Меню Рубрики

Изоэлектрическая точка белка метод электрофореза

Изоэлектрическая точка белка и ее определение. От чего зависит изоэлектрическая точка белков? Почему изоэлектрическая точка различна для разных белков?

Молекулы белков представляют собой амфотерные основания, поскольку содержат свободные амино- и карбоксигруппы. При рН раствора меньше 7 они имеют отрицательный заряд, а при рН больше 7 — положительный. При равенстве данных зарядов, которое достижимо при установлении в растворе определенной кислотности или щелочности, устанавливается так называемая изоэлектрическая точка белка.

Белки состоят из аминокислот. Некоторые из этих соединений (аргинин, аспарагиновая кислота, гистидин, глутаминовая кислота, лизин) представлены в виде радикалов, содержащих ионогенные группы, то есть такие группы, которые способны к ионизации. Помимо них к ионизации способны альфа-карбоксильная и аминогруппы, расположенные на углеродном и азотном концах полипептидных цепей. Если рН раствора равен 7 или приближен к данной отметке, то в ионизированном состоянии находятся все ионогенные группы. По мере удаления от данного значения рН в ту или иную сторону, причем преимущественно в кислую, белок начинает переход в изоэлектрическое состояние, при котором молекула данного вещества становится электронейтральной, число ионизированных групп стремится к нулю. Величина рН, при которой белки переходят в изоэлектрическое состояние, называется изоэлектрической точкой белков (ИЭТ).

Из-за того, что в состав белков входят карбокси- и аминные группы, они могут диссоциировать как основания и как кислоты. Свободная карбоксильная группа при диссоциации отдает положительно заряженный ион водорода и анион COO-. В результате ион водорода присоединяется к аминогруппе, что характеризует основные свойства белка, в результате чего образуются частицы белка с отрицательным и положительным зарядами. При помещении белка в кислый раствор его кислотная диссоциация будет подавляться из-за значительного присутствия катионов водорода. И наоборот, при помещении его в основный раствор его основная диссоциация будет подавляться из-за присутствия анионов COO-.

Пропускание через белковый раствор электрического тока приведет к тому, что анионы начнут двигаться к катоду, а катионы — к аноду. В любом белке есть определенная величина рН, при которой движение ионов при пропускании тока не будет происходить. В этом случае говорят о равенстве разнонаправленных ионов и равенстве различных степеней (основной и кислой) в белковой молекуле, что характеризуется изоэлектрическим состоянием.

Как известно, вода представляет собой диполь, поэтому она располагает свои частицы вокруг белковой молекулы в зависимости от того, как она заряжена. В изоэлектрической точке молекула белка не имеет гидратно-ориентированной оболочки. Если осуществляется осаждение белков, необходимо, прежде всего, разрушить гидратную оболочку, сняв электрический заряд.

В изоэлектрическом состоянии некоторые свойства раствора белка, такие как набухание, вязкость, осмотическое давление, светопропускание, имеют минимальные значения, при этом показатель преломления и оптическая плотность достигают, наоборот, максимальной величины. Изоэлектрическую точку белка можно определить опытным путем, определяя зависимость указанных выше свойств белкового раствора: от величины рН, при этом по положению экстремумов на графиках определяют ИЭТ. В изоэлектрическом состоянии казеин способен осаждаться, что применяется при производстве сыров и кисломолочных продуктов, для получения казеина из обезжиренного молока, как сырья в различных производствах (казеиновые клеи, искусственные продукты питания и т. д.). Измерение ИЭТ позволяет оценить качество белка, в частности, молочного продукта на наличие примесей. Это актуально на сегодняшний день, поскольку введение растительных добавок в молочную основу позволяет заменить часть животного белка растительным, который является более дешевым.

Помимо этого, изоэлектрическая точка белка может использовать при очистке сточных вод от птицефабрик. Так, основная доля загрязнений сточных вод убойного цеха птицефабрики приходится на белки крови. Учитывая то, что ИЭТ большинства белков находится в зоне слабокислой реакции среды, наиболее полное извлечение белков будет происходить при слабокислой реакции среды при величине рН, стремящейся к ИЭТ.

На ИЭТ оказывает влияние несколько факторов. Рассмотрим, от чего зависит изоэлектрическая точка белков. Прежде всего, она определяется преобладанием аминных или карбоксигрупп в составе молекулы белка. Большая часть белков представляют собой более сильные кислоты по сравнению с основаниями, поэтому для них ИЭТ меньше 7. Имеется группа белков, которые являются более сильными основаниями, чем кислотами, для них ИЭТ больше 7. Установлена сильная корреляционная зависимость между изоэлектрической точкой белка и содержанием ионов солей в растворе. Концентрация белка не оказывает никакого влияния на данный показатель. Рассмотренные факторы позволяют понять, почему изоэлектрическая точка различна для разных белков.

  • пепсин имеет значение ИЭТ около 1;
  • казеин и желатин — 4,7;
  • яичный альбумин — 4,8;
  • муцин — 2,7;
  • пепсиноген — 3,7;
  • альбумины — 4,6;
  • инсулин — 5,3;
  • оксигемоглобин — 6,8;
  • карбоксигемоглобин — около 6,9;
  • миоглобин — 7,0;
  • химотрипсин — 8,6;
  • цитохром С — 10,5;
  • сальмин — 12.

Все методы определения изоэлектрической точки белков основаны на приготовлении буферных растворов, имеющих отличающуюся реакцию среды. Во все эти растворы помещаются одинаковые навески изучаемого белка, который может быть как в сухом виде, так и в виде раствора. Используются различные методы определения ИЭТ. Как определить изоэлектрическую точку белка?

Основными методами определения ИЭТ являются электрофорез, по минимуму вязкости и связанный с применением водоотнимающих веществ. Могут использоваться и некоторые другие методы, такие, как определение по степени набухания сухого белка, скорости застудевания, но они менее точные и требуют наличия большого количества белка.

При использовании данного метода в прибор для его осуществления помещаются полоски хромотографической или фильтровальной бумаги, смоченные определенным буферным раствором. Посередине каждой полоски делается карандашная отметка, в которую при помощи пипетки наносится одна капля изучаемого раствора белка. Затем прибор включают и через эти полоски пропускают электрический ток. Макромолекулы изменяют свой заряд в зависимости от величины рН буферного раствора. Если величина рН превышает ИЭТ, то наблюдается отрицательный заряд макромолекул, и наоборот.

Если рН равно ИЭТ, то макромолекулы становятся нейтрально заряженными. Через определенное время подача тока прекращается, полоски бумаги достаются из прибора и высушиваются, после чего пятна белка опрыскивают нингидрином для их проявления. ИЭТ устанавливают по буферному раствору полоски бумаги, где белковое пятно осталось там же, где была нанесена капля. При необходимости этот метод может быть применен и для тонкого фракционирования белков.

