Меню Рубрики

Метод капиллярного электрофореза нитраты

Владельцы патента RU 2554799:

Изобретение относится к аналитической химии азота, в частности к определению общего азота в сельскохозяйственном сырье и продуктах его переработки. Способ характеризуется тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм 3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, причем общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования — 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм. Достигается повышение экспрессности, достоверности и информативности анализа. 6 пр., 1 табл., 2 ил.

Изобретение относится к аналитической химии азота, в частности к способам определения общего азота в сельскохозяйственном сырье и продукции переработки.

Азот занимает четвертое место по распространенности в биосфере после водорода, углерода и кислорода и входит в состав белков, нуклеиновых кислот, хлорофилла, ферментов, большинства витаминов и других органических азотистых соединений, которые играют важную роль в процессах обмена веществ растений. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом нитраты аммонийных солей, при недостатке азота у растений уменьшается содержание зеленых пигментов, бледнеют листья, замедляется рост, листья становятся более тонкими.

Определение общего азота основано на окислении органических форм, содержащих азот, и последующем их анализе в виде соединений аммония. Для анализа применяют многочисленные модификации химических методов определения азота по Кьельдалю и Дюма, азотные (CHN) анализаторы, хроматографические, спектрофотометрические и другие методы.

Известен способ определения нитрат-ионов и некоторых других анионов методом капиллярного электрофореза. Использованы следующие условия разделения на системе капиллярного электрофореза: водный раствор ведущего электролита — 0,05 М оксид хрома, 0,1 М диэтаноламин, 0,01 М гексадецилтриметиламмоний гидроксид (ЦТА-OH), 0,025 М глюконат кальция; отрицательное напряжение 17 кВ, длина волны детектирования — 254 нм, эффективная длина капилляра 0,5 м, внутренний диаметр 75 мкм. Нейтральные органические соединения не мешают определению, допускается присутствие до 10 мг/дм 3 двухосновных органических кислот и до 3 мг/дм 3 перхлорат и формиат-ионов. Диапазон измеряемых концентраций анионов составляет 5-50 мг/дм 3 . При этом необходимо кислотность анализируемой среды регулировать аммиаком, либо уксусной кислотой, чтобы обеспечить условия работы электролита [Методика М 01-30-2003 Методика выполнения измерения массовых концентраций хлорид-ионов, нитрит-ионов, сульфат-ионов, нитрат-ионов, фторид-ионов и фосфат-ионов в пробах природных, питьевых и очищенных сточных вод с применением системы капиллярного электрофореза «Капель». — С-Петербург, 2003. — 34 с.].

Недостатки: данная методика не позволяет определить содержание общего азота в испытуемых образцах и пригодна лишь для определения кислотных форм производных азота, кроме того, методика обладает небольшим линейным диапазоном для определения нитрат и нитрит-ионов, что будет требовать многократного разбавления пробы и неизбежно повлечет искажение результатов измерений в реальных образцах и не будет обеспечивать стабильность количественных результатов. Следует отметить, что определению мешают перхлорат-ионы, следовательно, хлорная кислота, являющаяся одним из самых сильных окислителей, не может использоваться в процессе подготовки пробы. Применяемому для разделения составу электролита присуща нестабильность и образование осадков, что негативно сказывается на результатах количественного анализа.

Наиболее близким к заявляемому способу является способ определения катионов аммония и некоторых других щелочных металлов в вине методом капиллярного электрофореза на приборе капиллярного электрофореза серии «КАПЕЛЬ», оборудованный ультрафиолетовым детектором с длиной волны лампы 254 нм и кварцевым капилляром, длиной 0,5 м до детектора, внутренним диаметром 75×10 -6 м, с использованием электролита, состоящего из смеси растворов бензимидазола, 18-краун-эфира-6, винной кислоты [Якуба Ю.Ф. Применение капиллярного электрофореза для определения катионов в винах специальных технологий // Заводская лаборатория. Диагностика материалов. — 2006. — Т.72. — №4. — С.11-15].

Недостатки: способ не достаточно приспособлен для определения содержания общего азота в виде иона аммония: не позволяет дополнительно определять нитратные и нитритные формы азота, кроме того, состав электролита не приспособлен для анализа образцов после кислотного гидролиза, а также растворов, содержащих сложную солевую матрицу.

Задачей изобретения является эффективное определение общего азота методом капиллярного электрофореза, обеспечение экспрессных и достоверных количественных результатов при минимальных затратах на выполнение анализа.

Техническим результатом при использовании предлагаемого изобретения является экспрессность и достоверность количественного определения общего азота методом капиллярного электрофореза с применением доступных реактивов для проведения анализа и с использованием коэффициента пересчета на общий азот из различных соединений: аммоний — 0,778, нитрат-ионов — 0,226, нитрит-ионов — 0,30. Полученные после пересчета данные суммируют и таким образом получают содержание общего азота.

Технический результат достигают за счет того, что способ предусматривает термическое кислотное разложение пробы растительного образца, позволяющее обеспечить перевод соединений азота в ион аммония, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм 3 , центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, отличается тем, что для определения аммонийного азота используют водный раствор ведущего электролита, содержащий 0,3% бензимидазол, 0,25% 18-краун-эфир-6, 0,02% сульфат натрия при положительной полярности напряжения и длине волны детектирования — 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего 0,1% хромата калия и 0,4% уротропина, 0,01% Трилона Б при отрицательной полярности напряжения и длине волны детектирования — 254 нм. Полученные после пересчета данные суммируют и таким образом получают содержание общего азота в испытуемом образце.

Способ отличается тем, что с целью повышения достоверности анализа выполняют определение аммонийного азота, используя водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительной полярности напряжения и остаточных нитратных форм азота, используя водный раствор ведущего электролита, состоящий из хромата калия, уротропина, Трилона Б при отрицательной полярности напряжения.

Поставленная задача решается за счет того, что свойства ведущего электролита и комбинирование полярности напряжения позволяют исключить из процесса анализа многостадийную сложную пробоподготовку, избежать значительной кратности разбавления анализируемых проб и выполнить достоверный анализ в присутствии больших концентраций фосфат, хлорид и сульфат ионов, содержащихся в растительном сырье.

Преимущества заявляемого способа заключаются в использовании нетоксичных и доступных реактивов при осуществлении анализа на системах капиллярного электрофореза, например, серии «Капель», обеспечении объективности и достоверности анализа реальных проб, стабильности во времени состава ведущего электролита.

Использование предлагаемой совокупности существенных признаков, изложенных в формуле изобретения, позволяет достичь желаемого технического результата — объективного и экспрессного определения массового содержания общего азота как в градуировочных растворах, так и в пробах растительного сырья и продукции переработки.

Примеры конкретного выполнения.

Пробу измельченной виноградной лозы сорта винограда Каберне массой 0,50 г помещали в стакан объемом 50 см 3 , добавляли 10 см 3 смеси 2:1 30%-ной перекиси водорода и концентрированной уксусной кислоты (надуксусную кислоту), переносили в вытяжной шкаф и медленно нагревали на плитке до кипения смеси, не допуская вспенивания и разбрызгивания. Процесс вели до прекращения разложения перекиси водорода. После этого нагрев останавливали и пробу охлаждали в естественных условиях, количественно переносили в контейнер СВЧ-минерализатора «Минотавр-1», добавляли 5 см 3 хлорной кислоты и проводили окислительное разложение пробы в режиме под давлением, после этого охлаждали. Затем содержимое контейнера количественно переносили в мерную колбу емкостью 50 см 3 и доводили дистиллированной водой до метки. В данных условиях разложения все формы соединений азота в биологических объектах разрушаются и переходят в аммоний. Отбирают аликвоту для анализа, при необходимости регулируют кислотность среды 0,1 н. натриевой щелочью до слабокислой (pH 4,5-5,5) и выполняют анализ. Суммарное разбавление исходной пробы составляет 100 раз, что учитывали в количественных расчетах.

