Меню Рубрики

Методика проведения электрофореза белков

Метод электрофореза является одним из самых распространенных, мощных и доступных методов исследования белков. Этот метод широко применяется как в научных исследованиях, так и при экспертизе качества продуктов питания и медицинских препаратах, а также в клинических лабораториях.

С помощью метода электрофореза производят:

1) анализ сложных смесей белков (в генетических исследованиях, при выделении и биотехнологической наработке белков)

2) обнаружение определенного белка (при проведении экспертизы, контроле биотехнологических процессов, клинических анализах)

3) определение молекулярной массы белков (в фундаментальных исследованиях)

4) исследование структуры белков (анализ расположения в биологических мембранах, взаимодействия с другими белками, изучение вопросов фолдинга белков)

В основе метода электрофореза лежит тот факт, что молекулы белков в водных растворах заряжены, то есть фактически представляют собой ионы. Как любая частица, несущая электрический заряд, молекулы белков способны перемещаться в электрическом поле. Таким образом, если к раствору белка приложить электрическое поле (опустить в него электроды и подать постоянное напряжение), то все молекулы белков начнут двигаться. Вследствие разницы в аминокислотном составе разные белки заряжены разноименно — положительно или отрицательно. По этой причине различные белки будут двигаться в разных направлениях: положительно заряженные – к катоду (отрицательный электрод), отрицательно заряженные – к аноду (положительный электрод). Кроме того, величина заряда белковых молекул также неодинакова – молекулы одних белков заряжены сильнее, других – меньше. Белки, молекулы которых имеют больший заряд, будут двигаться быстрее, чем те, что несут меньший заряд. Также на разделение белков методом электрофореза большое влияние оказывает размер молекул белков. Более крупные белки движутся медленнее, чем белки небольших размеров, вследствие того, что вода оказывает сопротивление перемещению (является вязкой средой).

По причине того, что аминокислотный состав белков и их масса различаются достаточно сильно, электрофорез позволят анализировать очень сложные смеси белков. Для решения различных исследовательских задач было предложено множество различных вариантов электрофореза.

4.9 Электрофорез по Леммли

Электрофорез по Леммли — один из методов электрофореза в геле, применяемый для анализа сложных белковых смесей. Данный метод позволяет разделять белки по их молекулярной массе. Также электрофорез по Леммли может быть использован для определения молекулярной массы белков.

Белки, подлежащие анализу методом электрофореза по Леммли, предварительно обрабатывают концентрированным 5%-ным раствором додецилсульфата натрия (рис. 15) при 100С в присутствии β-меркаптоэтанола. При этом белковые молекулы приобретают отрицательный заряд, значительно превышающий её собственный. При последующем разделении в полиакриламидном геле белковые зоны распределяются на электрофоре граммах в соответствие с логарифмом их молекулярной массы

Рис. 15. Додецилсульфата-анион, присутствует в растворах додецилсульфата натрия

В качестве геля для электрофореза по Леммли используются полиакриламидные гели, что позволяет достичь высокой разрешающей способности данного метода. Полиакриламидный гель представляет собой продукт сополимеризации акриламида (рис. 16)

и сшивающего агента N,N- метиленбисакриламда (рис. 17)

Рис. 17. N,N- метиленбисакриламид

В результате процесса сополимеризации образуется прочный, упругий, термостабильный гель, обладающий высокими механическими свойствами и химической инертностью. Пространственная структура геля представляет собой сетку со структурой (рис. 18). Пористость геля зависит от концентрации мономеров и её можно варьировать в значительных пределах от 40 до 0,1 нм (2-30% мономеров). Регулярно чередующиеся амидные группы делают гель гидрофильным. Отсутствие ионизирующихся групп существенно снижает эндосмос, а также взаимодействие белков со структурой геля.

Рис. 18. Структура полиакриламидного геля

В качестве катализатора реакции сополимеризации применяют источник свободных радикалов — персульфат аммония или калия. Катализатором реакции выступает N,N,N,N-тетраметилэтилендиамин.

Полимеризацию геля ведут в стеклянных трубочках длиной 70-100 мм с внутренним диаметром 5 мм либо плоских пластинах. Для этого в одной трубке последовательно полимеризуют два геля для электрофореза, располагая их один под другим: 1) верхний – крупнопористый гель в котором образец сжимается в узкую полосу (концентрирующий гель), 2) нижний — мелкопористый гель, в котором происходит разделение белковой смеси на компоненты под действием эффекта «молекулярного сита».