При нахождении в изоэлектрическом состоянии молекулы белков менее гидратированы, поэтому изоэлектрическую точку белка можно определить, используя метод по минимуму вязкости. Для его применения необходимо наличие вискозиметра. С помощью этого прибора определяют относительную вязкость буферных растворов. Молекулы белка, находящегося в изоэлектрическом состоянии, свернуты, поэтому самая небольшая вязкость будет у раствора, в котором его рН будет совпадать с ИЭТ.

На этом же свойстве основан метод, связанный с действием водоотнимающих средств. В качестве таких средств могут выступать ацетон, эфир или спирт. Выделение белков из соответствующих растворов потенциально происходит тем быстрее и полнее, чем полнее соответствует реакция среды ИЭТ. В изоэлектрической точке растворы белков неустойчивы.

Таким образом, существуют различные методы определения изоэлектрической точки белка. И ее определение должно выполняться в зависимости от имеющегося оборудования, материалов, количества белка.

В изоэлектрической точке белка силы отталкивания между белковыми частицами в макромолекуле ослабевают, благодаря чему происходи агрегация этих молекул и белок выпадает в осадок. Это свидетельствует о том, что в ИЭТ белок неустойчивый за счет потери заряда, который является фактором стабилизации водных белковых растворов. Если к белку добавить кислоту или основание, то молекулы перезаряжаются, белок осуществляет переход в раствор.

Таким образом, изоэлектрическая точка белка представляет собой значение реакции среды (рН), при котором в белковой молекуле отмечается равенство разнонаправленных (отрицательных и положительных) зарядов и равенство различных степеней (основных и кислотных) диссоциации. В данной точке белок теряет заряды и становится неустойчивым, вследствие чего выпадает в осадок. Молекула белка сворачивается, в то время, когда она несет в себе определенные заряды, она распрямлена в виде нити.

источник

Метод электрофореза является одним из самых распространенных, мощных и доступных методов исследования белков. Этот метод широко применяется как в научных исследованиях, так и при экспертизе качества продуктов питания и медицинских препаратах, а также в клинических лабораториях.

С помощью метода электрофореза производят:

1) анализ сложных смесей белков (в генетических исследованиях, при выделении и биотехнологической наработке белков)

2) обнаружение определенного белка (при проведении экспертизы, контроле биотехнологических процессов, клинических анализах)

3) определение молекулярной массы белков (в фундаментальных исследованиях)

4) исследование структуры белков (анализ расположения в биологических мембранах, взаимодействия с другими белками, изучение вопросов фолдинга белков)

В основе метода электрофореза лежит тот факт, что молекулы белков в водных растворах заряжены, то есть фактически представляют собой ионы. Как любая частица, несущая электрический заряд, молекулы белков способны перемещаться в электрическом поле. Таким образом, если к раствору белка приложить электрическое поле (опустить в него электроды и подать постоянное напряжение), то все молекулы белков начнут двигаться. Вследствие разницы в аминокислотном составе разные белки заряжены разноименно — положительно или отрицательно. По этой причине различные белки будут двигаться в разных направлениях: положительно заряженные – к катоду (отрицательный электрод), отрицательно заряженные – к аноду (положительный электрод). Кроме того, величина заряда белковых молекул также неодинакова – молекулы одних белков заряжены сильнее, других – меньше. Белки, молекулы которых имеют больший заряд, будут двигаться быстрее, чем те, что несут меньший заряд. Также на разделение белков методом электрофореза большое влияние оказывает размер молекул белков. Более крупные белки движутся медленнее, чем белки небольших размеров, вследствие того, что вода оказывает сопротивление перемещению (является вязкой средой).

По причине того, что аминокислотный состав белков и их масса различаются достаточно сильно, электрофорез позволят анализировать очень сложные смеси белков. Для решения различных исследовательских задач было предложено множество различных вариантов электрофореза.

4.9 Электрофорез по Леммли

Электрофорез по Леммли — один из методов электрофореза в геле, применяемый для анализа сложных белковых смесей. Данный метод позволяет разделять белки по их молекулярной массе. Также электрофорез по Леммли может быть использован для определения молекулярной массы белков.

Белки, подлежащие анализу методом электрофореза по Леммли, предварительно обрабатывают концентрированным 5%-ным раствором додецилсульфата натрия (рис. 15) при 100С в присутствии β-меркаптоэтанола. При этом белковые молекулы приобретают отрицательный заряд, значительно превышающий её собственный. При последующем разделении в полиакриламидном геле белковые зоны распределяются на электрофоре граммах в соответствие с логарифмом их молекулярной массы

Рис. 15. Додецилсульфата-анион, присутствует в растворах додецилсульфата натрия

В качестве геля для электрофореза по Леммли используются полиакриламидные гели, что позволяет достичь высокой разрешающей способности данного метода. Полиакриламидный гель представляет собой продукт сополимеризации акриламида (рис. 16)

и сшивающего агента N,N- метиленбисакриламда (рис. 17)

Рис. 17. N,N- метиленбисакриламид

В результате процесса сополимеризации образуется прочный, упругий, термостабильный гель, обладающий высокими механическими свойствами и химической инертностью. Пространственная структура геля представляет собой сетку со структурой (рис. 18). Пористость геля зависит от концентрации мономеров и её можно варьировать в значительных пределах от 40 до 0,1 нм (2-30% мономеров). Регулярно чередующиеся амидные группы делают гель гидрофильным. Отсутствие ионизирующихся групп существенно снижает эндосмос, а также взаимодействие белков со структурой геля.

Рис. 18. Структура полиакриламидного геля

В качестве катализатора реакции сополимеризации применяют источник свободных радикалов — персульфат аммония или калия. Катализатором реакции выступает N,N,N,N-тетраметилэтилендиамин.

Полимеризацию геля ведут в стеклянных трубочках длиной 70-100 мм с внутренним диаметром 5 мм либо плоских пластинах. Для этого в одной трубке последовательно полимеризуют два геля для электрофореза, располагая их один под другим: 1) верхний – крупнопористый гель в котором образец сжимается в узкую полосу (концентрирующий гель), 2) нижний — мелкопористый гель, в котором происходит разделение белковой смеси на компоненты под действием эффекта «молекулярного сита».

Для проведения электрофореза гелевыми столбиками соединяют расположенные друг над другом резервуары с буферами, в которые введены электроды и подают на электроды напряжение 40-800 вольт.

В качестве отчета о проделанной работе:

1. Зарисуйте структурные формулы додецилсульфата натрия, акриламида, N,N- метиленбисакриламида, структуру полиакриламидного геля

2. Зарисуйте расположение белковых полос, полученных в результате электрофореза по Леммли, сделайте вывод о составе выданного вам раствора белка (количество компонентов, примерная доля главных компонентов и их число, примерная доля минорных компонентов и их число)

Подготовить пробу белка для электрофореза. Для этого в эппендорф объемом 2 мл поместить 100 мкл раствора белка с концентрацией 4 мг/мл и добавить 100 мкл буфера пробы. Содержимое перемешать инжектированием.