Анализ осуществляли в следующих условиях. Для определения аммонийного азота: система капиллярного электрофореза с источником питания положительной полярности, например, серии «Капель», оборудованная фотометрическим детектором с установленной длиной волны 254 нм, кварцевым капилляром внутренним диаметром 75 мкм, эффективной длиной 0,5 м; отрицательное напряжение на капилляре 12 кВ; рекомендуется термостатирование капилляра при +24°C; ввод пробы — пневматический — 30 мБар в течение 5 секунд; время анализа — 5 мин. Для проведения анализа используют водный раствор ведущего электролита следующего состава: 0,3% бензимидазол, 0,25% 18-краун-эфир-6, 0,02% сульфат натрия. Срок хранения ведущего электролита не более трех суток.

Для определения нитратно-нитритного азота: система капиллярного электрофореза с источником питания отрицательной полярности, например, серии «Капель», оборудованная фотометрическим детектором с установленной длиной волны 254 нм, кварцевым капилляром внутренним диаметром 75 мкм, эффективной длиной 0,5 м; отрицательное напряжение на капилляре 14 кВ; рекомендуется термостатирование капилляра при +24°C; ввод пробы — пневматический — 30 мБар в течение 5 секунд; время анализа — 15 мин. Для проведения анализа используют водный раствор ведущего электролита следующего состава: 0,1% хромата калия и 0,4% уротропина, 0,01% Трилона Б. Срок хранения ведущего электролита не более трех суток.

Контролем служило определение общего азота в этой же пробе в форме иона аммония согласно способу-прототипу.

Аналогично примеру 1, кроме того, что пробоподготовке подвергали высушенные измельченные листья груши сорта Киффер.

Аналогично примеру 1, кроме того, что пробоподготовке подвергали сухое виноградное вино в количестве 1 см 3 .

Аналогично примеру 1, кроме того, что пробоподготовке подвергали яблочное пюре.

Аналогично примеру 1, кроме того, что пробоподготовке подвергали измельченные орехи фундука.

Аналогично примеру 1, кроме того, что пробоподготовке подвергали яблочный сок в количестве 1 см 3 .

Электрофореграмма определения аммонийного азота в подготовленной пробе лозы винограда показана на рисунке 1, нитратного и нитритного азота на рисунке 2.

Полученные результаты, характеризующие способ определения общего азота отражены в таблице.

Таблица
Результаты определения общего азота в исследуемых объектах, мг/кг
Пример Предлагаемый способ Прототип
1 2400 1640
2 2840 5200
3 290 490
4 390 520
5 2100 3500
6 190 140

Анализ полученных результатов показал, что:

В случае анализа вина (пример №3) и фундука (пример №5) завышение результатов определения общего азота согласно способу-прототипу составляет 80% в сравнении с результатами предлагаемого способа. Это связано для вина — с низким содержанием соединений азота, а для орехов фундука — значительным содержанием жиров в пробе. Заниженные результаты согласно способу-прототипу, полученные при определении общего азота для проб листьев груши (пример №2) и пюре (пример №4), связаны с необходимостью разбавления анализируемых проб. Искажение результатов определения общего азота в пробе яблочного пюре связано с нестабильностью состава ведущего электролита, используемого в способе-прототипе.

Предлагаемый способ практически лишен данных недостатков — для корректного анализа требуется разбавление проб в ограниченное число раз, не сказывается влияние мешающих анионов (хлоридов, ацетатов, сульфатов, перхлоратов и других), водные растворы ведущих электролитов, используемые для анализа как в положительной, так и для отрицательной полярности, стабильны во времени и не способствуют прогрессивному загрязнению внутренней поверхности капилляра. При реализации способа получены количественные результаты определения массовой концентрации общего азота, превосходящие по своему качеству прототип.

Рисунок 1 — электрофореграмма определения аммонийного азота в подготовленной пробе лозы, пик №1 — аммоний.

Рисунок 2 — электрофореграмма определения нитратного и нитритного азота в подготовленной пробе лозы, пик №1 — нитрат-ион, №2 — нитрит-ион.

Способ определения общего азота в растительных образцах, характеризующийся тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм 3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, отличающийся тем, что общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования — 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм.

источник

1 Н.В. Комарова Я.С. Каменцев ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО ИСПОЛЬЗОВАНИЮ СИСТЕМ КАПИЛЛЯРНОГО ЭЛЕКТРОФОРЕЗА «КАПЕЛЬ» Санкт-Петербург 2008

2 УДК ББК П69 Комарова Н. В., Каменцев Я. С. Практическое руководство по использованию систем капиллярного электрофореза «КАПЕЛЬ» СПб.: ООО «Веда», с. Тираж 2000 экз. (доп. тираж) Книга представляет собой практическое руководство по использованию систем капиллярного электрофореза «Капель», первых и единственных серийно выпускаемых в России приборов для реализации различных вариантов современного инструментального метода капиллярного электрофореза. Материал книги включает физико-химические основы метода, его аналитические возможности, описание аппаратуры. На примере методик, разработанных специалистами фирмы «Люмэкс», описаны стратегии разработок с указанием методических особенностей и наших практических рекомендаций. Значительное место в руководстве отведено примерам использования метода капиллярного электрофореза в различных областях. Особое внимание уделено вопросам подготовки капилляра и оценке его работоспособности. Книга написана ведущими специалистами по капиллярному электрофорезу на — уч но-производственной фирмы «Люмэкс» с привлечением материалов, наработанных пользователями систем капиллярного электрофореза «Капель» в нашей стране и за рубежом. Книга предназначена, в первую очередь, для инженеров-химиков и лаборантов аналитических лабораторий, только приступающих к изучению или уже использующих в своей ежедневной практике приборы серии «Капель» и разработанные для них методики. Она может быть полезна также исследователям и специалистам, областью интересов которых являются методы разделения и их применение для анализа объектов окружающей среды, пищевых продуктов, лекарственных препаратов, биопроб и т. д.; а также тем, кто занят поиском новых областей использования метода капиллярного электрофореза. Авторы: Н. В. Комарова, Я. С. Каменцев Оглавление Предисловие. 3 Список принятых терминов и сокращений. 5 Введение Глава 1. Физико-химические основы метода капиллярного электрофореза Глава 2. Основные варианты капиллярного электрофореза Глава 3. Аппаратура Общее устройство систем капиллярного электрофореза ы Источники высокого напряжения Детекторы Системы сбора и обработки данных Автосемплеры Системы термостабилизации Глава 4. Эффективность, чувствительность, разрешение и селективность в капиллярном электрофорезе Эффективность разделения Чувствительность метода Разрешение и селективность разделения Глава 5. Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ Качественный анализ. Характеристики миграции/удерживания Количественная обработка результатов анализа Глава 6. Объекты для анализа методом капиллярного электрофореза. Подготовка пробы ISBN ООО «Люмэкс», 2006 ООО «Веда», 2006 Глава 7. Области применения метода капиллярного электрофореза и примеры использования систем КЭ «Капель» Анализ объектов окружающей среды Комбикормовая промышленность Пищевая промышленность Ветеринария Фармация Клиническая биохимия Криминалистическая экспертиза Технологические задачи Некоторые методические возможности Возможности прибора. 149

