(рН 6,7) и разделяющем гелях(рН 8.9) – трис-НСl. В электродном буфере рН на 1,5-2 единицы выше, чем в концентрирующем. Образец растворяется в том же буфере, который используется в концентрирующем геле. При рН 8,3 глицин находится в виде цвиттериона:

После включения тока все ионы (в том числе белки и краситель) начинают двигаться к аноду в следующей последовательности: Сl — > бромфеноловый синий > белки > глицинат.

Рис. 1. Прибор для диск-электрофореза.

Между ионами хлора и глицината образуется граница раздела. Так как оба эти иона принадлежат к одной и той же электрической системе, то в области глицинатных ионов напряжение, а следовательно, и их скорость, возрастают, а в области ионов хлора напряжение и скорость уменьшаются. Следовательно, замыкающие глицинатные ионы будут стремиться догнать ведущие ионы хлора, а зона белков и красителя, находящаяся между ними, будет сужаться (концентрироваться). Этот процесс происходит в концентрирующем (крупнопористом) геле.

Когда подвижная граница доходит до мелкопористого геля (рН 8,9), то, с одной стороны, подвижность глицинатных ионов возрастает, а с другой – на белки начинает действовать эффект молекулярного сита, и они отстают от подвижной границы. Таким образом, белки попадают в более щелочной трис-глициновый буфер, их отрицательный заряд возрастает, и они разделяются согласно своим индивидуальным характеристикам (заряду, форме молекул, молекулярному весу).

При проведении электрофореза гель полимеризуется непосредственно в стеклянной трубке, которую потом соединяют с сосудами с буфером. Образец суспендируют в концентрированном растворе сахарозы и наносят на поверхность геля в виде тонкого слоя с помощью пипетки. Электрофорез прекращают, когда зона красителя (подвижная граница) проходит 0,8-0,9 длины геля. Затем гель извлекают из трубки и окрашивают специальными красителями обнаружения зон. Каждую зону можно характеризовать по значениям их Rf или по площади пика после денсатометрирования. Диск-электрофоретический метод особенно часто используется для разделения белков.

источник

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Читайте также:  Методика электрофорез по келлату методика

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник

ЭЛЕКТРОФОРЕЗ — направленное перемещение электрически заряженных частиц дисперсной фазы в дисперсионной среде (или ионов в электропроводящем растворе) под действием внешнего электрического поля. Метод электрофореза широко используется в биологии и медицине для выделения и анализа индивидуальных белков (см.), нуклеиновых кислот (см.) и других биополимеров, вирусов, надмолекулярных клеточных структур, а также целых клеток. В иммунологии одним из наиболее употребляемых методов исследования является иммуноэлектрофорез (см.) — электрофоретическое разделение смеси антигенов или антител в геле с последующий их преципитацией. Путем микроэлектрофореза(см. Микроионофорез) в клетку можно ввести или к ней подвести любые вещества, способные диссоциировать на ионы (см.). Микроионофорез является одним из основных современных методов в нейрофизиологических, нейрофармакологических, нейрохимических исследованиях. Большое диагностическое значение имеют электрофоретическое разделение ферментов (см.) на коферменты (см.) и их количественная и качественная оценка. Введение лекарственных веществ в организм путем Э. широко применяется в физиотерапии (см.).

Электрофорез наряду с электроосмосом (см.) был открыт в 1807 году профессором Московского университета Рейссом. Электрокинетические явления (см.), к которым относят электрофорез, обусловлены наличием на границе раздела фаз двойного электрического слоя и способностью диффузной части этого слоя смещаться относительно адсорбционно связанной (неподвижной) его части. Электрический потенциал поверхности, разделяющей подвижную и неподвижную части двойного электрического слоя, носит название электрокинетического или ζ (дзета)-потенциала. Частицы дисперсной фазы, находящиеся в буферном растворе (см. Буферные растворы), несут определенный суммарный электрический заряд, величина и знак которого зависят от величины pH среды (см. Водородный показатель). Если через буферный раствор, заключенный в сосуд с электроизолирующими стенками, например, в стеклянную трубку, пропускать электрический ток, то результатом этого будет появление определенного градиента напряжения (см. Градиент), или электрического поля. Под действием этого поля частицы дисперсной фазы в соответствии со знаком суммарного заряда движутся в направлении катода, то есть происходит катафорез, или анода — анафорез. В зависимости от величины заряда и своих размеров частицы в электрическом поле приобретают разные скорости. Смесь разнородных частиц, внесенная в узкую зону, в этих условиях разделяется на зоны, образуемые частицами, движущимися с одинаковой скоростью, то есть обладающими одинаковой электрофоретической подвижностью.

Электрофоретическая подвижность частиц, имеющих сферическую форму (V), выражается формулой Смолуховского: V = ( ζD)/(4πη), где ζ — электрокинетический потенциал двойного электрического слоя, окружающего частицу, D — диэлектрическая проницаемость и η — вязкость среды. В том случае, когда электрофоретическое разделение смеси частиц (или молекул) производят в буферных растворах с не слишком низкими (например, около 0,1) значениями ионной силы раствора (полусуммы произведений концентраций всех находящихся в растворе ионов на квадрат величины их заряда), частицы группируются по фракциям лишь по величине заряда без учета размеров или молекулярных весов (масс), если речь идет о молекулах.