Поместить пробирки в поплавок и поместить в водяную баню. Нагреть до кипения и кипятить 5 минут, затем охладить

Растворить навеску персульфата калия в 2,5 мл ДВ. Для этого внести автоматической пипеткой 2,5 мл ДВ и перемешивать инжектированием до полного растворения соли (растворение идет медленно)

Читайте также:  Чем отличается электрофорез от магнитотерапии

Собрать трубку для электрофореза и поместить её вертикально в штатив

В центрифужной пробирке приготовить смесь для разделяющего геля

Раствор Мономеров 1250 мкл

1,5 М Трис-HCl рН8,8 167 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

Смесь для разделяющего геля вносят в трубку для электрофореза тремя порциями по 800 мкл. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 15-20 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации слить воду с геля, остатки жидкости убрать с поверхности геля фильтровальной бумагой, скрученной в трубочку

В центрифужной пробирке приготовить смесь для концентрирующего геля

Раствор Мономеров 340 мкл

0,5 М Трис-HCl рН6,8 125 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

250 мкл смеси для концентрирующего геля вносят в трубку для электрофореза. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 5-10 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации геля с трубки снимаю заглушку и устанавливают трубки для электрофореза в катодную камеру прибора (рис. 19) так, чтобы граница концентрирующего и разделяющего геля была видна в верхней (катодной камере)

Рис. 19. Прибор для вертикального гель-электрофореза в трубках.

1- верхняя, анодная камера, 2 – нижняя, катодная камера, 3 – трубки с гелем для электрофореза, 4 – положительный электрод, анод, 5 — отрицательный электрод, катод.

Приготовить 1,2 л анодного буфера. Для этого разбавить исходный анодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л.

Заполнить анодную камеру анодным буфером. Поместить в камеру анод (красный провод). Поместить катодную камеру над анодной и зафиксировать её винтами. При этом нижние концы трубок должны быть погружены в буфер в нижней камере (анодный буфер).

Приготовить 1,2 л катодного буфера. Для этого разбавить исходный катодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л. заполнить катодную камеру катодным буфером. При этом концы трубок должны оказаться под слоем электродного буфера.

Промыть нижние и верхние концы трубок для удаления остатков растворов для полимеризации гелей и пузырьков воздуха.

60 мкл подготовленного раствора белка в эппендорфе смешивают со 180 мкл ДВ и перемешивают инжектированием. 200 мкл полученной смеси вносят в трубки для электрофореза, осторожно наслаивая на поверхность геля.

Включают напряжение 250 вольт, через 10 минут поднимают его до 300 вольт, а еще через 10 минут до 400.

Примерно через 40 минут, когда фронт бромфенолового синего пройдет практически всю трубку, напряжение выключают, внимают электрод из катодной камеры. Разбирают прибор и выливают катодный буфер. Затем вынимают трубки для электрофореза и выталкивают столбики геля из трубок стеклянным штоком. Концентрирующий гель отрезают скальпелем.

Разделяющий гель окрашивают коллоидным раствором кумасси бриллиантового голубого в течение 20 мин на кипящей водяной бане. Затем переносят окрашенный гель в кипящую воду и отмываю до проявления белковых полос.

Вопросы для самоподготовки

В чем практическое значение электрофореза?

Что можно установить с помощью электрофореза?

В чем суть метода электрофореза?

От каких параметров зависит скорость перемещения молекулы белка?

В чем особенность электрофореза по Леммли?

По какому параметру разделяются белки при проведении электрофореза по Леммли?

Вопросы к коллоквиуму по теме «Белки»

2. Элементный состав белков

3. Какие органические соединения называют аминокислотами, химические свойства аминокислот

4. Кислотно-основные свойства аминокислот (амфотерность аминокислот, биполярные ионы, кривые титрования)

5. Классификация аминокислот (биологическая, физико-химическая, химическая)

6. Физические свойства аминокислот, стереоконфигурация аминокислот

7. Специфические реакции на аминокислоты

8. Связь аминокислот в белках, пептидная связь – структура и свойства

9. Биуретовая реакция. Определение белка биуретовым методом.

10. Аминокислотный анализ. Методы хроматографии аминокислот.

11. Нингидриновая реакция. Практическое значение

12. Первичная структура белка. Методы установления первичной структуры белка

13. Вторичная структура белка, α-спираль, β-слой

14. Третичная и четвертичная структура белка

15. Химические связи, стабилизирующие структуру белка (первичную, вторичную, третичную и четвертичную)

16. Растворимость и осаждение белков. Силы удерживающие белок в растворе, условия осаждения белков.

17. Реакции обратимого и необратимого осаждения белков, их практическое значение.

18. Белки как носители электрических зарядов, кислотно-основные свойства белков, изоэлектрическая точка

19. Диализ. Электрофорез. Изоэлектрическое фокусирование

21. Выделение белков из тканей. Методы выделения и очистки белков

Использованная литература

The protein protocols handbook, 2 nd edition – edited by Walker J.M. – Humana press, 2002

Петров К.П. – Методы биохимии растительных продуктов – Киев: Вища школа, 1978.

Шапиро Д.К. – Практикум по биологической химии, 2-е изд. перераб. и доп. – Минск: Высшая школа, 1976

Практикум по биохимии: учебное пособие, 2-е изд. пререаб и доп. – под ред. Северина — М.: МГУ, 1989

Р.Досон, Д.Элиот и др. – Справочник биохимика, пер. с англ. – М.: Мир, 1991

Скурихин И.М., Нечаев А.П. – Все о пище с точки зрения химика: справочное издание. — М.: высшая школа, 1991

Степин Б.Д. — Техника лабораторного эксперимента в химии: учеб пособи для ВУЗов – М.: Химия, 1999

Химическая энциклопедия ТТ.1-5., гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1988-1998

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с) .

источник

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Из этих уравнений наиболее употребительным является уравнение Галлера:

,

где p — осмотическое давление раствора полимера; С — массо-объёмная концентрация ВМВ или, иначе, масса полимера, содер­жащаяся в единице объёма раствора; М – молярная масса ВМВ; R – универсальная газовая постоянная; Т – температура; b — т. н. вириальный коэффициент, учитывающий в суммарном виде гибкость макромолекул и их взаимодействие с растворителем и с другими макромолекулами.

Уравнение Галлера может быть преобразовано в уравнение прямой, не проходящей через начало координат:

.