Читайте также:  Противопоказания для физиопроцедур электрофорез

3 Система капиллярного электрофореза «Капель» 3 Глава 8. Некоторые аналитические приложения метода капиллярного электрофореза, разработанные фирмой «Люмэкс» Анализ ионного состава воды Определение неорганических катионов Определение неорганических анионов Одновременное определение катионов калия, натрия, магния, кальция и анионов хлорида и сульфата в водных средах с использованием электроинжекционного анализатора «Капель-103РЕ» Анализ безалкогольных, слабоалкогольных и алкогольных напитков (соков, водок, вин и виноматериалов, пива, бренди и др.) Определение кофеина, аскорбиновой кислоты, консервантов (сорбиновой и бензойной кислот) и подсластителей (сахарина, аспартама и ацесульфама К) Определение органических кислот Определение синтетических красителей Анализ гербицидов классов феноксикарбоновых кислот и симметричных триазинов Анализ кормов, комбикормов, сырья для их производства, премиксов Анализ аминокислот Анализ свободных форм водорастворимых витаминов Глава 9. Общие рекомендации по работе с системами капиллярного электрофореза, возможные трудности и пути их преодоления Подготовка капилляра к работе, проверка его кондиционного состояния, хранение, пути восстановления работоспособности, замена Подготовка буферных и анализируемых растворов Возможные трудности при работе с системами капиллярного электрофореза «Капель» и программами сбора данных, причины и способы устранения Приложения А. Хорошая лабораторная практика Б. Тестирование систем капиллярного электрофореза «Капель»: проверка работоспособности прибора, контроль качества подготовки капилляра В. Ручная промывка капилляра с помощью медицинского шприца Предисловие С начала 80-х годов XX века получил становление и активное развитие новый инструментальный метод, относящийся к комбинированным методам разделения и анализа капиллярный электрофорез. Фирма «Люмэкс» с 1996 года является первым и до сих пор единственным производителем серийных систем капиллярного электрофореза в СНГ. Следуя традиции предлагать к прибору методическое обеспечение, первыми были разработаны методики анализа катионного и анионного состава водных объектов. Совершенствуя и наращивая потенциал приборов «Капель», мы не забывали также о расширении областей применения этого относительно нового в мире и абсолютно нового на тот момент в России инструментального метода анализа. Эта цель достигалась как в лаборатории нашей фирмы, так и за ее пределами: в исследовательских и производственных лабораториях организаций, сделавших ставку на метод КЭ и на выпускаемую нами аппаратуру. Был накоплен достаточно большой материал, позволявший оценить возможности использования капиллярного электрофореза в самых разных областях. Полученные результаты в 2001 году были представлены нами в сборнике «Система капиллярного электрофореза. Основы метода. Аппаратура. Примеры использования систем капиллярного электрофореза Капель-103, -104, -105». За последние пять лет фирма «Люмэкс» значительно расширила круг пользователей приборов «Капель», провела модернизацию имеющегося модельного ряда систем капиллярного электрофореза и выпустила новые модификации, в том числе управляемые от компьютера. Нами были усовершенствованы методики анализа ионного состава воды, разработаны новые методики определения (аминокислот, витаминов, органических кислот, красителей и др.), накоплены материалы, демонстрирующие широкие аналитические возможности метода. Безусловно, все эти годы мы поддерживаем тесную связь с нашими коллегами, которые используют приборы «Капель» для решения рутинных задач по аттестованным методикам, а также для научных и прикладных исследований. При этом мы понимаем, что пользователями «Капелей» могут быть как начинающие аналитики, так и опытные исследователи, но все они, безусловно, нуждаются в литературе по капиллярному электрофорезу, которой на русском языке все еще непростительно мало. Приступая к написанию этой книги, авторы ставили перед собой 3 цели. Во-первых, нам хотелось в доступной форме дать представление о научных основах капиллярного электрофореза, что послужило бы фундаментом для понимания решаемых с его помощью практических задач. Во-вторых, на конкретных аналитических примерах, в основе которых лежат разработанные фирмой методики, продемонстрировать стратегию разработки каждого из анализов с указанием методических особенностей и наших практических рекомендаций. В-третьих, привести многочисленные (но далеко не все возможные) примеры практического использования метода, реализованные на системах капиллярного электрофореза «Капель».

4 4 Фирма аналитического приборостроения «Люмэкс» Система капиллярного электрофореза «Капель» 5 Авторы выражают признательность своим коллегам Соломоновой А. П., Ши ря еву А. В., Ивановой И. В., Адамсон В. Г., Морозовой О. В., Гремякову А. И., Лебедеву М. Ю., Шпаку А. В., Окуню В. М. за помощь в подготовке глав 7 и 8. Мы благодарны также Дружихиной В. М. и Родионенко Е.В. за подготовку материалов к печати, Бурлешину А.В. за внимательное прочтение материалов и высказанные замечания. Нам хотелось бы особенно поблагодарить наших коллег из других организаций, любезно предоставивших свои материалы для этого издания, и пожелать им дальнейших успехов в продвижении метода капиллярного электрофореза. Наталья Викторовна Комарова Ярослав Сергеевич Каменцев Список принятых терминов и сокращений ный электрофорез, являясь относительно молодым методом разделения и анализа, поначалу заимствовал большую часть терминов из наиболее близкого сепарационного метода ВЭЖХ. Со временем, учитывая основной принцип разделения в КЭ электромиграционный, была сформирована собственная терминологическая база метода капиллярного электрофореза, которая с 2002 г. рекомендована к использованию ИЮПАК. В этом разделе мы приведем лишь те основные термины и сокращения, которые будут активно использоваться в данном Практическом руководстве. В связи с тем, что подавляющее большинство публикаций по КЭ продолжает выходить на английском языке, мы приведем наряду с русскими названиями английские общепринятые эквиваленты. Термины Время миграции t м (migration time, t m ) время, необходимое компоненту для прохождения им эффективной длины капилляра (, L eff ) от зоны ввода пробы (начала капилляра) до зоны детектирования. Электроосмотический поток ЭОП (electroosmotic flow, EOF) течение жидкости в капилляре под действием приложенного электрического поля. Время, необходимое жидкости для преодоления эффективной длины капилляра вследствие возникающего ЭОП, называют временем ЭОП (t эоп, t eof ) и экспериментально определяют из электрофореграммы (electropherogram) по времени миграции нейтрального компонента маркера ЭОП. Подвижность ЭОП µ эоп (electroosmotic mobility, µ eof ) представляет собой отношение скорости ЭОП к напряженности электрического поля. Скорость ЭОП (electroosmotic velocity, v eof ) положительна при направлении движения жидкости от входного участка капилляра к детектору и отрицательна при обратном направлении. Скорость ЭОП вычисляют как: v эоп = /t эоп. Напряженность электрического поля представляет собой отношение приложенной разности потенциалов (U ) к общей длине капилляра (L общ, L tot ). Таким образом, подвижность ЭОП вычисляют из экспериментальных данных: µ эоп = L общ х /t эоп хu. Традиционно при расчете подвижностей длину капилляра выражают в сантиметрах, время миграции в секундах, а разность потенциалов в вольтах. Примечание. Время миграции как параметр качественного анализа принято выражать в минутах, однако для скоростных анализов, общее время которых не превышает 2 3 минут, время миграции приводят в секундах. Электрофоретическая подвижность частицы µ эф (electrophoretic mobility, µ ep ) по аналогии с предыдущей величиной представляет собой отношение электрофоретической скорости частицы к напряженности электрического поля и может быть вычислена: µ эф = L общ х /t м хu. В отличие от µ эоп электрофоретическую подвижность частицы нельзя определить непосредственно из электрофореграммы, поскольку время миграции частицы t м в