Использование электрофореза в биологии и медицине началось в 30-е годы 20 века, когда А. Тизелиус разработал метод электрофореза в свободной жидкости и сконструировал прибор для электрофоретического разделения и анализа смеси белков так называемым методом подвижных, или свободных, границ. В медико-биологических исследованиях применяют множество вариантов двух главных модификаций электрофоретического метода — электрофореза в свободной жидкости (свободнопроточный электрофорез) и зонального электрофореза (зонный электрофорез, или электрофорез на инертных носителях). Первым был разработан электрофорез в свободной жидкости (метод подвижных границ, электрофорез по Тизелиусу), который позволял измерять электрофоретическую подвижность испытуемого вещества по перемещению подвижной границы между чистым буферным раствором и буферным раствором, содержащим исследуемое вещество. В приборе Тизелиуса используется оптический метод регистрации положения такой границы по определению показателя преломления среды (см. Нефелометрия, Рефрактометрия), а в некоторых случаях — прямое микроскопирование. При разделении смеси веществ с различными изоэлектрическими точками (см. Изоэлектрическая точка) оптические устройства регистрируют несколько движущихся пиков (рис. 1). Основным недостатком электрофореза в свободной жидкости является ее тепловое движение, мешающее четкому разделению фракций и размывающее границы зон. Этот недостаток частично преодолевается созданием градиентов плотности буферных растворов (например, с помощью сахарозы). При фракционировании низкомолекулярных веществ, чтобы избежать чрезмерного размывания зон, применяют высоковольтный электрофорез, иногда в сочетании с хроматографией (см.) — так называемый метод «отпечатков пальцев».

Зональный электрофорез отличается от электрофореза в свободной жидкости главным образом использованием нейтральной поддерживающей среды (инертных носителей) для жидкой фазы (буферного раствора), что сводит к минимуму эффект теплового движения и позволяет при необходимости выделить тот участок носителя, который содержит индивидуальное вещество. В качестве инертных носителей в зональном электрофорезе используют специальную хроматографическую бумагу, полоски ацетата целлюлозы, тонкие слои силикагеля, порошка целлюлозы или гели сефадексов (см. Декстран). Зональный электрофорез на инертных полимерах-носителях позволяет фракционировать вещества не только по величине заряда, но и по молекулярному весу. Особое место среди таких носителей занимают гели полиакриламида (ПААГ) и агарозы. Преимущество полиакриламидных гелей заключается в возможности изменения диаметра их пор при изменении концентрации полимера, а также в отсутствии явлений адсорбции и электроосмоса при электрофорезе.

При электрофоретическом разделении гетерогенной смеси в полиакриламидном геле колонку небольшого сечения (около 1 см 2 ) заполняют буферным раствором, содержащим растворенный мономер (акриламид; CH2—CH— CONH2, небольшое количество вещества-сшивателя (бис-N-метиленметакриламида — НС(СН2)—CONH—CH2-NHCO-(CH2)CH ) и вещество-инициатор полимеризации. Через некоторое время при комнатной температуре в колонке образуется однородный гель (рис. 2). Если с помощью электрофореза в свободной жидкости по Тиэелиусу в сыворотке крови обнаруживают 5 белковых фракций (см. рис. 1), то при электрофоретическом разделении сыворотки крови в полиакриламидном геле их насчитывают не менее 25 (рис. 3).

Разрешающая способность электрофореза в полиакриламидном геле значительно повышается при использовании в качестве носителя системы гелей (обычно двух — «рабочего» мелкопористого и непосредственно над ним «формирующего» крупнопористого). Кроме степени пористости, эти гели резко различаются по величине pH и молярности буферных растворов, в которых они полимеризуются. Такой электрофорез называют ступенчатым, или дискэлектрофорезом (английский (discontinuous — прерывистый).

Вариантом электрофореза в полиакриламидном геле является электрофорез смеси биополимеров после предварительной обработки денатурирующим агентом с целью изменения конфигурации молекул. Белки в этом случае обрабатывают ионным детергентом (см.) — додецилсульфатом натрия, разрушающим дисульфидные связи в их молекулах и образующим с ними отрицательно заряженные мицеллы, заряд которых пропорционален молекулярному весу белка; нуклеиновые кислоты подвергают электрофорез в присутствии щелочи, мочевины, формамида или других агентов, разрушающих водородные связи в полинуклеотидных цепях нуклеиновых кислот. При этих условиях электрофоретическая подвижность биомолекул начинает строго коррелировать с их молекулярным весом.

Для наблюдения за ходом электрофореза в геле в исследуемую смесь добавляют химически инертный в отношении разделяемых веществ низкомолекулярный краситель (см. Красители), молекулы которого несут электрический заряд того же знака, что и молекулы разделяемых веществ, но обладают электрофоретической подвижностью, которая несколько выше подвижности белковой фракции, продвигающейся первой. Такой краситель называют лидирующим. Чаще всего в щелочных и нейтральных буферных растворах используют бромфеноловый синий, в кислой среде — метиловый зеленый или пиронин. Когда окрашенная зона доходит до конца геля, электрофорез прекращают, после фиксации гель на определенное время погружают в р-р специфического красителя, после чего избыток красителя отмывают (рис. 4) Для выявления на электрофореграмме белков-ферментов иногда пользуются их каталитической активностью в отношении хромогенных субстратов. Широко применяется обнаружение электрофоретических зон по их радиоактивности (см. Авторадиография).