В такой форме оно является основой осмометрического метода определения молярной массы высокомолекулярных веществ. Наряду с вискозиметрическим этот метод является одним из немногих основных методов, достаточно чувствительных и дающих небольшую ошибку при экспериментальном определении молярной массы ВМВ. Откладывая на графике экспериментально найденную зависимость p/С от С (рис. 10.4), можно экстраполяцией на ось ординат определить величину RT/М, из которой легко рассчитать молярную массу полимера.

Рис. Зависимость осмотического давления растворов

высокомолекулярных веществ от концентрации

Так можно определять, главным образом, молярные массы неполярных полимеров в органических растворителях. В случае же измерений осмотического давления водных растворов белков, полипептидов, полисахаридов и
т. п., следует помнить, что результаты могут быть искажены присутствием низкомолекулярных примесей, в особенности электролитов. Причём эти искажения могут быть связаны не только с наличием собственного осмотического давления примесных электролитов, но и с участием их в особого рода распределении по обе стороны полупроницаемой мембраны, — мембранном равновесии Ф. Дж. Доннана.

10.6.3. Мембранное равновесие

Если полупроницаемая мембрана разделяет два раствора, в одном из которых присутствуют молекулы или ионы, которые из-за своих размеров не могут диффундировать сквозь неё, это приводит к особому распределению ионов, способных к диффузии через мембрану. Такими мембранами могут быть мембраны осмометров, а также мембраны животных и растительных клеток, стенки кровеносных сосудов, кишечника и другие плёнки, имеющиеся в организме. Наиболее важным случаем является мембранное равновесие в присутствии растворимых белков. Как уже говорилось, белки в водном растворе присутствуют в виде цвиттер-ионов. Эти ионы неспособны проходить через клеточные мембраны, и с этой точки зрения могут быть названы недиализуемыми ионами. Ионы электролитов могут подвергаться диализу, т. е. свободно проходить через поры полупроницаемых мембран. Поэтому они называются диализуемыми ионами.

Рассмотрим мембранное равновесие на примере животной клетки, отделённой собственной оболочкой (мембраной) от межклеточной жидкости – раствора, содержащего низкомолекулярные электролиты. Допустим для простоты, что в межклеточной жидкости присутствует только один электролит, например, NaCl, а внутри клетки – только один белок. Так как в большинстве случаев белки являются в большей степени кислотами, чем основаниями, то недиализуемые макроионы, возникающие при их диссоциации, являются анионами (обозначим их Pr-, от protein – белок). Отщепляющиеся при диссоциации от макромолекул белка диализуемые ионы являются катионами. Природа этих катионов может быть различной, но для простоты примем, что это ионы Na+. Таким образом, внутри клетки до начала перераспределения имеются анионы белка и катионы натрия, а снаружи – ионы натрия и хлорид-ионы. Концентрации этих ионов до перераспределения будут равны:
внутри клетки СPr — = СNa+ = С1; снаружи клетки СNa+ = СCl-= С2.

В первую очередь через мембрану будут проникать анионы Cl-. Их первоочередное участие в перераспределении обусловлено большей разностью химических потенциалов по обе стороны мембраны. Для соблюдения электронейтральности вслед за анионами будут диффундировать катионы – ионы Na+. Ионы белка не могут проходить через мембрану и удержат эквивалентное число ионов Na+. Диффузия ионов будет продолжаться до установления равновесия.

Доннан показал, что главным условием такого равновесия является равенство произведений концентраций катионов и анионов, находящихся по обе стороны мембраны:

(индекс «вн» относится к ионам внутри клетки, индекс «нар» — к ионам снаружи неё).

Допустим, что снаружи в клетку проникло х моль хлорид-ионов и, соответственно эквивалентное количество х ионов Na+, что в сумме составляет х моль NaCl. Тогда равновесные концентрации из указанного выше условия равновесия (10.1) можно обозначить так:

Помня, что в общем случае внутри клетки может быть не один белок, а несколько, а снаружи её – тоже несколько различных электролитов, введём обозначения:

Подставляем эти значения концентраций в уравнение (10.1):

откуда получим уравнение Доннана:

.

Это уравнение показывает, что количество низкомолекулярного электролита, самопроизвольно прошедшего через клеточную мембрану внутрь клетки, находится в сложной зависимости от концентрации самого электролита снаружи клетки и от концентрации белка внутри клетки. (Следует помнить, что уравнение Доннана справедливо не только для одной изолированной клетки, но и для любого подобного случая распределения). В указанном виде уравнение применяется тогда, когда концентрации С1 и С2 соизмеримы друг с другом.

Уравнение Доннана является самосогласующимся, т. е. может изменяться в зависимости от соотношения концентраций С1 и С2. Так, при отсутствии в системе ионов белка или других недиализуемых ионов, т. е. когда
С1 = 0, уравнение принимает вид

,

т. е. в пределе низкомолекулярный электролит может равномерно распределиться по обе стороны мембраны. Это же соотношение получается и тогда, когда С1 7. Причём у каждого белка значение ИЭТ обычно соответствует рН среды, в которой функционирует белок. Отсюда следует, что белки проявляют наилучшую жизнедеятельность тогда, когда они находятся в изоэлектричсском состоянии. В частности, с этим связано буферное действие сред организма, поддерживающее необходимое для нормального функционирования белков значение рН среды.

10.7.1. Методы определения изоэлектрической точки белков

Изоэлектрическая точка — одна из важнейших характеристик белка. Все существующие методы её определения основаны на измерении свойств белков, связанных или с конформацией макромолекулы, или с их зарядом, при различных значениях рН. Во всех случаях готовится серия буферных растворов с различными значениями рН, в которые помещаются одинаковые количества исследуемого белка в виде раствора или в сухом виде.

Электрофоретический метод. Так как само выражение «изоэлектрическое состояние» говорит о равенстве числа положительных и отрицательных зарядов в амфиионах, ИЭТ можно определить с помощью электрофореза на бумаге, который проводится так. В прибор для электрофореза на бумаге вставляется несколько полосок фильтровальной или специальной хроматографической бумаги и каждая из них смачивается буферным раствором с определённым значением рН. На заранее отмеченное карандашом место в середине полосок пипеткой наносится капля раствора исследуемого белка. После этого прибор включается и через полоски бумаги с растворами проходит постоянный электрический ток.

В зависимости от рН буферного раствора макромолекулы изменяют свой заряд. В средах с рН > ИЭТ они заряжаются отрицательно:

NH3+ NH2

R + OH — « R

Читайте также:  Фонофорез и электрофорез в чем разница

Через какое-то время ток выключают, полоски бумаги высушивают и проявляют пятна белка, опрыскивая их раствором нингидрина. рН буферного раствора той полоски, на которой пятно белка осталось в том же месте, куда была нанесена капля, соответствует изоэлектрической точке белка.