5 6 Фирма аналитического приборостроения «Люмэкс» Система капиллярного электрофореза «Капель» 7 этом случае представляет собой сумму времен миграции собственно частицы и маркера ЭОП. Из эксперимента можно найти так называемую общую подвижность, которая выражается (при положительной скорости ЭОП): µ общ = µ эоп +µ эф. Зная из эксперимента µ общ и µ эоп можно легко рассчитать µ эф. ный электрофорез КЭ (Capillary Electrophoresis, CE) метод разделения, реализуемый в капиллярах и основанный на различиях в электрофоретических подвижностях заряженных частиц как в водных, так и в неводных буферных электролитах. ные растворы (ведущие электролиты, рабочие буферы, background electrolyte, run buffer) могут содержать добавки (например, макроциклы, органические растворители, полимеры и др.), которые способны взаимодействовать с анализируемыми частицами и изменять их электрофоретическую подвижность. Примечание 1. Этот метод известен также как капиллярный зонный электрофорез (Capillary Zone Electrophoresis, CZE). Нейтральные компоненты не могут быть разделены этим методом, все они мигрируют в зоне ЭОП. Примечание 2. Использование термина капиллярный электрофорез в качестве общего термина для всех капиллярных электромиграционных методов не рекомендуется, поскольку многие из этих методов (капиллярный гель-электрофорез, капиллярный аффинный электрофорез, капиллярная изоэлектрическая фокусировка, ка пил лярный изотахофорез, мицеллярная электрокинетическая хроматография, мик ро эмульсионная электрокинетическая хроматография, капиллярная электрохро матография) основаны на отличных от КЭ принципах разделения. Мицеллярная электрокинетическая капиллярная хроматография (Micellar Electrokinetic Capillary Chromatography, MECC) метод разделения, основанный на комбинации электрофоретического и хроматографического принципов разделения. В состав буферного раствора вводят поверхностно-активное вещество, которое при определенных концентрациях формирует псевдостационарную мицеллярную фазу, и компоненты пробы распределяются между этой фазой и фазой буферного раствора согласно их гидрофобности. Примечание 1. Этот метод также называют мицеллярной электрокинетической хроматографией МЭКХ (Micellar Electrokinetic Chromatography, MEKC). Примечание 2. Время миграции мицеллы (migration time of the micelles, t mc ) экспериментально определяют как время миграции компонента, полностью удерживаемого мицеллярной фазой. Маркером мицелл, например, является судан 3. Сокращения Сокращение 2М-4Х 2,4-Д 2,4-ДМ 2,4-ДП 2,4-ДХФ 2,4,5-Т АПАВ АК БИА ВЭЖХ ГК ДДСН ДЭА ДЭС и.э.т. КЗЭ ККМ КПАВ КЭ МВИ МС МЦ МЭКХ ПЗУ ТФЭ ФИТЦ ФКК ФТГ ФТК-производные Полное название 2-метил-4-хлорфеноксиуксусная кислота 2,4-дихлорфеноксиуксусная кислота 2,4-дихлорфеноксимасляная кислота 2,4-дихлорфеноксипропионовая кислота 2,4-дихлорфенол 2,4,5-трихлорфеноксиуксусная кислота анионное поверхностно-активное вещество аминокислоты бензимидазол высокоэффективная жидкостная хроматография гуминовые кислоты додецилсульфат натрия диэтаноламин двойной электрический слой изоэлектрическая точка капиллярный зонный электрофорез критическая концентрация мицеллообразования катионное поверхностно-активное вещество капиллярный электрофорез методика выполнения измерений масс-спектрометрия макроцикл мицеллярная электрокинетическая хроматография постоянное запоминающее устройство твердофазная экстракция фенилизотиоцианат феноксикарбоновые кислоты фенилтиогидантоин фенилтиокарбамильные производные

6 8 Фирма аналитического приборостроения «Люмэкс» Система капиллярного электрофореза «Капель» 9 ФУК феноксиуксусная кислота t м время миграции ЦД циклодекстрин Thr треонин ЦТАБ цетилтриметиламмония бромид Trp триптофан ЦТАОН цетилтриметиламмония гидроксид Tyr тирозин ЭДТА этилендиаминтетрауксусная кислота (и ее соли) U разность потенциалов ЭОП электроосмотический поток Val валин Ala аланин W 1/2 ширина пика на половине высоты Arg аргинин фактор селективности Asn аспарагин межфазная разность потенциалов Asp аспарагиновая кислота диэлектрическая константа Cys-Cys цистин дзета-потенциал D коэффициент диффузии вязкость раствора Gln Glu Gly His ID Ile k’ L общ Leu Lys Met N Phe pk a Pro q r R s Ser глутамин глутаминовая кислота глицин гистидин внутренний диаметр капилляра изолейцин фактор емкости общая длина капилляра эффективная длина капилляра лейцин лизин метионин эффективность фенилаланин константа диссоциации пролин заряд частицы радиус частицы разрешение соседних пиков серин µ общ общая подвижность частицы µ эоп подвижность электроосмотического потока µ эф электрофоретическая подвижность частицы

7 10 Фирма аналитического приборостроения «Люмэкс» Система капиллярного электрофореза «Капель» 11 Введение В последние два десятилетия в мире отмечен активный интерес к новому, интенсивно развивающемуся методу разделения сложных смесей капиллярному электрофорезу, позволяющему анализировать ионные и нейтральные компоненты различной природы с высокой экспрессностью и уникальной эффективностью. В основе капиллярного электрофореза лежат электрокинетические явления электромиграция ионов и других заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно, высокого напряжения. Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время, такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и т. п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений. Традиционно капиллярный электрофорез сравнивают с высокоэффективной жид костной хроматографией (ВЭЖХ), поскольку в обоих методах разделение происходит в ограниченном пространстве (капилляре или колонке) с участием движущейся жидкой фазы (буферного раствора или подвижной фазы (элюента)) и для регистрации сигналов используют схожие принципы детектирования и программы обработки данных. Тем не менее у методов есть отличия, которые, безусловно, относятся к достоинствам капиллярного электрофореза: высокая эффективность разделения (сотни тысяч теоретических тарелок), недоступная ВЭЖХ и связанная с плоским профилем ЭОП, малый объем анализируемой пробы и буферов (не более 1 2 мл в день), при этом практически не требуется применение высокочистых, дорогостоящих органических растворителей, отсутствие колонки, сорбента, проблем с его старением и, значит, заменой колонки, простая и недорогая аппаратура, экспрессность и низкая себестоимость единичного анализа. Метод капиллярного электрофореза сегодня с успехом применяется для анализа разнообразных веществ (неорганических и органических катионов и анионов, аминокислот, витаминов, наркотиков, красителей, белков и т. д.) и объектов (для контроля качества вод и напитков, технологического контроля производства, входного контроля сырья, анализа фармпрепаратов и пищевых продуктов, в криминалистике, медицине, биохимии и т. д.). В России работы, связанные с изучением возможностей метода КЭ и его аналитических приложений, стали появляться лишь в последние годы, что в существенной степени инициировалось созданием отечественных приборов для капиллярного электрофореза. Системы капиллярного электрофореза «Капель», разработанные и выпускаемые фирмой «Люмэкс», являются первым в России и СНГ серийным семейством приборов, внесенных в Госреестр средств измерений и предназначенных для реализации этого метода. В состав семейства на сегодняшний день входят следующие модификации, аттестованные как средства измерения: «Капель-103Р», «Капель-103РТ», «Капель-104Т», «Капель-104М», «Капель-105» и «Капель-105М». Фирма выпускает также опытные модификации электроинжекционные анализаторы «Капель-РЕ». Разрабатываются модели с встроенным блоком измерения потенциала течения «Капель-ПТ». Системы капиллярного электрофореза «Капель» предназначены для количественного и качественного определения состава проб веществ в водных и водно-органических растворах методом капиллярного электрофореза. На приборах любой из модификаций без ограничений могут быть реализованы методики, использующие основные варианты КЭ капиллярный зонный электрофорез (КЗЭ) или мицеллярную электрокинетическую хроматографию (МЭКХ). Первый вариант предназначен для анализа только ионных компонентов проб, второй для анализа как ионных соединений, так и молекулярных форм веществ. Разнообразие технических решений, использованных специалистами фирмы «Люмэкс» при создании приборов семейства «Капель», табл. 1, позволяет потребителю выбрать ту систему, которая в наибольшей степени соответствует характеру решаемой задачи. Из ограничений КЭ следует отметить невысокую, по сравнению с ВЭЖХ, концентрационную чувствительность и требование к анализируемым соединениям растворяться в воде и разбавленных водно-органических смесях. В то же время эти ограничения не являются непреодолимыми. Так, недостаточную чувствительность определения при использовании УФ-детектирования (из-за малой длины оптического пути, равного внутреннему диаметру капилляра) может скомпенсировать использование таких видов детектирования, как лазерно-индуцированное флуориметрическое или масс-спектрометрическое в сочетании с различными приемами on-line концентрирования пробы (т. н. стэкинг и свиппинг). А вариант неводного капиллярного электрофореза успешно позволяет разделять и анализировать сильно гидрофобные, нерастворимые в водных растворах компоненты пробы.