Для проведения электрофореза гелевыми столбиками соединяют расположенные друг над другом резервуары с буферами, в которые введены электроды и подают на электроды напряжение 40-800 вольт.

В качестве отчета о проделанной работе:

1. Зарисуйте структурные формулы додецилсульфата натрия, акриламида, N,N- метиленбисакриламида, структуру полиакриламидного геля

2. Зарисуйте расположение белковых полос, полученных в результате электрофореза по Леммли, сделайте вывод о составе выданного вам раствора белка (количество компонентов, примерная доля главных компонентов и их число, примерная доля минорных компонентов и их число)

Подготовить пробу белка для электрофореза. Для этого в эппендорф объемом 2 мл поместить 100 мкл раствора белка с концентрацией 4 мг/мл и добавить 100 мкл буфера пробы. Содержимое перемешать инжектированием.

Поместить пробирки в поплавок и поместить в водяную баню. Нагреть до кипения и кипятить 5 минут, затем охладить

Растворить навеску персульфата калия в 2,5 мл ДВ. Для этого внести автоматической пипеткой 2,5 мл ДВ и перемешивать инжектированием до полного растворения соли (растворение идет медленно)

Собрать трубку для электрофореза и поместить её вертикально в штатив

В центрифужной пробирке приготовить смесь для разделяющего геля

Раствор Мономеров 1250 мкл

1,5 М Трис-HCl рН8,8 167 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

Смесь для разделяющего геля вносят в трубку для электрофореза тремя порциями по 800 мкл. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 15-20 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации слить воду с геля, остатки жидкости убрать с поверхности геля фильтровальной бумагой, скрученной в трубочку

В центрифужной пробирке приготовить смесь для концентрирующего геля

Раствор Мономеров 340 мкл

0,5 М Трис-HCl рН6,8 125 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

250 мкл смеси для концентрирующего геля вносят в трубку для электрофореза. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 5-10 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации геля с трубки снимаю заглушку и устанавливают трубки для электрофореза в катодную камеру прибора (рис. 19) так, чтобы граница концентрирующего и разделяющего геля была видна в верхней (катодной камере)

Рис. 19. Прибор для вертикального гель-электрофореза в трубках.

1- верхняя, анодная камера, 2 – нижняя, катодная камера, 3 – трубки с гелем для электрофореза, 4 – положительный электрод, анод, 5 — отрицательный электрод, катод.

Приготовить 1,2 л анодного буфера. Для этого разбавить исходный анодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л.

Заполнить анодную камеру анодным буфером. Поместить в камеру анод (красный провод). Поместить катодную камеру над анодной и зафиксировать её винтами. При этом нижние концы трубок должны быть погружены в буфер в нижней камере (анодный буфер).

Приготовить 1,2 л катодного буфера. Для этого разбавить исходный катодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л. заполнить катодную камеру катодным буфером. При этом концы трубок должны оказаться под слоем электродного буфера.

Промыть нижние и верхние концы трубок для удаления остатков растворов для полимеризации гелей и пузырьков воздуха.

60 мкл подготовленного раствора белка в эппендорфе смешивают со 180 мкл ДВ и перемешивают инжектированием. 200 мкл полученной смеси вносят в трубки для электрофореза, осторожно наслаивая на поверхность геля.

Включают напряжение 250 вольт, через 10 минут поднимают его до 300 вольт, а еще через 10 минут до 400.

Примерно через 40 минут, когда фронт бромфенолового синего пройдет практически всю трубку, напряжение выключают, внимают электрод из катодной камеры. Разбирают прибор и выливают катодный буфер. Затем вынимают трубки для электрофореза и выталкивают столбики геля из трубок стеклянным штоком. Концентрирующий гель отрезают скальпелем.

Разделяющий гель окрашивают коллоидным раствором кумасси бриллиантового голубого в течение 20 мин на кипящей водяной бане. Затем переносят окрашенный гель в кипящую воду и отмываю до проявления белковых полос.

Вопросы для самоподготовки

В чем практическое значение электрофореза?

Что можно установить с помощью электрофореза?

В чем суть метода электрофореза?

От каких параметров зависит скорость перемещения молекулы белка?

В чем особенность электрофореза по Леммли?

По какому параметру разделяются белки при проведении электрофореза по Леммли?