Метод электрофореза может быть использован и для тонкого фракционирования белков. Так, например, можно разделить a-, b — и g-глобулины плазмы крови. поскольку каждый из них обладает своим значением ИЭТ, то степень их заряда в одном и том же буферном растворе будет различна. Поэтому каждая из этих фракций белков будет обладать своей скоростью движения в электрическом поле, что через определённое время приведёт к их разделению. Пятна каждой фракции, проявленные, например, с помощью люминесценции, вырезаются из полоски бумаги, вымываются соответствующим растворителем и при необходимости высушиваются.

В изоэлектрическом состоянии макромолекулы из-за минимального заряда обычно свернуты в клубки и наименее гидратированы. Это лежит в основе других методов, из которых наиболее надёжным и простым в исполнении является метод определения ИЭТ по минимуму вязкости. В этом случае с помощью вискозиметра измеряется относительная вязкость серии буферных растворов с добавлением одинакового количества белка. Из-за свёрнутости макромолекул белка, находящегося в изоэлектрическом состоянии, в наиболее плотные глобулы, наименьшей вязкостью будет обладать раствор с рН = ИЭТ.

Метод, связанный с действием водоотнимающих средств. Макромолекулы белков в изоэлектрическом состоянии наименее всего гидратированы. Поэтому выделение белков из раствора под действием водоотнимающих средств (например, спирт, ацетон в чистом виде или в присутствии нейтральных солей) происходит быстрее и полнее всего при рН, соответствующем изоэлектрической точке.

В принципе изоточка может быть определена и другими способами – по скорости застудневания, по степени набухания сухого белка и т. д. Однако эти методы не очень точны и требуют намного большего количества белка для исследования, что не всегда доступно.

10.8. Выделение ВМВ из растворов. Коацервация

Поскольку высокомолекулярные вещества в растворах диспергированы до отдельных макромолекул, устойчивость таких растворов аналогична устойчивости истинных растворов. Однако вследствие значительных размеров макромолекул при некоторых условиях они теряют устойчивость и при этом наблюдаются явления, внешне сходные с коагуляцией лиофобных золей.

Для разрушения раствора ВМВ прежде всего необходимо уменьшить лиофильность добавлением десольватирующих агентов. В качестве таких агентов могут применяться органические жидкости («нерастворители»). В большинстве случаев по отношению к водным растворам полярных полимеров нерастворителями являются смешивающиеся с водой полярные органические жидкости – спирт или ацетон. Добавление их к растворам ВМВ приводит к выпадению их в осадок. Однако в случае белков выделение из растворов «нерастворителями» часто сопровождается денатурацией, то есть необратимым изменением свойств

Другим классом десольватирующих агентов являются нейтральные,
т. е. не изменяющие рН при растворении, неорганические соли, например, NaCl, KCl, NH4NO3. При введении в растворы этих электролитов наблюдается высаливание — выделение ВМВ в виде новой фазы. Высаливание в отличие от коагуляции золей является процессом обратимым и происходит при добавлении значительного, соизмеримого с количеством ВМВ, количества высаливателя. Причиной высаливания служит уменьшение растворимости ВМВ из-за эффекта пересольватации. Однако многие белки, будучи гидратированными в очень высокой степени, не подвергаются высаливанию даже в насыщенных растворах солей. В таких случаях можно попытаться выделить белок при совместном действии какой-либо соли и спирта.

Высаливающим действием, как показал В. Гофмейстер (1888), обладают, главным образом анионы. По высаливающему действию наиболее употребительные в лабораторной практике анионы могут быть расположены в лиотропный ряд:

сульфат > цитрат > ацетат > хлорид > нитрат > роданид

Таким образом, чем лучше сольватируется (гидратируется) ион, тем лучшим высаливающим действием он обладает.

В некоторых случаях высаливание приводит не к полному выделению ВМВ из раствора, а к образованию капелек второй жидкой фазы — структурированной жидкости, приближающейся по свойствам к студню. Это явление называется коацервацией и характерно для многих белков и полисахаридов. Коацервация обычно происходит при определённых значениях рН среды, концентрациях ВМВ и электролита-высаливателя, а также соотношениях их концентраций. Концентрированная структурированная фаза называется коацерватом. Выделяется коацерват чаще всего в виде мельчайших коацерватных капель, по размерам соизмеримым с частицами микрогетерогенных систем. Соответственно эти капли обладают и многими сходными свойствами – молекулярно-кинетическими, электрическими, оптическими и др. При частичном снятии факторов устойчивости коацерватные капли могут собираться во флокулы или даже коалесцировать, в результате чего коацерват может образовать сплошной слой. В фармации коацервация, проводимая в присутствии нерастворимых или малорастворимых порошков, может быть использована при изготовлении микрокапсулированых лекарственных форм.

В теории происхождения жизни коацерватные капли, возникшие в первичном океане в местах с повышенной концентрацией полипептидов и полисахаридов, рассматриваются как первая стадия формирования примитивных живых организмов.

Выделение высокомолекулярных веществ из растворов с помощью выпаривания обычно не проводится. Это связано с термической неустойчивостью полимеров, которая может привести к денатурации белков, к деструкции и осмолению.

Во многих случаях, как при действии солей и других агентов, так и при изменении параметров – в первую очередь, концентрации и температуры, растворы высокомолекулярных веществ могут подвергаться застудневанию. Застудневание или желатинирование — потеря раствором ВМВ текучести и переход его в твёрдообразное состояние.

Процесс желатинирования можно представить себе следующим образом. Отдельные макромолекулы или макроионы, сталкиваясь между собой в процессе броуновского движения, притягиваются наименее сольватированными участками. Так как каждая макромолекула может участвовать в большом количестве таких контактов, образуется пространственная сетка (каркас), охватывающая весь объём раствора. В ячейках этого каркаса сольватационными и капиллярными силами удерживается жидкая среда. Внешним признаком застудневания служит утрата раствором текучести. Возникающая при застудневании система называется студнем. Каркас студней обладает заметной, иногда значительной прочностью.

Главными факторами, способствующими застудневанию, являются низкая температура и большая концентрация ВМВ. Причём, чем выше концентрация ВМВ, тем при более высокой температуре и более быстро будет происходить застудневание. Так, достаточно концентрированный раствор желатина может застыть уже при 30 оС, тогда как при варке обычных бульонов для этого требуется минусовая температура и продолжительное время. Полиэлектролиты — белки, полиакриловая кислота или полярные полимеры (крахмал, пектины) подвержены застудневанию в большей степени, чем, например, растворы неполярных ВМВ (таких, как каучук) в органических растворителях.

Присутствие в растворе электролитов влияет на скорость застудневания. Причём, как и в случае высаливания, это влияние оказывают анионы. Хорошо гидратирующиеся анионы, такие, как сульфат и ацетат, сильно ускоряют застудневание, а в присутствии тиоцианата (роданида), оно вообще не происходит. Действие таких анионов, как хлорид, иодид, нитрат, в общем, проявляется в меньшей степени, и содержащие их растворы застывают за время, соизмеримое с застыванием растворов без электролитов, но всё же несколько медленнее.