8 12 Фирма аналитического приборостроения «Люмэкс» Система капиллярного электрофореза «Капель» 13 «Капель-103Р» наиболее простая модель с ручным управлением и пошаговым прин ципом работы. В прибор можно установить только одну пробирку с анализируемым раствором. «Капель-103Р» идеально подходит для обучения методу капиллярного электрофореза в университетах, технических лицеях и лабораториях благодаря наглядности всех процедур и простоте управления. Таблица 1. Технические характеристики приборов серии «Капель». Характеристики Капель -103Р Капель -103РТ Капель -104Т фотометрический детектор высоковольтный блок ввод пробы смена проб промывка капилляр охлаждение капилляра возможность задания и/или изменения параметров в ходе анализа Капель -105 Капель -105М 254 нм нм постоянное напряжение 1 25 кв, с шагом 1 кв, сменная полярность, ток мка гидродинамический или электрокинетический автоматическая с двумя ручная автосемплерами на 10 входных и 10 выходных пробирок при постоянном давлении

Читайте также:  Можно ли делать одновременно парафин и электрофорез ребенку

1000 мбар кварцевый (длина см, внутренний диаметр 50 или 75 мкм) принудительное воздушное время анализа давление напряжение жидкостное с заданием и контролем температуры теплоносителя (диапазон от 10 до +30 С от температуры окружающей среды) время анализа давление температура напряжение время анализа длина волны давление температура напряжение питание В, 50/60 Гц потребляемая мощность, Вт габариты, мм 420x330x x350x x500x масса, кг (105М) Сбор, обработку и вывод данных осуществляется с помощью персонального компьютера с операционной системой «Windows 98/ME/NT/2000/XP», на котором установлена программа сбора и обработки хроматографических данных «МультиХром для Windows», версия 1,5х. Для модификаций «КАПЕЛЬ -105М/104М» управление прибором, сбор и обработка данных осуществляется с помощью ПО «Эльфоран». Для модификации «КАПЕЛЬ -105М» управление прибором, сбор и обработка данных возможны с помощью ПО «МультиХром для Windows», версия 2,5х. «Капель-103РТ» отличается от предыдущей модели наличием жидкостной системы охлаждения капилляра, которая позволяет поддерживать температуру теплоносителя на заданном уровне независимо от температуры лабораторного помещения, благодаря чему повышается воспроизводимость результатов измерения. Эффективное охлаждение капилляра позволяет использовать для анализа более высокие напряжения, что влечет за собой возрастание эффективности разделения и уменьшение времени анализа. «Капель-104Т» предназначена для выполнения серийных анализов. Она снабжена двумя автосемплерами, системой жидкостного охлаждения капилляра, имеет удобный интерфейс, позволяющий создавать программы работы прибора в автоматическом режиме. Более простая модель «Капель-104» (с воздушным, менее эффективным охлаждением капилляра) в настоящее время снята с производства. «Капель-104М», сохраняя все возможности «Капели-104Т», имеет самую современную на сегодня электронику, полностью управляется от компьютера, снабжена единой программой управления, сбора и обработки электрофоретических данных. Усовершенствованная конструкция кассеты с капилляром позволяет быстро и надежно проводить замену капилляра. «Капель-105» прибор с наиболее широкими возможностями. В нем сохранены наилучшие качества предыдущих моделей жидкостная система охлаждения капилляра, автосемплеры, возможность работы в программируемом автоматическом режиме. В дополнение к этому прибор имеет спектрофотометрический детектор на основе дейтериевой лампы и монохроматора с дифракционной решеткой, благодаря чему рабочий диапазон длин волн охватывает область от 190 до 400 нм. Всё это делает «Капель-105» незаменимым прибором для исследовательской работы как в области разработки новых методик, так и в аналитической практике. Самой последней из аттестованных моделей в серии «Капель» на сегодняшний день является «Капель-105М». В ней наряду с новейшей электронной базой реализованы полное управление прибором, сбор и обработка данных с помощью собственного программного обеспечения, а также возможность регистрации спектров поглощения компонентов анализируемой пробы во время анализа. Опытные модификации «Капель-РЕ» представляют собой электроинжекционные анализаторы приборы для реализации нового метода капиллярного электрофореза. В этом методе электрокинетическим способом в капилляр с двух концов вводят компоненты, которые способны взаимодействовать друг с другом. Встречаясь в капилляре эти компоненты образуют новые соединения, которые обладают иной подвижностью, чем исходные, и, следовательно, могут быть зарегистрированы при прохождении через зону детектирования. Прибор может быть интересен тем, кто занимается проблемами химической кинетики, реакционной способности, комплек-

9 14 Фирма аналитического приборостроения «Люмэкс» Глава 1. Физико-химические основы метода капиллярного электрофореза 15 сообразования и т. п. Особенностью прибора является специальная кассета, в которой окно детектора расположено в середине капилляра, благодаря чему эффективная длина капилляра одинакова как для катионных, так и для анионных компонентов проб. Кроме ртутной лампы прибор снабжен сменной лампой накаливания и набором светофильтров, которые позволяют расширить рабочий диапазон длин волн на видимую и ближнюю инфракрасную область спектра. Модификация «Капель-ПТ» оборудована блоком измерения потенциала течения. Потенциал течения (в англ. литературе streaming potential), по физической сущности явление обратное электроосмотическому потоку, возникает на концах капилляра, когда в нём создается поток электролита. Он возникает и при промывке капилляра ведущим буферным раствором при кондиционировании капилляра. Измерение потенциала течения (ПТ) в этот момент позволяет оценить степень готовности капилляра к очередному анализу, и, тем самым, повысить воспроизводимость времени выхода компонентов в серии однотипных электрофореграмм. В свою очередь улучшение воспроизводимости времён выхода сопровождается улучшением воспроизводимости количества вещества в пике, т. е. воспроизводимости количественной оценки концентрации вещества в пробе. В любой модели системы «Капель» можно задавать или изменять в ходе анализа: давление, напряжение, время анализа, температуру (для систем с жидкостным охлаждением капилляра), длину волны (для моделей 105/105М). Таким образом, широкие возможности метода в сочетании с многофункциональностью аппаратурного оформления позволяют использовать капиллярный электрофорез и приборы «Капель» для решения самых разнообразных аналитических задач. Глава 1. Физико-химические основы метода капиллярного электрофореза Движение заряженных коллоидных частиц под действием внешнего электрического поля носит название электрофореза. Электрофорез как метод разделения предложен в 30-х годах XX в. Тизелиусом. Он поместил смесь белков сыворотки крови в буферный раствор и при наложении электрического поля обнаружил, что компоненты пробы мигрируют в направлении и со скоростью, определяемыми их размером, формой и электрическим зарядом. В 1948 г. работа была удостоена Нобелевской премии по химии. Главным ограничением широкого использования метода была низкая эффективность разделения из-за тепловых эффектов и конвекции жидкости. Эта проблема была частично решена благодаря использованию неконвективной среды (полиакриламидные гели) в гель-электрофорезе. Несмотря на то, что разделение в геле довольно широко распространено, особенно в биохимии, очевидны и его ограничения: длительное время анализа, недостаточная эффективность, трудности при детектировании и автоматизации. В 1967 г. шведский ученый Хиртен предложил проводить электрофоретическое разделение не на плоскости, а в открытых трубках капиллярах с внутренним диаметром 1 5 мм, тем самым положив начало методу капиллярного электрофореза. Позже Виртанен и Миккерс использовали стеклянные и тефлоновые капилляры с внутренним диаметром 200 мкм, и, наконец, в начале 80-х гг. XX в. Йоргенсон и Лукас продемонстрировали сепарационные возможности кварцевого капилляра с внутренним диаметром 75 мкм, использовав последние достижения в изготовлении кварцевых капилляров очень малых и равномерных внутренних диаметров (

десятки мкм), прозрачных в ультрафиолетовой области спектра. Кроме того, в мире был уже накоплен значительный опыт по возможностям детектирования аналитических сигналов в потоке. С этого момента начинается активное развитие метода капиллярного электрофореза в его современном формате, продолжающееся по настоящее время. Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (

2 нл) вводят в кварцевый капилляр, предварительно заполненный подходящим буфером электролитом. После подачи высокого напряжения (до 30 кв) к концам капилляра компоненты смеси начинают двигаться с разной скоростью, зависящей, в первую очередь, от заряда и массы (точнее, величины ионного радиуса) и, соответственно, в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной высота или площадь пика, пропорциональная концентрации вещества. Для того чтобы получить более подробное представление о методе, необходимо рассмотреть ряд процессов, происходящих в капилляре, заполненном электролитом и помещенном в продольное электрическое поле. Находящиеся на поверхности плавленного кварца силоксановые группы при контакте с водой или водными растворами гидролизуются с образованием удвоенного количества силанольных групп, которые затем гидратируются. >Si=O Н 2 О >Si ОН ОН