Многие исследователи в качестве инертных носителей предпочитают гели в виде тонких пластин. Электрофорез в гелевой пластине делает более достоверным сравнение отдельных препаратов, позволяет проводить двухмерное разделение и др. Для анализа аминокислот, пептидов и сахаров (в виде их боратных комплексов) используют высоковольтный электрофорез на бумаге, в тонком слое силикагеля, ацетата целлюлозы и других красителей.

Разделение сложной смеси белков не всегда удается осуществить даже при использовании перечисленных выше приемов электрофореза. Поэтому в сложных случаях применяют так называемый двухмерный электрофорез, когда после первого электрофоретического фракционирования смеси белков каждую полосу используют как исходный препарат для электрофореза в перпендикулярном направлении по отношению к направлению первого разделения. В результате на второй пластине появляется большое число зон, соответствующих индивидуальным белкам (иногда их число достигает 2 тысячи).

Существуют методы, объединяющие, например, электрофорез и хроматографию (см.); иногда разделение смеси белков проводят в перпендикулярных направлениях, или в одном направлении белки разделяют электрофорез в полиакриламидном геле с додецилсульфатом натрия, а в перпендикулярном ему — с помощью изоэлектрического фокусирования (см.). Последний метод позволяет на одной гелевой пластине выявить до 7 тысяч индивидуальных белков. Вариантами электрофореза являются также электрофорез в градиенте значений pH и электрофорез в градиенте пористости геля, иммуноэлектрофорез, аффинный электрофорез, сочетающий в себе преимущества электрофореза и аффинной хроматографии, и др.

С помощью электрофореза белков определяют их первичную структуру, молекулярный вес, патогенность и наличие множественных форм. Для электрофореза клеток используют свободнопроточный электрофорез в его аналитических и препаративных вариантах. Так фракционируют бактериальные клетки, вирусы, а также лизосомы, митохондрии, комплексы Глльджи и другие клеточные органеллы. Молекулы нуклеиновых кислот отличаются от молекул белков сильным отрицательным зарядом. Фракционирование их смесей осуществляют за счет различий мол. веса нативных высокомолекулярных ДНК и РНК. Для электрофоретического фракционирования их низкомолекулярных фрагментов используют крупнопористые гели агарозы или гели полиакриламида с концентрацией от 5 до 20%, а также их смеси. Анализ фрагментов нуклеиновых кислот, полученных при расщеплении молекул ДНК нуклеазами и химическими агентами, дает возможность определить первичную структуру этих биополимеров, то есть структуру генов (см. Ген).

Метод электрофореза позволил обнаружить нормальный наследственный полиморфизм белков человека. Стали известны десятки вариантов гемоглобинов (см. Гемоглобин), глюкозо-6-фосфат-дегидрогеназы и других белков. Были получены данные о множественных формах ферментов (см. Изоферменты), последовательно экспрессируемых в ходе онтогенеза и генетически независимых. В результате исследования крови, мочи, цереброспинальной жидкости электрофореза были выявлены изменения нормальной экспрессии генов, кодирующих синтез определенных белков при различных патологических состояниях (рис. 5).

Читайте также:  Список лекарств для электрофореза

С помощью электрофоретического анализа ферментов (см.) возможна диагностика, в том числе пренатальная, некоторых врожденных заболеваний.

При молекулярной патологии происходит изменение плотности относительного заряда на поверхности клеток, поэтому методом электрофореза можно, например, выявить и разделить субпопуляции B- и Т-лимфоцитов.

Начаты исследования по получению особо чистых препаратов (например, интерферона) методом электрофореза в условиях невесомости при космических полетах.

Лекарственный электрофорез (устаревший ионофорез, ионтофорез, ионотерапия, гальваноионотерапия, ионогальванизация) — метод электролечения, заключающийся в сочетанном воздействии на организм постоянного тока и вводимых с его помощью лекарственных веществ. В лечебную практику лекарственный электрофорез был введен с 1802 году, когда Росси (Rossi) впервые применил для воздействия на организм больного лекарственные вещества в сочетании с постоянным током (см. Гальванизация). Долгое время для лекарственного электрофореза использовали только постоянный непрерывный ток (гальванический). В настоящее время широко применяют диадинамические токи (см. Диадинамоэлектрофорез), синусоидальные модулированные (амплипульсфорез) и флюктуирующие (флюктуофорез) токи в выпрямленном режиме.

Принципиальной основой лекарственного электрофореза является теория электролитической диссоциации (см. Диссоциация в химии, Электролиз). Лекарственные вещества, способные диссоциировать в растворе на положительные (катионы) и отрицательные (анионы) ионы, направленно перемещаются в поле постоянного электрического тока и могут поступать в организм, преодолевая кожный барьер (см. Кожа). При этом с электродной прокладки вводятся лишь те ионы, которые имеют одноименный знак с электродом.

При электрофорезе основными путями проникновения лекарственных веществ в организм через кожу являются выводные протоки потовых и, в меньшей степени, сальных желез. Часть лекарственного вещества проникает в организм через межклеточные пространства и часть — через сами клетки (особенно при электрофоретическом введении лекарственных веществ через слизистую оболочку).

При электрофорезе лекарственные вещества проникают на небольшую глубину: сразу после процедуры они обнаруживаются в основном в эпидермисе и дерме, в небольшом количестве — в подкожной клетчатке. Отсюда введенные путем электрофореза лекарственные вещества поступают в лимфо- и кровоток и разносятся по всему организму, хотя преимущественно они накапливаются в тканях и органах области воздействия.