Вопросы к коллоквиуму по теме «Белки»

2. Элементный состав белков

3. Какие органические соединения называют аминокислотами, химические свойства аминокислот

4. Кислотно-основные свойства аминокислот (амфотерность аминокислот, биполярные ионы, кривые титрования)

5. Классификация аминокислот (биологическая, физико-химическая, химическая)

6. Физические свойства аминокислот, стереоконфигурация аминокислот

7. Специфические реакции на аминокислоты

8. Связь аминокислот в белках, пептидная связь – структура и свойства

9. Биуретовая реакция. Определение белка биуретовым методом.

10. Аминокислотный анализ. Методы хроматографии аминокислот.

11. Нингидриновая реакция. Практическое значение

12. Первичная структура белка. Методы установления первичной структуры белка

13. Вторичная структура белка, α-спираль, β-слой

14. Третичная и четвертичная структура белка

15. Химические связи, стабилизирующие структуру белка (первичную, вторичную, третичную и четвертичную)

16. Растворимость и осаждение белков. Силы удерживающие белок в растворе, условия осаждения белков.

17. Реакции обратимого и необратимого осаждения белков, их практическое значение.

18. Белки как носители электрических зарядов, кислотно-основные свойства белков, изоэлектрическая точка

19. Диализ. Электрофорез. Изоэлектрическое фокусирование

21. Выделение белков из тканей. Методы выделения и очистки белков

Использованная литература

The protein protocols handbook, 2 nd edition – edited by Walker J.M. – Humana press, 2002

Петров К.П. – Методы биохимии растительных продуктов – Киев: Вища школа, 1978.

Шапиро Д.К. – Практикум по биологической химии, 2-е изд. перераб. и доп. – Минск: Высшая школа, 1976

Практикум по биохимии: учебное пособие, 2-е изд. пререаб и доп. – под ред. Северина — М.: МГУ, 1989

Р.Досон, Д.Элиот и др. – Справочник биохимика, пер. с англ. – М.: Мир, 1991

Скурихин И.М., Нечаев А.П. – Все о пище с точки зрения химика: справочное издание. — М.: высшая школа, 1991

Степин Б.Д. — Техника лабораторного эксперимента в химии: учеб пособи для ВУЗов – М.: Химия, 1999

Химическая энциклопедия ТТ.1-5., гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1988-1998

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с) .

источник

Для разделения белков сыворотки крови на их составляющие используют метод электрофореза, основанный на различной подвижности белков сыворотки крови в электрическом поле.

Принцип разделения белков сыворотки крови на фракции состоит в том, что в электрическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровом гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц.

Вследствие этого белки сыворотки крови разделяются обычно на пять основных фракций: альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины, гамма-глобулины, содержание которых определяется с помощью фотометрии или денситометрии.

Электрофорез в агаровом, крахмальном и особенно полиакриламидном геле дает лучшие результаты: четкое разделение и большое количество белковых фракций сыворотки. Недостатки метода: сложность процедуры приготовления геля (дороговизна готовых гелевых пластин).

Преимущества электрофореза на ацетатцеллюлозной пленке:

1. Химическая однородность пленки и одинаковый размер пор

2. Требует малый объем пробы (0,2-2 мкл) для разделения

3. Быстрота разделения и окраски белков, легкость отмывания фона

В сыворотке крови здорового человека при электрофорезе можно обнаружить шесть белковых фракций: преальбумины, альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины и гамма-глобулины.

Это исследование в диагностическом отношении более информативно чем определение только общего белка или альбумина. При многих заболеваниях изменяется процентное соотношение белковых фракций, хотя общее содержание белка в сыворотке крови остается в пределах нормы.

Анализ фореграммы белков позволяет установить, за счет какой фракции происходит увеличение или дефицит белка, а также судить о специфичности изменений, характерных для данной патологии. Исследование белковых фракций, позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Белковые фракции сыворотки крови в норме:

Фракции Содержание, %
Преальбумины 2-7
Альбумины 52-65
Альфа-1-глобулины 2,5-5,0
Альфа-2-глобулины 7,0-13,0
Бета-глобулины 8,0-14,0
Гамма-глобулины 12,0-22,0

При анализе результатов исследования сыворотки крови на белковые фракции выявляются три типа нарушений:

1. Диспротеинемия (изменение соотношения белковых фракций)

2. Генетические дефекты синтеза белков

3. Парапротеинемия (аномальные белки в крови)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8806 — | 7522 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Читайте также:  Электрофорез эуфиллина по щербаку

источник

Этот анализ является исследованием, которое позволяет определить их количественные и качественные показатели по тому, как белки распределяются в электрическом поле. Исследование основано на том, что белковые молекулы несут заряды, положительные или отрицательные в зависимости от того, какой кислотностью будет обладать среда, в которой будет проводиться непосредственно электрофорез. Молекулы, которые окажутся положительно заряженными, будут адсорбироваться лучше, нежели чем те, которые несут отрицательный заряд.