Возникновение подобных структур возможно и в некоторых коллоидных растворах, суспензиях и пастах с хорошо сольватированными частицами неправильной, в особенности вытянутой формы. В этих случаях принято говорить о гелеобразовании. В случае если причиной гелеобразования служит идущая в коллоидном растворе коагуляция, явление по предложению носит название коагуляционного структурообразования. Системы, образующиеся при таких процессах, называются гелями.

10.10. Пластическая вязкость. Уравнение Бингема

При приложении к структурированным системам – коацерватам, гелям со слабыми связями между элементами каркаса и т. п., — внешней механической нагрузки возможно разрушение каркаса. Это разрушение приводит к появлению текучести гелей и студней и может рассматриваться как составная часть тиксотропии, подробнее о которой будет сказано в п. 11.2.1.

При сравнительно малых равномерных нагрузках, когда время восстановления структурных элементов меньше времени их разрушения, иногда проявляется очень медленное вязкое течение — ползучесть. При ползучести в каждый данный момент времени лишь очень небольшая часть контактов между частицами разрушается, и сдвиг остальных гелеобразных масс проявляется в небольшой степени. Такое явление наблюдается, главным образом, в пастах и в гелях с непрочными связями между элементами структуры, например, в почвах, рыхлых грунтах и. т. п. При дальнейшем увеличении напряжения может в один момент разрушиться вся структура и в результате вязкость системы резко уменьшится. Течение таких систем осложняется турбулентностью, обусловленной присутствием обрывков первоначальной гелеобразной структуры, т. е. они являются неньютоновскими жидкостями.

Вязкое течение структурированных систем может быть описано уравнением Бингема, отличающимся от уравнения Ньютона наличием предела текучести q, — величины, характеризующей усилие, необходимое для пол­но­го разрушения пространственной структуры:

,

где F/S – напряжение сдвига, h‘ — пластическая вязкость.

Пластическая вязкость в отличие от динамической отражает все виды взаимодействия, препятствующие ньютоновскому (ламинарному) течению. Дело в том, что в жидкости, возникающей после превышения предела текучести, кроме молекул растворителя имеются молекулы и/или ионы, а также крупные и мелкие фрагменты пространственной сетки, вносящие в искажение движущихся слоёв потока.

Разжижением почвенных и грунтовых гелей при превышении допустимой нагрузки объясняется, в частности, возникновение таких разрушительных явлений природы, как оползни и сели.

Ранее (в п. 10.9) было описано застудневание растворов ВМВ. В его результате образуются студни, — структурированные системы полимер — растворитель, характеризующиеся отсутствием текучести. Студни могут возникать и при сильном набухании полимеров. При коагуляционном структурообразовании в коллоидных системах (золях, суспензиях, пастах) образуются подобные структурированные системы — гели. Так как в образовании и в свойствах студней и гелей много общего, понятия «гелеобразование» и «застудневание» (желатинирование) обычно употребляют в качестве синонимов. Аналогичным образом часто считается, что «гели» и «студни» также представляют собой одни и те же системы, хотя между ними и имеются заметные различия.

11.1. Классификация и применение гелей и студней

Студни являются гомогенными системами, структурный каркас в которых образован макромолекулами (макроионами) ВМВ, тогда как гели — гетерогенные системы, относимые к классу Т/Ж, каркас которых состоит из твёрдых частиц дисперсной фазы. Гели могут быть подвергнуты высушиванию, при котором твёрдый пространственный каркас теряет жидкую дисперсионную среду, но при этом сохраняет прежние объём и форму, а также прочность. Во многих случаях прочность гелеобразной структуры при высушивании или при прокаливании даже во много раз возрастает. Высушенный гель при погружении в воду или в другую жидкость может поглощать её, снова превращаясь в лиогель. Студни после высушивания теряют форму и объём, хотя при набухании могут снова приобрести студнеобразные свойства.

Гели с сохраняющейся в ячейках каркаса жидкой дисперсионной средой называются лиогелями. В зависимости от природы этой жидкой среды различают гидрогели (с водной средой), органогели (со средой на основе органических жидкостей, например, углеводородной, спиртовой и т. п.). Лиогели широко распространены в природе. Ими являются почвы, грунты, увлажнённые глины и аргиллиты. Типичным гидрогелем является минерал опал. Глиняное тесто, применяемое для изготовления керамической посуды, в том числе фарфоровой и фаянсовой, а также строительной керамики – кирпича, черепицы и т. п., цементный и известковый строительные растворы, смешанный с водой строительный гипс («алебастр») тоже представляют собой гидрогели. Гелеобразную структуру имеют кости и зубы человека и животных. Имеются гелеобразные лекарства, причём в их названиях обычно присутствует слово «гель», например, «Альмагель», «Маймагель», «Фосфалюгель» и т. п. Следует отметить, что эти лекарственные средства представляют собой гели с очень непрочной пространственной структурой, легко разрушающиеся при встряхивании.

Вместе с тем многие применяемые в быту чистящие, косметические и лекарственные средства, в рекламных целях называемые гелями, такие, как «Фастум-гель», «Вольтарен-гель» и др., на самом деле могут и не являться гелями, а представлять собой густые мази или высококонцентрированные эмульсии.

Гели, в результате высушивания потерявшие жидкую среду, называются аэрогелями или ксерогелями.

Это хрупкие микропористые тела, которые используются в качестве сорбентов и носителей (например, в хроматографии и катализе), а также поглотителей влаги. Примером широко используемых в химии и фармации поглотителей влаги могут служить силикагель (ксерогель кремниевой кислоты) и синтетические и природные цеолиты. Ксерогелями являются керамические материалы – кирпич, черепица, фарфоровые и фаянсовые изделия и др.

Студни отличаются от гелей эластичностью, а также способностью к набуханию. Поэтому их часто называют эластичными или набухающими гелями. Студни очень широко используются в самых разнообразных отраслях промышленности и в быту. Так, студнеобразную структуру имеют каучук, резина, целлулоид, различные клеи, желатин, светочувствительный слой фотоматериалов, цитоплазма, растительные и животные ткани, а также большинство продуктов пищевой промышленности — макаронные изделия, хлеб, различные желе и заливные блюда, сыры, кисломолочные продукты – простокваша, кефир, йогурты и т. п. Существуют студни, содержащие очень мало% и менее) сухого вещества, например, кисель, студень, простокваша, а наряду в ними и студни со значительным содержанием дисперсной фазы — сыры, макаронные изделия, основа хлеба и других выпечных изделий, заключённая между пузырьками воздуха.