Электрофорез лекарственных веществ через кожу и слизистые оболочки количественно не подчиняется законам электролиза, так как живые ткани обладают электрокапиллярной активностью (см. Электроосмос) и барьерными свойствами (см. Барьерные функции). При электрофорезе в организм вводится всего от 1 до 10% вещества, находящегося в растворе (на прокладке). На количество вводимого путем электрофореза вещества существенно влияют физико-химические свойства самих лекарственных средств и свойства их растворов (степень диссоциации вещества, размеры, величина и знак заряда иона, возможность и степень его гидратации, используемый растворитель, концентрация и др.), условия проведения физиотерапевтической процедуры (плотность тока, длительность воздействия возраст пациента и др.), функциональное состояние организма в целом и кожи в особенности.

Лекарственное вещество, вводимое методом электрофореза может действовать на организм рефлекторным путем (так называемый понный рефлекс по Щербаку), гуморальным путем и кроме того, оказывать местное действие. Это зависит от типа и количества лекарственного вещества, методики и условий проведения процедуры, параметров физического фактора и др.

Электрический ток, используемый для электрофореза, вызывает в организме разнообразные физико-химические, метаболические и клеточно-тканевые реакции (см. Гальванизация, Диатермия, Диатермоэлектрофорез), на фоне которых действие вводимых с помощью электрофореза лекарственных веществ приобретает ряд особенностей и преимуществ по сравнению с обычными способами фармакотерапии (см.). Наибольшее практическое значение при лекарственном электрофорезе имеют следующие факторы:

  1. более длительное действие лекарственного средства и более медленное выведение его из организма благодаря, прежде всего, образованию в коже депо ионов, обладающих фармакологической активностью;
  2. возможность создания высокой локальной концентрации лекарственного вещества без насыщения им крови и других сред организма;
  3. меньшая вероятность возникновения побочных реакций;
  4. введение лекарственного вещества в наиболее фармакологически активной форме — в виде ионов;
  5. безболезненность введения лекарственных средств и отсутствие деформации тканей, возникающей при других способах фармакотерапии из-за введения растворителя.

Благодаря стимулирующему действию электрического тока отчетливое специфическое и выраженное терапевтическое действие вводимых путем электрофореза лекарственных веществ проявляется при таких концентрациях, которые при обычных способах фармакотерапии оказались бы малодейственными или неэффективными.

Назначение лекарственного электрофореза определяется, с одной стороны, благоприятным лечебным эффектом постоянного непрерывного тока или других видов электрического тока (см. Импульсные токи), а с другой стороны — показаниями к применению соответствующих лекарственных средств.

Лекарственный электрофорез нельзя применить в тех случаях, когда имеются объективные противопоказания к применению электролечения и соответствующих лекарственных средств, а также при их индивидуальной непереносимости.

Техника лекарственного электрофореза сводится к расположению на пути тока (между телом человека и электродами) раствора лекарственного вещества. В зависимости от способа нанесения лекарственного вещества и подведения тока различают несколько вариантов лекарственного электрофореза. Наиболее распространено электрофоретическое введение лекарственных веществ из растворов, которыми смачиваются специальные прокладки между телом пациента и электродом. Техника выполнения лекарственного электрофореза в этой модификации мало отличается от техники гальванизации (см.). Единственное отличие заключается в том, что электродную прокладку смачивают не водопроводной водой, как при гальванизации, а раствором лекарственного вещества. Этот раствор с помощью бюретки или другого дозирующего устройства количественно наносят на гидрофильную прокладку или, чаще, на специальную лекарственную прокладку, располагаемую при процедуре между кожей и защитной прокладкой. Лекарственные прокладки готовят из 1—2 слоев фильтровальной бумаги или 2—4 слоев марли. По форме и площади они должны соответствовать защитной прокладке. Раствором лекарственного вещества смачивают обычно одну прокладку, однако лекарственные вещества, диссоциирующие на ионы с противоположными зарядами, могут наноситься на обе (катодную и анодную) прокладки.

Раствор лекарственного вещества наносят на прокладку электрода (положительно заряженного — анода или отрицательно заряженного — катода), одноименного с подлежащим электрофоретическому введению ионом. При выборе полярности следует учитывать следующее: ионы всех металлов, местноанестезирующие средства, большинство алкалоидов, антибиотиков и сульфаниламидных препаратов имеют положительный заряд, поэтому при электрофорезе они должны вводиться с анода, а ионы всех металлоидов и кислотные радикалы приобретают в растворах отрицательный заряд и, следовательно, должны вводиться в организм с катодного электрода. Суммарный заряд амфотерных соединений (белки, аминокислоты и др.) зависит от их ионного состава и величины pH среды (см. Водородный показатель): при низких значениях pH заряд становится более положительным, при высоких — более отрицательным.

При так называемом ванночковом электрофорезе в ванночку (стеклянную, фаянсовую, пластмассовую) с вмонтированными электродами, заполненную раствором лекарственного вещества, погружают подлежащую воздействию обнаженную часть тела больного.

Полостной лекарственный электрофорез заключается в том, что перед введением электрода, соединенного с соответствующим полюсом аппарата для лекарственного электрофореза, в полость желудка, мочевого пузыря, прямой кишки, влагалища, носа вводят раствор лекарственного вещества.