Носителями, которые будут применяться для электрофореза, могут быть хроматографическая бумага, агаровый гель, полиакриловой гель, ацетатцеллюлозная бумага или акриловый гель. Значительно реже применяется капиллярный электрофорез.

Во время анализа белки разделяют на 5 или 6 фракций, в зависимости от применяемого метода. Это будут гамма-глобулины, которые делятся на бета-1 и бета-2, альбумины — альфа-1 и альфа-2, а также бета-глобулины.

Имеются установленные нормы белковых фракций, которые должны присутствовать в крови. Отклонение их от показателей является признаком нарушения в организме, что требует проведения обследования для выявления причины.

Фракция Норма в г/л
Альбумин 35-44
Глобулин альфа-1 1-3
Глобулин альфа-2 5-8
Бета-глобулин 4-10
Гамма-глобулин 5-12

Значения показателей, в зависимости от того какие реактивы применяются в конкретной лаборатории, могут несколько изменяться. Поэтому в бланке результатов исследования в каждом медицинском учреждении обязательно указываются значения нормы, которые приняты в нем. На них будет ориентироваться врач при расшифровке анализа.

Электрофорез белков крови назначают не очень часто, так как сегодня современные лабораторные исследования позволяют провести анализ на определенный белок, что ускоряет процесс диагностики. Абсолютным показанием к электрофорезу является наличие монолокальной гаммапатии. Также иногда анализ может быть показан в таких случаях:

  • чрезмерно высокая скорость оседания эритроцитов, когда она превышает 50 мм/ч;
  • значительно повышенный уровень гамма-глобулинов;
  • скрининговое обследование для контроля эффективности лечения миеломной болезни;
  • чрезмерно высокий общий белок в крови;
  • ряд аутоиммунных заболеваний, поражающих печень и почки;
  • слабость, для которой нет выраженной причины;
  • развитие патологических переломов костей и постоянные боли в костях;
  • частые рецидивы инфекционных заболеваний;
  • нарушения, обнаруженные в прочих анализах, указывающие на то, что у человека могут развиваться анемии, лейкемии, гиперкальциемия или гипоальбуминемия.

При общей диспансеризации и получении медицинских справок для трудоустройства данное исследование крови не осуществляется. Не требуется оно и в процессе подготовки человека к хирургическому вмешательству.

Для получения наиболее точных результатов рекомендуется соблюдение правил подготовки к анализу. Они включают в себя голодную диету в течение 15 часов до того как будет взята кровь, когда пациент может употреблять только чистую не газированную воду. За 90 минут до проведения исследования необходимо полностью исключить нагрузки как эмоциональные, так и физические, и курение в активной или пассивной форме. Чтобы не допустить искажение данных, забор материала не проводят сразу после того, как был осуществлен гемодиализ или проведена процедура, при которой использовались радиоконтрастные составы. Важно также, чтобы за несколько дней до исследования полностью было исключено лечение пенициллином, так как он вызывает расщепление амбулина, что исказит результат.

Фракция Повышение Понижение
Амбулин Злоупотребление алкоголем, период вынашивания ребёнка, дегидрация Холецистит в острой форме, лейкоз, миелома, саркоидоз, пневмония, остеомиелит, системная красная волчанка, лимфома
Глобулин альфа-1 Цирроз печени, стрессовые состояния, лимфогранулематоз, период вынашивания ребёнка, язва желудка, острое или хроническое воспаление Гепатит вирусной природы в острой форме
Глобулин альфа-2 Сахарный диабет, остеомиелит, гломерулонефрит в острой форме, стрессовые состояния, системная красная волчанка, узловатый полиартрит, цирроз Гипертиреоз, гепатит вирусной природы в острой форме, гемолиз интраваскулярный
Бета-глобулин Сахарный диабет, саркоидоз, ревматоидный артрит, беременность, гломерулонефрит, желтуха подпеченочная, нефротический синдром Лейкоз, цирроз, склеродермия имеющая системный характер, лимфома, системная красная волчанка
Гамма-глобулин Цирроз, склеродермия системного характера, ревматоидный артрит, лимфолейкоз в хронической форме, муковисцидоз, синдром Шегрена Лейкоз, склеродермия, гепатит вирусной природы в острой форме, лимфома, гломерулонефрит

Исказить показатели, кроме неправильной подготовки к проведению анализа, могут 2 фактора: недавно проведенная процедура гемодиализа, из-за которой произошло разрушение эритроцитов в крови, и повышенный уровень билирубина в организме. В любом из этих случаев потребуется пересдача анализа через некоторое время, которое определит врач.