10 16 Система капиллярного электрофореза «Капель» Глава 1. Физико-химические основы метода капиллярного электрофореза 17 Скорость и степень гидролиза зависят от температуры и рн водных растворов и, в меньшей степени, от концентрации солевого фона раствора. В водном растворе силанольные группы способны к кислотной диссоциации. Константа первой ступени имеет величину К а1 = 2,5×10-3. Это означает, что при рн водного раствора больше 2,5 поверхность кварца приобретает некоторый отрицательный заряд, который возрастает при увеличении рн раствора. Наоборот, при рн

2 и меньше диссоциация силанольных групп практически полностью подавлена, и поверхность кварца становится нейтральной. Диссоциация силанольных групп вызывает на границе раздела кварц водный раствор электролита образование двойного электрического слоя (ДЭС), рис. 1а. Первую его обкладку составляют неподвижные отрицательно заряженные силанольные группы. Вторую обкладку двойного слоя составляют положительно заряженные катионы, существующие в растворе. Диэлектриком, разделяющим обкладки этого конденсатора, являются молекулы воды, гидратирующие как силанольные группы, так и катионы. Положительная часть ДЭС, в свою очередь, делится на две части: первую (или неподвижную), непосредственно примыкающую к поверхности кварца, и вторую (или диффузную), располагающуюся на некотором удалении от поверхности. В неподвижной части количество положительных зарядов меньше, чем отрицательных зарядов на поверхности кварца из-за увеличения размеров катионов вследствие гидратации. В результате в диффузной части ДЭС образуется некоторая избыточная концентрация катионов. Между этими двумя слоями проходит т. н. граница скольжения при наложении вдоль капилляра электрического поля неподвижная часть остается на месте, в то время как диффузная часть начинает мигрировать к катоду, увлекая за собой в силу межмолекулярного сцепления всю массу жидкости в капилляре. Возникает электроосмотический поток (ЭОП), который осуществляет пассивный перенос раствора внутри капилляра. Скорость ЭОП в сильной степени зависит от рн раствора: в сильнокислых растворах ЭОП отсутствует, в слабокислых его скорость незначительна, а при переходе в нейтральную и щелочную область рн скорость ЭОП возрастает до максимально возможной. С другой стороны, эта величина зависит от концентрации электролита в ведущем буфере: чем она больше, тем выше становится доля катионов в неподвижной части ДЭС, а толщина диффузной части уменьшается и, соответственно, уменьшается скорость электроосмотического потока. На рис. 1б показано распределение зарядов в ДЭС. Общий потенциал ( ), создаваемый диссоциированными силанольными группами, пропорционален заряду. Часть этого потенциала ( ) нейтрализуется положительными зарядами ионов неподвижной части второй обкладки двойного слоя. Остальная часть положительных зарядов создает в приповерхностном слое раствора электрокинетический или -потенциал (дзета-потенциал). Рис. 1а. Строение двойного электрического слоя. Толщина диффузной части ДЭС Рис. 1б. Распределение зарядов в ДЭС.

11 18 Система капиллярного электрофореза «Капель» Глава 1. Физико-химические основы метода капиллярного электрофореза 19 Уникальное свойство ЭОП заключается в плоском профиле потока (в отличие от параболического в ВЭЖХ), который при движении зон компонентов внутри капилляра практически не вызывает их уширения (рис. 2). Благодаря этому метод КЭ характеризуется высочайшей эффективностью (

сотни тысяч теоретических тарелок). Электроосмотический поток В приборах для капиллярного электрофореза капилляр, заполненный раствором электролита, своими концами опущен в два содержащих тот же электролит сосуда, в которые введены электроды. Электролит должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой стабилизировать состояние компонентов пробы в процессе анализа. При подаче на электроды высокого напряжения в капилляре быстро устанавливается стационарное состояние: через капилляр протекает постоянный электроосмотический поток, на который накладывается взаимно противоположная электромиграция катионов и анионов. Если в капилляр со стороны анода ввести небольшой объем раствора пробы, то ЭОП будет переносить эту зону к катоду (в область детектирования), и зона некоторое время сможет находиться в капилляре под воздействием электрического поля высокого напряжения. В течение этого времени заряженные компоненты пробы будут перемещаться в соответствии с их электрофоретическими подвижностями. Катионные компоненты пробы, двигаясь к катоду, будут обгонять электроосмотический поток (рис. 3). Скорость их движения складывается из скорости ЭОП и скорости электромиграции, поэтому на выходе капилляра катионы появляются первыми и тем раньше, чем больше их электрофоретическая подвижность. Нейтральные компоненты пробы способны перемещаться только под действием электроосмотического потока, тогда как анионные будут перемещаться к аноду со скоростями меньшими, чем скорость ЭОП. Медленно мигрирующие анионы появятся на выходе после ЭОП, а те, чья скорость электромиграции по абсолютной величине превышает скорость ЭОП, будут выходить из капилляра в прианодное пространство. Ламинарный поток Рис. 2. Влияние профиля потока на ширину зоны вещества.

12 20 Система капиллярного электрофореза «Капель» Глава 1. Физико-химические основы метода капиллярного электрофореза 21 Если время нахождения пробы в капилляре (которое можно регулировать изменением напряжения, величины рн и концентрации ведущего электролита) достаточно, чтобы проявились различия в подвижности ионов, то на выходе капилляра вблизи катода можно наблюдать зоны раствора, в которых находятся индивидуальные компоненты пробы. Ведущий электролит (его называют также рабочим буферным раствором) должен иметь такую концентрацию, при которой электрическое сопротивление раствора в капилляре будет достаточно велико. Это требование связано с тем, что при прохождении электрического тока в проводнике выделяется тепло. Если ток достаточно велик, то жидкость в капилляре может даже закипеть. Традиционно считается, что электрический ток в капилляре подчиняется закону Ома, хотя известно, что линейная связь тока и напряжения существует в растворе только в ограниченном диапазоне напряжений. Рассмотрим некоторые аспекты этого явления на конкретном примере. Пусть полная длина капилляра равна 60 см, эффективная длина (т. е. длина от входа до окна детектора) 50 см, рабочее напряжение, поданное на электроды, равно 25 кв, сила тока в капилляре составляет 100 мка. Сила тока в капилляре зависит от его длины и диаметра, а также от концентрации электролита в растворе. Для капилляра с внутренним диаметром 75 мкм сила тока 100 мка при напряжении 25 кв достигается при концентрации соли в электролите 0,03 0,04 моль/л. В выбранных условиях электрическое сопротивление цепи составляет 250 М (мегаом), градиент напряжения, который практически совпадает с градиентом поля, составляет 416 В/см. Мощность, выделяющаяся в капилляре, в этом случае равна 2,5 Вт. Так как вся она превращается в тепловую энергию, её удобнее пересчитать в тепловые единицы калории. Пересчет показывает, что в капилляре ежесекундно выделяется 0,6 калории гигантское количество, если учесть, что объём жидкости в капилляре диаметром 75 мкм составляет всего 2,65 мкл. Если не принимать в расчет перенос тепла через стенку капилляра, то такого количества достаточно, чтобы в течение 1 секунды температура жидкости в капилляре возросла на 225 С (!). Рис. 3. Электрофоретическая миграция ионов в присутствии электроосмотического потока. Этот формальный расчет показывает, насколько серьёзна проблема охлаждения капилляра в КЭ. В действительности выделяющаяся теплота расходуется не только на нагревание раствора, но также на нагрев кварцевых стенок и полиимидной оболочки. Нужно также учесть, что теплоёмкость кварца в