В медицинской практике, особенно при лечении заболеваний бронхолегочной системы, получает распространение так называемый внутритканевой электрофорез. При этом после введения лекарственного вещества в организм одним из общепринятых способов (внутривенно, подкожно, внутримышечно, ингаляционным путем) проводят гальванизацию области патологического очага при перпендикулярном расположении электродов. Время проведения процедуры должно соответствовать времени достижения максимальной концентрации лекарственного вещества в крови.

При сочетанных способах лечения лекарственный электрофорез можно проводить одновременно с другим физиотерапевтическим воздействием. К таким сочетанным способам относятся ультразвук — электрофорез (электрофонофорез), дозированный вакуум — электрофорез (вакуум-электрофорез), индуктотермия — электрофорез (индуктотермоэлектрофорез), магнитное поле — электрофорез (магнитоэлектрофорез) и др. Сочетание лекарственного электрофореза с другими физиотерапевтическими воздействиями позволяет вводить в организм лекарственное вещество в большем количестве и на большую глубину, чем при одном электрофорезе, и потенцирует его действие.

Для лечебного электрофореза применяют лекарственные средства, относящиеся к самым различным группам. Нам более часто употребляют местноанестезирующие средства, витаминные, ферментные препараты, химиотерапевтические, сосудорасширяющие и сосудосуживающие средства, седативные средства, природные соединения и др. Лекарственные вещества, предназначенные для электрофоретического введения, должны быть чистыми, не содержать наполняющих и связующих соединений, по возможности их растворы надо готовить непосредственно перед применением. В качестве растворителя при приготовлении растворов для лекарственного электрофореза лучше всего использовать дистилированную воду. При плохой растворимости лекарственного вещества в воде в качестве растворителя можно применять спирт, димексид и другие полярные растворители, разрешенные ГФ. Приготовление лекарственных средств на изотоническом растворе натрия хлорида и других растворах электролитов (см.) является нежелательным, так как это резко уменьшает введение в организм лекарственного иона. При электрофорезе ферментов в качестве растворителей используют буферные растворы (см.).

Дозируют лекарственный электрофорез так же, как и гальванизацию: по длительности процедуры от 10 до 30 минут и плотности тока 0,03—0,08 ма/см 2 . Для детей и пожилых людей дозиметрические параметры уменьшают в зависимости от возраста на 25— 30%. На курс лечения назначают от 10—12 до 15—20 процедур, которые проводят ежедневно или через день.

Для лекарственного электрофореза применяют различные аппараты. Источниками гальванического тока (см. Гальванизация) и импульсных диадинамических токов являются аппарат Поток-1, АГН-32, АГП-33, СНИМ-1 Модель-717, Тонус-1 и Тонус-2, синусоидальных модулированных токов — аппараты Амплипульс-ЗТ. Амплипульс-4, флюктуирующих токов — аппарат АСБ-2.

Библиогр.: Бабский В. Г., Жуков М. Ю. и Юдович В. И. Математическая теория электрофореза, Применение к методам фракционирования биополимеров, Киев, 1983; Гааль Э., Медьеши Г. и Верецкси X. Электрофорез в разделении биологических макромолекул, пер. с англ., М., 198* Остерман Л. А. Методы исследования белков и нуклеиновых кислот, Электрофорез и ультрацентрифугирование, 1981; Парфенов А. П. Элестрофорез лекарственных веществ, Л., 1973, ; Улащик В. С. Теория и практика лекарственного электрофореза, Минск, 1976, библиогр.; он же, Физикофармакологические методы лечения и профилактики, Минск, 1979; Cell electroptoresis in cancer and other clinical reearch, ed. by A. W. Preece a. P. Light, Amsterdam, 1981; Dunn M. Affinity electrophoresis, Lab. Pract., 33, p. 13, 1984; Electrophoresis’83, Advanced methods biochemical and clinical applications, ed. by H. Hlrai, B.— N. Y., 1984.

E. В. Раменский; В. С. Улащик (физиотер.).

источник

В плазме человеческой крови находится множество белковых компонентов. Они различны по своему составу, строению и подвижности в определенной среде, проводящей электрический ток. На этом и строится разделение общего белка, который локализуется в плазме, на различные белковые фракции. При проведении электрофореза сыворотки крови выясняют количественное отношение отдельных белковых составляющих и структур. Это необходимо для определения наличия у человека различных патологических явлений, например инфекций или онкологии. Именно электрофорез белков сыворотки крови имеет большое значение при проведении диагностики различных болезней.

Для расщепления белковых фракций применяют электрофорез сыворотки крови, принцип которого основан на разной подвижности белковых компонентов в созданном электрическом поле. Такой метод исследования является более точным и информативным, в отличие от стандартного общего анализа крови. Но при этом электрофорез показывает только количество определённой фракции белка, характер и степень патологического процесса в общей форме. Анализ проведенных исследований позволяет медицинским специалистам выяснить, какое именно соотношение белковых фракций наблюдается в организме человека, и определить специфику патологии, присущую конкретному заболеванию.