источник

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«Харьковский политехнический институт»

Кафедра биотехнологии, биофизики и аналитической химии

по курсу: «Физико — химические методы анализа»

Выполнил: студент группы ХТ-57б

Нобатова Огулсенем Аганиязовна

1.2. Варианты метода электрофореза белков…………………………………. 5

1.3. Оборудования для электрофореза. Форезная камера……………….……..6

2.3. Процесс полимеризации ПААГ…………………………………………..12

2.4. Выбор концентраций мономеров…………………………………………14

2.5. Миграция белков в геле…………………………………………………. 17

3. Красители используемые для проявления белков …………. 19 Заключение………………………………………………………………………. 20 Список использованных источников……………………………………………. 21

Электрофорез (от электро- и греч. переносить) — это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля. Впервые было открыто профессорами Московского университета П. И. Страховым и Ф. Ф. Рейссом в 1809 году.

С помощью электрофореза удаётся покрывать мелкими частицами поверхность, обеспечивая глубокое проникновение в углубления и поры. Различают две разновидности электрофореза: катафорез — когда обрабатываемая поверхность имеет отрицательный электрический заряд (то есть подключена к отрицательному контакту источника тока) и анафорез — когда заряд поверхности положительный.

Электрофорез применяют в физиотерапии, для окраски автомобилей, в химической промышленности, для осаждения дымов и туманов, для изучения состава растворов и др. Электрофорез является одним из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии.

Цели и задачи данной курсовой работы: — изучение истории электрофореза — изучение теоретических основ электрофореза — изучение методик использования электрофореза в полиакриламидном геле для анализа различных белков — умение использовать правильную плотность геля — изучение сути процесса полимеризации ПААГ — изучение миграции белков в геле — изучение красителей, используемых для проявления белков.

  1. Электрофорез. 1.1. Основы электрофореза.

Электрофорез – это перемещение заряженных частиц в растворе (в зависимости от знака их суммарного электрического заряда) к аноду или катоду под действием электрического поля. Поскольку скорость движения молекул в электрическом поле зависит от их заряда, формы и размера, то электрофорез может быть использован для их разделения. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят в основном от рН среды. Если через этот раствор начать пропускать электрический ток, то под действием электрического поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров макромолекулы приобретают разные скорости, и в этом – сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул мигрирующих с одной и той же скоростью. Однако в жидкости нельзя избежать конвекции, которая деформирует и смешивает разделяющиеся зоны, поэтому обычно электрофорез проводят в гелеобразной среде. Наличие сетки геля приводит к тому, что теперь фракционируемые макромолекулы сталкиваются с нитями полимера, образующего сетку геля, что увеличивает эффективное трение о среду, а следовательно, снижает скорость движения молекул. Очевидно, что препятствия для миграции становятся особенно серьезными, если средний диаметр пространственных ячеек геля оказывается соизмерим с размерами макромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных молекул и степень разделения оказывает соотношение их линейных размеров. Электрофорез позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности. Биологические макромолекулы – белки, нуклеиновые кислоты, полисахариды и др. – находятся в водном растворе в виде частиц, несущих определённый электрический заряд. Заряд макромолекулы определяется входящими в ее состав группами, способными к электролитической диссоциации. Степень диссоциации групп зависит от многих факторов, в частности, от рН среды. Общий заряд биологической макромолекулы также может изменяться при её взаимодействии с ионами или другими молекулами. Наиболее широкое применение электрофорез получил для анализа и очистки белков и нуклеиновых кислот, хотя этот метод может быть использован и для других заряженных биологических молекул, таких как сахара, аминокислоты, пептиды, нуклеотиды и др. Для фракционирования белков, нуклеиновых кислот и их фрагментов в настоящее время используют почти исключительно гель-электрофорез. Наиболее широко используются полиакриламидные (ПААГ) гели и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. В качестве других «носителей» жидкой фазы широко используют пленки из ацетата целлюлозы, фильтровальную бумагу, тонкие слои силикагеля, целлюлозы, сефадекса и др. В некоторых случаях, например для разделения низкомолекулярных веществ, эти системы имеют свои преимущества.