6 раз меньше, чем водного раствора, а теплопроводность плавленого кварца в 16 раз больше, чем у воды. Все эти обстоятельства способствуют эффективному отводу тепла во внешнюю среду, однако, если не принять специальных мер, жидкость в капилляре очень скоро закипит. Поэтому в приборах для КЭ всегда присутствуют либо системы охлаждения капилляра энергичным воздушным обдувом, либо системы жидкостного охлаждения. Тепловое равновесие в капилляре устанавливается достаточно быстро. Оно характеризуется сравнительно малым различием температуры раствора в радиальном направлении во внутреннем канале капилляра и устойчивым градиентом температур между внутренней и внешней стенками капилляра. Нагрев жидкости не вызывает появления конвективных потоков, так как нагревание происходит равномерно по всему просвету капилляра. В результате не происходит перемешивание жидкости, приводящее к размыванию зон определяемых компонентов. При чрезмерном нагреве возможно закипание жидкости, и пузыри пара прерывают ток в капилляре, что дела-

Читайте также:  Электрофорез при бурсите пятки

13 22 Система капиллярного электрофореза «Капель» Глава 1. Физико-химические основы метода капиллярного электрофореза 23 ет анализ невозможным. Поэтому при выборе условий электрофоретического разделения следует стремиться к минимизации тока соответствующим выбором концентрации ведущего электролита. В зависимости от концентрации электролитов в растворах буфера и пробы поведение компонентов при разделении может несколько различаться. Если электропроводности ведущего электролита и пробы одинаковы, то падение напряжения на всей длине капилляра равномерно, и компоненты пробы равномерно перемещаются каждый с присущей ему скоростью. В этом случае на выходе капилляра (точнее, в зоне окна детектора) ширина пика будет приблизительно равна ширине зоны пробы (если пренебречь размыванием). Следовательно, эффективное разделение может быть достигнуто при введении возможно меньшего объема пробы (но для обеспечения необходимой чувствительности концентрация определяемых компонентов в пробе должна быть возможно выше). Иное поведение наблюдается в случае, если электропроводность раствора пробы меньше электропроводности ведущего электролита. В этом случае в капилляре появляется участок с высоким сопротивлением и сила тока через капилляр уменьшается, но в соответствии с законом Ома падение напряжения на участке, занятом пробой, возрастает во столько раз, во сколько раз сопротивление пробы больше, чем сопротивление равного участка ведущего электролита. Таким образом, если сопротивление раствора пробы в капилляре будет в 10 раз больше, чем сопротивление ведущего электролита, градиент потенциала в зоне пробы будет в 10 раз выше, чем в остальной части капилляра. Высокий градиент потенциала в зоне пробы заставляет компоненты пробы быстрее мигрировать к границе зоны, где они в сконцентрированном и предварительно разделенном виде переходят в ведущий электролит, и там продолжают, но уже медленнее, движение к детектору. Описанное явление носит название стекинга и широко используется в практике электрофоретичесих разделений. Оно позволяет получать очень узкие пики определяемых компонентов и, как следствие, концентрация их в пике оказывается значительно выше, чем в исходной пробе. Практически стекинг осуществляют таким образом, что перед вводом пробу разбавляют специальным буферным раствором (концентрация которого в 10 раз меньше, чем концентрация рабочего буферного раствора) или даже дистиллированной водой. пользовать такие составы буферных ведущих электролитов, в которых на электродах происходит разложение воды (одним из самых распространенных буферов для КЭ является раствор буры). На катоде происходит восстановление ионов водорода, выделение на поверхности катода молекулярного водорода и образование в прикатодном пространстве гидроксильных ионов. На аноде окисление гидроксильных ионов, выделение на поверхности анода молекулярного кислорода и образование в прианодном пространстве ионов водорода. На катоде: 2H 2 O + 2e — Η 2 + 2ΟΗ На аноде: 2ΟΗ 2e — Ο 2 + 2Η + При высоких разностях потенциалов, которые применяются в КЭ, на электродах могут протекать и другие параллельные электрохимические реакции, но приведённые выше являются основными. Образующиеся и гидроксильные и водородные ионы нейтрализуются буферными компонентами ведущего электролита: при использовании боратного буфера в прикатодном слое борной кислотой, в прианодном борат-ионом. Таким образом, в приэлектродных пространствах происходит лишь изменение мольного соотношения компонентов буферной смеси, приводящее лишь к незначительному изменению рн раствора. На рис. 4 показано типичное расположение капилляра и электрода в пробирке с раствором электролита, принятое в системах «Капель». В том же случае, когда электропроводность раствора пробы больше, чем электропроводность ведущего электролита, падение напряжения на участке, занятом пробой, резко уменьшается. В результате скорость электромиграции компонентов пробы уменьшается, они медленнее достигают границы зоны, а при переходе в ведущий электролит скорость их движения увеличивается. Происходит размазывание пиков, они накладываются друг на друга, эффективность разделения резко ухудшается. В методе капиллярного электрофореза применяются открытые системы в том смысле, что раствор электролита, в котором происходит разделение, не отделен от электродов, на которые подается напряжение, хотя приэлектродные пространства соединяются через тонкий кварцевый капилляр, выполняющий основную разделяющую функцию, но также служащий электролитическим мостиком, замыкающим электрическую цепь. В электрических цепях, содержащих одновременно проводники первого и второго рода, протекание тока невозможно без электрохимических реакций на границах металл раствор. В капиллярном электрофорезе стараются ис- Рис. 4. Типичное расположение капилляра и электрода в пробирке с раствором.

14 24 Система капиллярного электрофореза «Капель» Глава 1. Физико-химические основы метода капиллярного электрофореза 25 Устье капилляра располагается в нижней трети объёма пробирки; нижний срез электрода находится приблизительно на нижнем уровне верхней трети раствора. При таком расположении продукты электрохимических реакций, в частности, пузырьки газов, не могут проникнуть в просвет капилляра, также как и раствор ведущего электролита, содержащий продукты нейтрализации и отличающийся по составу от первоначального. В то же время расход ведущего электролита вследствие ЭОП происходит за счет неизменённого раствора из средней трети объёма. Сохранению описанного состояния способствует отсутствие перемешивания раствора в процессе анализа. Предположим, что анализ проходит при токе 100 мка в течение 15 минут. За это время через раствор пройдет 1×10-4 Аx900 сек = 0,09 кулона электричества, что эквивалентно 9,33×10-7 моля. Такое же количество молей ионов водорода и гидроксила образуется в пробирках, в которых находится по 500 мкл буферного раствора. Следовательно, в течение одного анализа концентрация одного из компонентов буферного раствора изменится на 9,33×10-7 /5×10-4 = 1,86×10-3 моль/л. Если исходная общая концентрация компонентов буферного раствора составляет

0,02 М, то за 5 6 анализов буферная емкость ведущего электролита будет исчерпана полностью. Приведенный пример показывает, что при анализе существенно меняются концентрации компонентов ведущего электролита. Следовательно, для получения воспроизводимых результатов необходимо регулярно, в среднем через каждые 3 4 анализа, заменять свежими порциями растворы ведущего электролита в рабочих пробирках. Это тем более важно, что в прикатодном пространстве накапливаются катионные компоненты проб, которые могут восстанавливаться на катоде до элементного состояния при последующих анализах. Равным образом в прианодном пространстве могут накапливаться анионные компоненты проб. Одним из самых неприятных из них является анион Сl, который, окисляясь на электроде до свободного хлора, вызывает коррозию платинового анода. ческого баланса в приэлектродных слоях вызывают электромиграцию избыточных ионов ведущего электролита во взаимно противоположных направлениях. Внутри капилляра к этим потокам избыточных ионов присоединяется миграция избыточной концентрации катионов диффузной части двойного слоя капилляра. Механизм перемещения носит, по-видимому, эстафетный характер. Каждый элементарный акт электродных реакций заставляет всю массу ионов в растворе переместится на величину межионного расстояния в растворе. Скорость перемещения такова, что во всём объёме капилляра в любой его точке и в любой момент времени соблюдается электронейтральность раствора. Таким образом, роль этих потоков состоит в выравнивании стехиометрических нарушений, имеющих место в приэлектродных пространствах. Факторами, ограничивающими и регулирующими скорость электромиграции, являются электрохимические реакции у поверхности электродов. Поступление катионов в прикатодное пространство стехиометрически компенсируется, электрохимической реакцией, в результате которой некоторое количество катионов восстанавливается до молекулярного состояния и образуется эквивалентное количество анионов, которые в свою очередь компенсируют убыль анионов из прикатодного пространства. В прианодном пространстве в то же время и в том же количестве осуществляется электрохимическая реакция окисления анионов и образование эквивалентного количества катионов. Если в капилляр введена проба, то она потоком жидкости переносится к детектору. Те ионы, которые отличаются от ионов ведущего электролита, мигрируют под действием электрического поля во взаимно противоположных направлениях, причем скорости миграции будут специфичны для каждого сорта ионов. Применительно к капиллярному электрофорезу физическая картина происходящих процессов выглядит следующим образом. Наложение потенциала на электроды системы вызывает образование в непосредственной близости от поверхности электродов двойного электрического слоя. Градиенты потенциала на границах приэлектродных двойных слоев превышают потенциал разложения воды, и на электродах начинаются электрохимические реакции. На катоде происходит восстановление ионов водорода, а на аноде окисление ионов гидроксила. Восстановление одного иона водорода на катоде сопровождается образованием в прикатодном слое одного иона гидроксила, а окисление одного иона гидроксила на аноде сопровождается образованием в прианодном слое одного иона водорода. Эти два элементарных акта электрохимических реакций на электродах эквивалентны переходу через раствор одного электрона. Образовавшиеся в результате электродных реакций ионы являются избыточными они нарушают материальный и электрический баланс в приэлектродных слоях. Эти ионы отторгаются противоположно заряженной поверхностью электродов, и быстро, практически не покидая приэлектродные слои, нейтрализуются буферными компонентами ведущего электролита в прикатодной зоне кислотным компонентом, а в прианодной зоне основным компонентом. При том расположении капилляра и электродов, которое описано выше, изменение кислотно-основного баланса будет происходить только в верхних слоях резервуаров. Нарушение стехиометрии растворов, т. е. образование в приэлектродных слоях избыточных концентраций катионов (в прианодном) и анионов (в прикатодном), а также нарушение электри-