Большую часть основной биологической жидкости человека, или крови, составляют белки. В общем количестве их норма находится в пределах 60-80 г/л. Для получения точного анализа проводится электрофорез сыворотки крови на бумаге. Это исследование является самым распространенным способом анализа. Основной средой является особая фильтровальная бумага. Главная ее особенность – высокая гигроскопичность. Такая бумага может поглотить воды больше своего веса в 130-200 раз. В зависимости от применяемого оборудования электрофорез на бумаге длится 4-16 часов. Происходит подразделение белковых структур. Затем полосы бумаги обрабатывают специальными красками для получения анализа. Такая методика является самой распространенной в работе медицинских лабораторий. За счёт воздействия электрического тока белковые фракции, заряженные отрицательно, двигаются в сторону положительно заряженного электрода. Благодаря этому белковые составляющие крови подразделяются на 5 известных фракций:

Альбумины заряжены отрицательно, имеют маленькую, по сравнению с другими фракциями, молекулярную массу. За счет этого скорость их передвижения гораздо выше, чем у остальных фракций, и они дальше всех локализуются от участка старта. Первые три фракции глобулина передвигаются с более низкой скоростью из-за своей массы. Но самая маленькая скорость регистрируется у γ-глобулинов. Эти белки имеют большую массу и крупные, относительно других, размеры. Их заряд почти нейтрален, поэтому данная белковая фракция практически не сдвигается с линии старта.

В настоящее время электрофорез сыворотки крови часто проводимый анализ для постановки точного диагноза болезни. Этот анализ могут назначить как терапевты, так врачи узкого профиля. Показаниями по проведению исследований будут:

  • различные воспаления;
  • болезни хронической природы;
  • патологические процессы в соединительной ткани;
  • внутреннее кровотечение;
  • злокачественные новообразования.

Для того чтобы полученные результаты поведенных исследований были верными, не менее чем за 8 часов до сдачи крови необходимо отказаться от приёма еды. Кроме того, необходимо согласовать прием лекарственных средств, если таковые имеются, с лечащим врачом.

Читайте также:  Электрофорез с лидокаином на поясницу

Для того чтобы результаты не были по ошибке завышены, необходимо снизить до минимума возможность свертывания крови для определения показателя белковых фракций и общего белка. Электрофорез сыворотки крови проводится аккуратно, поскольку существует вероятность искажения полученных результатов из-за фибриногена. Он может прятать ненормальные белки или быть спутанным с ними.

В течение суток после сдачи пробы будет готов анализ на электрофорез белков сыворотки крови. Норма полученных показателей по категориям у взрослых людей:

  1. Общий белок – 63-82 г/л.
  2. Альбумины – 40-60 % от общего количества фракций.
  3. α1-глобулины – 2-5 %.
  4. α2-глобулины – 7-13 %.
  5. β-глобулины – 8-15 %
  6. γ-глобулины – 12-22 %.

Изменение количества любой белковой фракции в большую или меньшую сторону может свидетельствовать о развитии той или иной патологии. Для получения достоверной информации об этом необходим электрофорез белков сыворотки крови. Расшифровка результатов облегчит медицинским специалистам постановку диагноза и выбор лечения.

В самом начале при анализе полученных результатов определяют количество альбумина. Увеличение этой фракции может говорить об обезвоживании. Такое может произойти, если у больного отмечается затяжная рвота или нарушения в пищеварительной системе. Также увеличение альбумина происходит при ожогах большой площади кожного покрова.

Гораздо опаснее, если в организме снижается количество альбуминов, это может говорить о следующих патологиях:

  1. Поражения почек и печени.
  2. Патологии желудочно-кишечного тракта.
  3. Инфекционные процессы.
  4. Нарушения в деятельности сердечно-сосудистой системы.
  5. Кровотечения.
  6. Злокачественные новообразования.
  7. Сепсис.
  8. Ревматизм.

Незначительное уменьшение количества альбуминов может быть также:

  1. У будущих матерей.
  2. При превышении дозы лекарственных препаратов.
  3. При длительной лихорадке.
  4. У заядлых курильщиков.

Уменьшение количества a1-глобулинов регистрируется при недостатке α1-антитрипсина. Увеличение же отмечают при обострении воспалений в организме, нарушениях в работе печени, при тканевом распаде.

Регистрируют его при сахарном диабете, воспалительных процессах в поджелудочной железе, у новорожденных детей при желтухе, при гепатитах токсического происхождения. Свидетельствует оно и о неправильном, несбалансированном питании.

Происходит при наличии следующих заболеваний:

  1. Воспаления, особенно с присутствием гнойного экссудата (воспаление легких и другие процессы с наличием гноя).
  2. Поражения соединительной ткани (например, ревматизм).
  3. Злокачественные новообразования.
  4. Периоды восстановления после ожогов.
  5. Поражение почек.

Кроме того, такое явление характерно для гемолиза крови в пробирке во время проведения исследования.

Проявляется при гиперлипопротеидемии (увеличении количества липидов в крови), патологиях печени и почек. Можно обнаружить при открытой язве желудка, а также гипотиреозе (нарушение работы щитовидной железы). Снижение фракции регистрируют при гипобеталипопротеинемии (повышение в крови компонента беталипопротеин).

Эта фракция включает в свой состав иммуноглобулины. Поэтому увеличение γ-глобулинов регистрируется при сбоях в иммунитете. Обычно это происходит при различных инфекциях, развитии воспалительного процесса, изменениях ткани и ожоговых поражениях. Рост γ-глобулинов отмечают у больных хронической формой гепатита. Практически такая же картина характерна для цирроза печени. При запущенных случаях данного заболевания количество белковой фракции γ-глобулинов значительно выше показателя альбуминов. При определенных болезнях могут возникать сбои в образовании γ-глобулинов, и происходит развитие измененных протеинов в крови – парапротеинов. Для выяснения характера такого развития производится дополнительное исследование – иммуноэлектрофорез. Такая картина характерна для миеломного заболевания и патологии Вальденстрема.