Студни применяются в медицине и в фармации. Так, студни агар-­ага­ра и желатина используются в микробиологии в качестве питательной среды для микроорганизмов. Существуют желатиновые капсулы, облегчающие дозировку при приёме и маскирующие неприятный вкус многих лекарств. Эти капсулы, в особенности мягкие, имеют студнеобразное строение. При фармакологических исследованиях следует помнить, что проникновение лекарственных и биологически активных веществ в ткани и клетки подчиняется особенностям и закономерностям диффузии в студнях.

Читайте также:  Электрофорез с эуфиллином сколько процентов

11.2. Свойства гелей и студней

Поскольку студни и гели образуются из других систем – из растворов высокомолекулярных веществ или из сухих полимеров при их набухании, из коллоидных растворов, суспензий и паст, они во многом сохраняют присущие этим исходным системам свойства. Так, гомогенные студни, полученные из растворов ВМВ, обладают теми же оптическими свойствами, что и эти растворы – прозрачностью, опалесценцией и т. п. Напротив, гели, как и исходные суспензии и пасты непрозрачны. Хотя в природе имеются примеры относительно прозрачных или просвечивающих гелей, примером которых могут служить многие разновидности опала. Так как гели являются связнодисперсными системами, при прохождении через них постоянного электрического тока наблюдается электрооосмос, а при продавливании сквозь них воды можно зарегистрировать возникновение потенциала протекания. По той же причине связнодисперсности применительно к гелям, а также и к гомогенным студням неприменимы понятия седиментационной и агрегативной устойчивости. Седиментация частиц дисперсной фазы и макромолекул в них вообще невозможна, а агрегативная устойчивость была потеряна гелями уже на стадии их формирования. Следует только отметить, что наиболее прочные пространственные каркасы гелей образуются при полном снятии факторов агрегативной устойчивости. А если частицы сохраняют какие-либо из этих факторов – гидратированность, электрокинетический потенциал и др., — связь между частицами в каркасе соответственно будет менее прочной, вплоть до того, что многие гели при механических воздействиях способны к разрушению структуры.

Наряду с этим гели и студни обладают рядом специфических свойств, о которых говорится ниже.

Это свойство присуще в большей степени гелям, чем студням. Как уже говорилось, при гелеобразовании некоторые факторы устойчивости (например, сольватные оболочки, двойной электрический слой, адсорбционные слои поверхностно-активных веществ) могут быть не уничтожены полностью, а сняты лишь частично. Поэтому при механических воздействиях — вибрации, тряске, сильном давлении и др. — связи между элементами пространственной структуры таких гелей могут довольно легко разрушаться, что приводит к появлению текучести (см. п. 10.10). При снятии внешних воздействий структура геля вновь восстанавливается. Такой обратимый переход золь « гель или суспензия « гель и называется тиксотропией. Тиксотропными свойствами обладают строительные материалы (известковый раствор, незатвердевшие цемент и бетон), лакокрасочные материалы, консистентные смазки, многие пищевые продукты (сметана, простокваша, пюре и др.). Типичными тиксотропными системами являются болотный ил, зыбучие пески, плывуны. Многие тиксотропные грунты, в обычных условиях вполне твёрдые, способны разжижаться при нагрузках и вибрациях, связанных с работой машин, интенсивным движением транспорта и др., что может явиться причиной оползней.

источник

Изоэлектрическая точка- одна из важнейших характеристик белка. Все существующие методы её определения основаны на измерении свойств белков, связанных или с конформацией макромолекулы, или с их зарядом, при различных значениях рН. Во всех случаях готовится серия буферных растворов с различными значениями рН, в которые помещаются одинаковые количества исследуемого белка в виде раствора или в сухом виде.

Электрофоретический метод. Так как само выражение «изоэлектрическое состояние» говорит о равенстве числа положительных и отрицательных зарядов в амфиионах, ИЭТ можно определить с помощью электрофореза на бумаге, который проводится так. В прибор для электрофореза на бумаге вставляется несколько полосок фильтровальной или специальной хроматографической бумаги и каждая из них смачивается буферным раствором с определённым значением рН. На заранее отмеченное карандашом место в середине полосок пипеткой наносится капля раствора исследуемого белка. После этого прибор включается и через полоски бумаги с растворами проходит постоянный электрический ток.

В зависимости от рН буферного раствора макромолекулы изменяют свой заряд. В средах с рН > ИЭТ они заряжаются отрицательно:

NH3 + NH2R + OH — « R COO — COO — ,

а в средах с рН + NH3 + R + H + « R COO — COOH.

В растворе с рН, равным ИЭТ, макромолекулы белка приобретут нейтральный заряд. Таким образом, в электрическом поле макроионы будут перемещаться в различных направлениях, а нейтральные цвиттер-ионы останутся на месте в соответствии со схемой:

рН ИЭТ
перемещение к катоду смещение отсутствует перемещение к аноду

Через какое-то время ток выключают, полоски бумаги высушивают и проявляют пятна белка, опрыскивая их раствором нингидрина. рН буферного раствора той полоски, на которой пятно белка осталось в том же месте, куда была нанесена капля, соответствует изоэлектрической точке белка.

Метод электрофореза может быть использован и для тонкого фракционирования белков. Так, например, можно разделить a-, b- и g-глобулины плазмы крови. поскольку каждый из них обладает своим значением ИЭТ, то степень их заряда в одном и том же буферном растворе будет различна. Поэтому каждая из этих фракций белков будет обладать своей скоростью движения в электрическом поле, что через определённое время приведёт к их разделению. Пятна каждой фракции, проявленные, например, с помощью люминесценции, вырезаются из полоски бумаги, вымываются соответствующим растворителем и при необходимости высушиваются.

В изоэлектрическом состоянии макромолекулы из-за минимального заряда обычно свернуты в клубки и наименее гидратированы. Это лежит в основе других методов, из которых наиболее надёжным и простым в исполнении является метод определения ИЭТ по минимуму вязкости. В этом случае с помощью вискозиметра измеряется относительная вязкость серии буферных растворов с добавлением одинакового количества белка. Из-за свёрнутости макромолекул белка, находящегося в изоэлектрическом состоянии, в наиболее плотные глобулы, наименьшей вязкостью будет обладать раствор с рН = ИЭТ.

Метод, связанный с действием водоотнимающих средств. Макромолекулы белков в изоэлектрическом состоянии наименее всего гидратированы. Поэтому выделение белков из раствора под действием водоотнимающих средств (например, спирт, ацетон в чистом виде или в присутствии нейтральных солей) происходит быстрее и полнее всего при рН, соответствующем изоэлектрической точке.

В принципе изоточка может быть определена и другими способами – по скорости застудневания, по степени набухания сухого белка и т. д. Однако эти методы не очень точны и требуют намного большего количества белка для исследования, что не всегда доступно.