15 26 Система капиллярного электрофореза «Капель» Глава 2. Основные варианты капиллярного электрофореза 27 Глава 2. Основные варианты капиллярного электрофореза Мы уже упоминали выше, что наиболее распространенными вариантами метода капиллярного электрофореза являются капиллярный зонный электрофорез и мицеллярная электрокинетическая хроматография. Самым простым вариантом КЭ является капиллярный зонный электрофорез (КЗЭ). Компоненты сложной смеси движутся в среде электролита с разными скоростями, образуя дискретные зоны. Отличительная особенность КЗЭ состоит в том, что он пригоден для разделения только ионогенных компонентов пробы, тогда как нейтральные соединения, не обладающие собственной электрофоретической подвижностью, движутся со скоростью ЭОП и выходят в зоне нейтральных компонентов, зоне маркера ЭОП. В приборах капиллярного электрофореза, в которых используется кварцевый капилляр, полярность входного конца чаще всего положительная (анод), и ЭОП переносит зону пробы к катоду. Вблизи катодного выхода установлен детектор. При этих условиях катионные компоненты пробы, тоже мигрируя к катоду, обгоняют ЭОП и первыми достигают детектора в виде отдельных зон, которые на электрофореграмме регистрируются индивидуальными пиками. Через некоторое время детектора достигает и зона исходного раствора, в которой остались нейтральные компоненты пробы. В зависимости от того, поглощают они или нет, на электрофореграмме регистрируется прямой (в некоторых случаях обратный) пик, который часто называют системным. Иногда для идентификации системного пика в пробу добавляют специальные вещества маркеры ЭОП, например, бензиловый спирт. Что касается анионных компонентов пробы, то их поведение зависит от соотношения скоростей ЭОП и электромиграции анионов. Если скорость миграции аниона превышает скорость ЭОП, то такой анион рано или поздно выйдет из капилляра в прианодное пространство (это нежелательно, т. к. некоторые анионы, например хлорид, попадая в рабочий буферный раствор, будут, разряжаясь на аноде, вызывать коррозию платинового электрода). Если же скорость электромиграции аниона меньше скорости ЭОП, то такой анион может быть зарегистрирован на той же электрофореграмме после выхода системного пика. В этом варианте КЗЭ с положительной полярностью могут определяться катионные компоненты проб и большинство органических анионов. Чтобы методом КЗЭ можно было определять анионные компоненты проб (в основном, неорганического происхождения) необходимо изменить полярность прикладываемого напряжения. Однако в этом случае изменится не только направление миграции анионов, но также направление ЭОП. Для преодоления этого противоречия необходимо модифицировать поверхность кварцевого капилляра так, чтобы знаки зарядов двойного электрического слоя поменялись на обратные. Это достигается введением в рабочий буферный раствор катионного поверхностно-активного вещества, например, бромида цетилтриметиламмония (ЦТАБ). Катион ЦТА + активно сорбируется на кварцевой поверхности, занимая при достаточной его концентрации все вакансии в ближайшем к поверхности слое. Поверхность как бы «ощетинивается» длинными цетильными (С 16 Н 33 ) цепочками. Ставшая гидрофобной поверхность при дальнейшей промывке рабочим буферным раствором сорбирует еще один слой поверхностно-активного катиона, ориентированного аммонийным концом наружу (сорбция «щетка в щетку»). В результате первый слой двойного электрического слоя становится положительным, а второй, в том числе и диффузная его часть, отрицательным, и ЭОП снова движется от входного конца к детектору, несколько отставая от мигрирующих быстрее анионов. Несмотря на то, что в последние годы вернулось первоначальное, предложенное Хиртеном более корректное название электрофорез в свободном растворе, подавляющая часть публикаций в области КЭ продолжает использовать традиционное название «капиллярный зонный электрофорез». Основным достоинством КЗЭ является высокая эффективность (сотни тысяч теоретических тарелок), при этом селективность, определяемая механизмом разделения внутри одной фазы, в КЗЭ недостаточна. Повышение селективности может быть достигнуто за счет изменения рн ведущего электролита, введения в состав буфера различных добавок: поверхностно-активных веществ, макроциклов, органических растворителей и т. д. Мицеллярная электрокинетическая хроматография объединяет электрофорез и хроматографию. Введенная в 1984 г. японским ученым Терабе, МЭКХ получила наиболее широкое распространение среди других вариантов капиллярного электрофореза, в первую очередь, за счет способности разделять как ионогенные, так и незаряженные компоненты пробы. Разделение нейтральных соединений стало возможным благодаря введению в состав ведущего электролита поверхностно-активных веществ (ПАВ) мицеллообразователей. Чаще всего используют анионные ПАВ (например, додецилсульфат натрия ДДСН, англ. SDS) в концентрациях, превышающих критическую концентрацию мицеллообразования (ККМ), которая, например, для ДДСН в водном растворе составляет 8 мм. В этом случае в растворе электролита находятся преимущественно мицеллы и небольшая доля мономерной формы ПАВ. Мономеры состоят из гидрофобного «хвоста» и гидрофильной (в случае анионного поверхностно-активного вещества отрицательно заряженной) «головы». При формировании прямых мицелл мономерные фрагменты агрегируются неполярными концами внутрь, а внешняя сферическая поверхность мицеллы становится отрицательно заряженной. Каждая мицелла окружена собственным двойным электрическим слоем, внешнюю диффузную часть которого формируют катионы, присутствующие в растворе ведущего электролита. Число мономеров, образующих мицеллу, может колебаться от 60 до 100 молекул, однако общий заряд мицеллы существенно меньше из-за наличия в неподвижной части второго слоя ДЭС гидратированных катионов. Ни мицеллярная, ни мономерная форма АПАВ не взаимодействуют со стенкой кварцевого капилляра, но при подаче на капилляр высокого напряжения обе формы мигрируют к аноду, в то время как ЭОП направлен к катоду. Если в капилляр на анодной стороне ввести пробу, содержащую нейтральные и заряженные компоненты, то ЭОП будет переносить их к катоду, а навстречу будет двигаться поток отрицательно заряженных мицелл АПАВ. Нейтральные компоненты пробы могут распределяться между фазой раствора и мицеллярной фазой, причем константа этого распределения специфична для каждого сорта молекул пробы. В результате на выходе капилляра регистрируется электрофореграмма нейтральных компонентов, а также медленно мигрирующих анионов пробы.

источник