Увеличение количества γ-глобулинов также присуще следующим патологиям:

  • красной волчанке;
  • эндотелиоме;
  • ревматоидной форме артрита;
  • остеосаркоме;
  • хронической форме лимфолейкоза;
  • кандидомикозу.

Снижение показателя γ-глобулинов подразделяют на 3 вида:

  1. Физиологический (характерен для детей в возрасте от трех до пяти месяцев).
  2. Врожденный (развивается с момента рождения).
  3. Идиопатический (когда причину развития установить не удается).

Вторичное снижение регистрируется при развитии заболеваний, которые вызывают истощение иммунной системы. В последнее время в медицинской практике все чаще проводится анализ на определение количества преальбуминов. Обычно такое исследование проводят больным, находящимся в реанимации.

Уменьшение количества преальбуминов очень важный и точный тест на определение недостаточности белковых структур в организме пациента. При проведении анализа на преальбумины выполняют коррекцию белкового метаболизма у таких пациентов.

Принцип проведения подобного анализа схож с технологией выполнения электрофореза сыворотки крови. Проводят его для более точной постановки диагноза или обнаружения других патологий. Кроме того такой анализ поможет выявить у больного наличие протеинурии.

Электрофорез сыворотки крови и мочи – важные методы в диагностике различных инфекционных заболеваний. Благодаря методике исследования и высокой точности они помогают определить вид патологии. Точный диагноз – верный путь к правильному лечению и полному выздоровлению.

источник

Этот метод нашел широкое применение и открыл путь для аналитических исследованиях во многих областях. Бумажный электрофорез является одним из наиболее распространенных способов зонального электрофореза, в котором поддерживающей средой служит специальная фильтровальная бумага.

Электрофорез проводят с использованием боратных, фосфатных или веронал-мединаловых буферных растворов. В зависимости от типа прибора и условий опыта электрофорез на бумаге длится от 4 до 16 часов.

Фильтровальная бумага для электрофореза должна содержать 96% -целлюлозы, нерастроворимой в концентрированном растворе NaOH. В процессе электрофореза бумага пропитывается буферным раствором. Разные марки бумаги обладают неодинаковой впитывающей способностью ─ свойством, имеющим большое значение, так как электропроводность влажной бумаги зависит от объема содержащегося в ней буфера.

Тонкая или средней толщины бумага с плотной текстурой дает при электрофорезе четкий фронт, тогда как толстая (быстро протекающая) бумага, обладающая большой впитывающей способностью, характеризуется нечетким фронтом. Некоторые для препаративного электрофореза белков применяют толстую бумагу.

Бумагу погружают в буферный раствор, слегка промокают между чистыми листами промокательной или фильтровальной бумаги, а затем помещают на поставку, поддерживающую ее в соответствующем положении. Пробу наносят либо капиллярной пипеткой с закругленным носиком, либо с помощью различных аппликаторов, обеспечивающих быстрое и равномерное нанесение исследуемого раствора. При этом важно не поцарапать поверхность бумаги. После нанесения проб к кювете подключают напряжение. Для наблюдения за ходом электрофореза на бумагу наносят пятно окрашенного стандартного вещества. По окончании процедуры бумагу быстро высушивают при 105-110 °С (20-30 мин).

Агароза, природный коллоид, который выделяют из морских водорослей, является линейным полисахаридом (средняя молекулярная масса

12 000 Да), образованным повторяющимся элементом – агаробиозой, которая в свою очередь состоит из чередующихся элементов: галактозы и 3,6 –ангидрогалактозы. Агароза очень хрупка, и легко разрушается при манипулировании. Агарозные гели имеют «поры» большого размера и используются преимущественно для разделения больших молекул с молекулярной массой большей, чем 200 кДа.

Разделение в агарозных гелях происходит быстро, но с ограниченным разрешением, так как полосы, образующиеся в агарозных гелях, имеют тенденцию размываться диффундировать и распространяться в стороны. Это является результатом большого размера пор и не может быть предотвращено. Агарозные гели получают суспендированием сухого порошка агарозы в водном буфере, и кипячением смеси до того момента, когда агароза расплавится и образует прозрачный раствор. Затем раствор наливают на подложку и дают остыть до комнатной температуры, чтобы сформировался прочный гель. При застывании агароза формирует матрикс, плотность которого определяется концентрацией.

Современные варианты электрофореза используют пластинки или колонки с агарозным гелем. В зависимости от цели исследований эоектрофорез в агарозном геле может быть аналитическим и/или препаративным. Аналитический электрофорез в агарозном геле имеет целью элек- трофоретическое разделение макромолекул с последующей визуализ а- цией и анализом полученных результатов. Агарозный электрофорез применяют в препаративных целях. Для извлечения из геля разделенных компонентов используют несколько способов: агарозный гель подвергают элюции буферными растворами, центрифугированию, замораживанию и оттаиванию.и др.

Полиакриламид─ общее название группы полимеров и сополимеров на основе акриламида и его производных. Разделение в полиакриламидном геле происходит за счёт различий заряда разделяемых молекул и отличиймолекулярных масс, а также от конфигурации молекул.