Дата добавления: 2014-01-04 ; Просмотров: 15214 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Полимеры, макромолекулы которых содержат ионогенные группы, называются полиэлектролитами. В зависимости от природы ионогенных групп различают поликислоты, полиоснованияи полиамфолиты(последние содержат как кислотные, так и оснóвные группы). В водном растворе из-за диссоциации полярных групп макромолекула полиэлектролита существует в форме полииона, окружённого эквивалентным количеством малых противоионов. Сильные полиэлектролиты, например, полиэтилендисульфокислота в водных растворах, полностью ионизованы. У слабых полиэлектролитов, например полиакриловой кислоты, степень диссоциации полярных групп, а значит, и величина заряда, зависит от рН.

Полиэлектролиты могут быть растворимыми в воде, и нерастворимыми, как, например, белок кератин или синтетические ионообменные смолы. Применяются полиэлектролиты в качестве ионообменников, ПАВ, структурообразователей, загустителей и др. К полиэлектролитам относятся и важнейшие биополимеры- нуклеиновые кислоты, полипептиды и белки. Кроме того, что белки являются одним из основных компонентов живых организмов и важнейшим пищевым продуктом, они используются и в фармации в качестве лекарственных средств, составных частей кровезаменителей, стабилизаторов коллоидных лекарственных форм и т. д.

Особенности поведения полиэлектролитов в растворах обусловлены наличием электростатических взаимодействий: отталкиванием одноимённо заряженных групп в макромолекуле и притяжением низкомолекулярных противоионов к полииону. Отталкивание усиливается при разбавлении бессолевых растворов полиэлектролитов водой вследствие уменьшения экранирования заряженных групп противоионами. В результате полиионы, свёрнутые в клубок, распрямляются.

Белкиот синтетических полиамфолитовотличаются сравнительно невысокой плотностью полярных групп в макромолекулах. Так как белки состоят из остатков ами­но­кислот, их полярные группы — это, главным образом, -NH3 + (оснóвные) и -СОО — (кислотные) группы. В зависимости от рН среды эти группы могут быть ионизованы в различной степени. Так, в кислой среде подавляется ионизация карбоксильных групп, и макромолекулы существуют в виде полимерных катионов. В щелочной среде, наоборот, подавляется ионизация аминогрупп, что приводит к возникновению полимерных анионов.

При определённых значениях концентрации водородных ионов количества ионизированных основных и кислотных групп могут оказаться равными, причём количество тех и других в каждой макромолекуле является минимальным. Такое состояние белка называется изоэлектрическим, а значение рН, при котором система находится в изоэлектрическом состоянии, называется изоэлектрической точкой(ИЭТ, ИТ, pI). В ИЭТ макромолекула белка представляет собой амфиион(цвиттер-ион), строение которого можно изобразить так:

В макромолекулах большинства белков содержится больше способных к диссоциации карбоксильных групп, чем аминогрупп. Поэтому белки, как правило, являются более сильными кислотами, чем основаниями, и их изоэлектрическая точка обычно меньше 7. Но имеются и такие белки, изоэлектрическая точка которых > 7. Причём у каждого белка значение ИЭТ обычно соответствует рН среды, в которой функционирует белок. Отсюда следует, что белки проявляют наилучшую жизнедеятельность тогда, когда они находятся в изоэлектричсском состоянии. В частности, с этим связано буферное действие сред организма, поддерживающее необходимое для нормального функционирования белков значение рН среды.

10.7.1. Методы определения изоэлектрической точки белков

Изоэлектрическая точка- одна из важнейших характеристик белка. Все существующие методы её определения основаны на измерении свойств белков, связанных или с конформацией макромолекулы, или с их зарядом, при различных значениях рН. Во всех случаях готовится серия буферных растворов с различными значениями рН, в которые помещаются одинаковые количества исследуемого белка в виде раствора или в сухом виде.

Электрофоретический метод. Так как само выражение «изоэлектрическое состояние» говорит о равенстве числа положительных и отрицательных зарядов в амфиионах, ИЭТ можно определить с помощью электрофореза на бумаге, который проводится так. В прибор для электрофореза на бумаге вставляется несколько полосок фильтровальной или специальной хроматографической бумаги и каждая из них смачивается буферным раствором с определённым значением рН. На заранее отмеченное карандашом место в середине полосок пипеткой наносится капля раствора исследуемого белка. После этого прибор включается и через полоски бумаги с растворами проходит постоянный электрический ток.

В зависимости от рН буферного раствора макромолекулы изменяют свой заряд. В средах с рН > ИЭТ они заряжаются отрицательно:

NH3 + NH2R + OH — « R COO — COO — ,

а в средах с рН + NH3 + R + H + « R COO — COOH.

В растворе с рН, равным ИЭТ, макромолекулы белка приобретут нейтральный заряд. Таким образом, в электрическом поле макроионы будут перемещаться в различных направлениях, а нейтральные цвиттер-ионы останутся на месте в соответствии со схемой:

рН ИЭТ
перемещение к катоду смещение отсутствует перемещение к аноду

Через какое-то время ток выключают, полоски бумаги высушивают и проявляют пятна белка, опрыскивая их раствором нингидрина. рН буферного раствора той полоски, на которой пятно белка осталось в том же месте, куда была нанесена капля, соответствует изоэлектрической точке белка.

Метод электрофореза может быть использован и для тонкого фракционирования белков. Так, например, можно разделить a-, b- и g-глобулины плазмы крови. поскольку каждый из них обладает своим значением ИЭТ, то степень их заряда в одном и том же буферном растворе будет различна. Поэтому каждая из этих фракций белков будет обладать своей скоростью движения в электрическом поле, что через определённое время приведёт к их разделению. Пятна каждой фракции, проявленные, например, с помощью люминесценции, вырезаются из полоски бумаги, вымываются соответствующим растворителем и при необходимости высушиваются.

В изоэлектрическом состоянии макромолекулы из-за минимального заряда обычно свернуты в клубки и наименее гидратированы. Это лежит в основе других методов, из которых наиболее надёжным и простым в исполнении является метод определения ИЭТ по минимуму вязкости. В этом случае с помощью вискозиметра измеряется относительная вязкость серии буферных растворов с добавлением одинакового количества белка. Из-за свёрнутости макромолекул белка, находящегося в изоэлектрическом состоянии, в наиболее плотные глобулы, наименьшей вязкостью будет обладать раствор с рН = ИЭТ.

Метод, связанный с действием водоотнимающих средств. Макромолекулы белков в изоэлектрическом состоянии наименее всего гидратированы. Поэтому выделение белков из раствора под действием водоотнимающих средств (например, спирт, ацетон в чистом виде или в присутствии нейтральных солей) происходит быстрее и полнее всего при рН, соответствующем изоэлектрической точке.

В принципе изоточка может быть определена и другими способами – по скорости застудневания, по степени набухания сухого белка и т. д. Однако эти методы не очень точны и требуют намного большего количества белка для исследования, что не всегда доступно.

источник