Разделяют т. н. неденатурирующий, или нативный ПААГ-электрофорез (при котором разделяемые биологические макромолекулы в процессе электрофореза остаются в нативном состоянии) и денатурирующий ПААГ-электрофорез (при котором пробы предварительно денатурируют, в случае нуклеиновых кислот используют непродолжительное нагревание пробы с формамидом либо глиоксалем, для денатурации белков обычно используют кипячение пробы в буфере, содержащем сильный ионный детергент (обычно додецилсульфат натрия) и агент, разрушающий четвертичную структуру белка за счёт разрушения дисульфидных мостиков между глобулами белка и внутри полипептидной цепи — бета-меркаптоэтанолом). В процессе денатурирующего ПААГ-электрофореза молекулы сохраняются в денатурированном состоянии за счёт наличия в геле хаотропных агентов в случае ПААГ-электрофореза нуклеиновых кислот и белков и наличия ионных (додецилсульфата натрия, цетилтриметиламмоний бромида) и неионных детергентов.

  • Различают также диск-электрофорез, при котором в геле в процессе электрофоретического разделения белков на границе между концентрирующим и разделяющим гелями создаётся градиент pH, за счёт чего достигается лучшее разделение белковых молекул.

После окончания электрофоретического разделения, зоны распределения макромолекул в геле обнаруживают путем окрашивания специфическими красителями и или другими способами. Например, для обнаружения белков используются красители амид черный, бромфеноловый синий, Кумасси бриллиантовый голубой. Если разделяются биологически активные молекулы, положение молекулы можно идентифицировать по измерению активности, например, по измерению ферментативной активности. Локализацию нуклеиновых кислот в гелях определяют после обработки флоуресцентными красителями (например, бромид этидия) или по радиоактивности разделенных фрагментов.

источник

Электрофорез основан на том, что при определенной силы pH и ионной силы раствора белки двигаются в электрическом поле со скоростью пропорциональной их суммарному заряду. Белки имеющий отрицательный заряд двигаются к катоду, а положительный- к аноду.

Электрофорез производят на бумаге, крахмальном геле и. др. В полиакриламидном геле лучше проводить электрофорез, т.к в геле движение белков еще зависит от их молекулярной массы, а не только от заряда. На электрофорезе бумажном, различают 5 фракций, (Альбум, а1-глоб, а2-глоб, b-глоб и y-глоб). НО для обнаружения фракция столбики геля или бумагу обрабатывают красителем. Электрофорез на полиакриламидном геле позволяет получить 18-различных фракций.

1. Свободный (фронтальный) электрофорез. В этом случае электрофорез проводят в приборах, существенной частью которых является U-образная трубка (Рис. 1). Нижнюю часть трубки заполняют испытуемым объектом, например раствором белка, на который наслаивают растворитель. В растворитель погружают электроды, соединенные с источником постоянного тока. При этом электрически заряженные частицы белка перемещаются к одному из электродов, вследствие чего граница раздела между раствором и растворителем в одном колене поднимается (восходящая граница), а в другом опускается (нисходящая граница). Приборы для свободного электрофореза, снабженные устройством автоматической регистрации перемещения каждого компонента в исследуемом объекте, применяют при анализе дисперсных систем, выделении из них отдельных компонентов, а также при клиническом исследованиисыворотки крови.
2. Электрофорез на носителях (зональный электрофорез). В качестве носителей используют бумагу, гели крахмала, агара, полиуретанов и др. В клинических лабораториях особо широкое распространение для исследования сыворотки крови получил электрофорез на бумаге, который проводится следующим образом: на полоску специального сорта бумаги, пропитанной соответствующим буферным раствором (см.), наносят капельку сыворотки крови. Концы полоски опускают в чашечки, заполненные данным буферным раствором и снабженные электродами. При пропускания постоянного электрического тока отдельные белки сыворотки перемещаются вдоль полоски с разными скоростями, а иногда и в разных направлениях. По истечении определенного времени пропускание тока прекращают, полоску бумаги подсушивают и обрабатывают реактивом на белок. При этом на бумажной электрофореграмме выявляются окрашенные пятна. По числу пятен судят о количестве белковых фракций, а по интенсивности окраски пятен — о количественном содержании каждой белковой фракции в исследуемой сыворотке.
В последнее время широкое применение в исследовательской работе и в клинической диагностике находит электрофорез в тонких слоях гелей, нанесенных на стеклянные пластинки (дисковый электрофорез), а также помещенных в стеклянные трубочки.

Методы разделения и выделения индивидуальных белков из смеси.

Хроматографии, электрофорез, ультрацентрефугирование.

Ионнобменная хроматография.

Аффинная хроматография.

Гельфильтрация.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижно и подвижной фазами. Хроматографическая колонка заполняется гранулами пористого вещества. В структуре полисахарида образуются поперечные связи и формируются гранулы с «порами», через которые легко проходят вола и низкомолекулярные вещества. В зависимости от условий модно формировать гранулы с разной величие ой «пор».

Неподвижная фаза — жидкость внутри гранул, в которую способны пронизать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесенную на хроматографическую колонку, вымывают, отпуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутрь гранул сефадекса и на некоторое время попадают в неподвижную фазу, в результате чего их движение задерживается. Величина пор определяет размер молекул, способных проникают внутрь гранул.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

источник