1.2. Варианты метода электрофореза белков.

Существует множество разновидностей и модификаций данного метода, которые используются (или использовались в определённые периоды развития биохимии) в различных областях: 1) электрофорез в свободных средах (без поддерживающей среды) 2) электрофорез с подвижной границей 3) зональный электрофорез без поддерживающей среды 4) капиллярный электрофорез 5) зональный электрофорез в поддерживающей среде с капиллярной структурой 6) электрофорез на фильтровальной бумаге 7) электрофорез белков на ацетат-целлюлозной мембране 8) электрофорез в колонках и блоках гранулированной поддерживающей среды 9) электрофорез белков в ПААГ 10) электрофорез белков в крахмальном геле 11) электрофорез белков в агарозном геле 12) электрофорез в полиакриламидном геле.

1.3. Оборудования для электрофореза. Форезная камера.

Для проведения практикума необходима лаборатория (примерная площадь — 20 м х 20 м) оснащенная следующим оборудованием и расходными материалами: 1. Вертикальная камера для электрофореза с комплектующими; 2. Источник питания с регулировкой силы тока или/и напряжения; 3. Система гель-документирования; 4. Холодильник (+4º), с морозильной камерой (-20º) для хранения растворов; 5. Электронные аналитические весы и набор шпателей для взвешивания; 6. Система для получения деионизированной воды (milliQ); 7. Магнитная мешалка с набором магнитных якорей; 8. Мерные цилиндры (100 и 500 мл), мерные стеклянные стаканы. 9. Стеклянные бутыли для хранения растворов. 10. Один комплект пипеток-дозаторов (10, 200 и 1000 мкл); 11. Пробирки конусные (15 и 50 мл), пробирки типа эппендорф (0,5 и 1,5 мл), наконечники для пипеток (20, 200, 1000, 5000 мкл). 12. Список необходимых реактивов: акриламид, N,N’ –метиленбисакриламид, Трис, додецилсульфат натрия (SDS), персульфат аммония, N,N,N’,N’ – тетраметилэтилендиамин (ТЕМЕД), глицин, трицин, глицерин, β-меркаптоэтанол, ЭДТА, Бромфеноловый синий, Кумасси R 250, Кумасси G 250, изопропанол, уксусная кислота, глутаровый альдегид, набор маркеров молекулярных масс белков (15-150 кДа) и набор низкомолекулярных маркеров молекулярных масс белков и пептидов (1-30 кДа).

Рисунок – 1.3. Оборудование для электрофореза.

Форезная камера: Форезные камеры бывают двух типов: с двумя или с одним платиновым электродом. * камеры с двумя платиновыми электродами можно подключать к источнику напряжения в любой полярности. * камеры с одним — только одним способом. Обычно на таких камерах указана полярность подключения. Будьте внимательны. Подготовка камеры: мыть губкой, смоченной детергентом; сполоснуть раз 10 водопроводной водой; сполоснуть раза 2-3 дистиллятом. Форезные камеры имеют два уязвимых места: * сравнительно легко при мытье отодрать

платиновый электрод; * если при споласкивании или переносе держать камеру за один бортик, то в этом бортике появится трещина. Рисунок – 1.3. Вертикальная форезная камера.

Прибор для электрофореза в вертикальных трубках (в разрезе)

1 — верхний электродный резервуар; 2 — центральный цилиндр; 3 — верхний платиновый электрод; 4 — резиновая прокладка; 5 — трубочка с гелем; 6 — нижний электродный резервуар; 7 —нижний платиновый электрод. Для электрофореза белков обычно используют пластины шириной 8 — 14 см и длиной (в направлении электрофореза) 8 —28 см. Электрофорез нуклеиновых кислот и их фрагментов, например при секвенировании, нередко ведут в больших пластинах размером 33 43 см, что диктуется максимальным размером рентгеновской пленки для авторадиографии. Для разделения гидролизатов тРНК Пиртл и др. недавно использовали пластины ПААГ длиной 90 см.

  1. Гели для электрофореза. 2.1. Плотность геля.

Стандартно используют следующие обозначения: Т – процентное отношение суммарной массы обоих мономеров к объему раствора, С – процентное отношение массы бисакриламида к общей массе обоих мономеров. (Т = акриламид + мономер, образующий сшивки) и количество сшивающего агента в процентах от общего количества мономеров (С): Т = (a + b)/m x 100 % C = b/(a + b) x 100 %

a – количество акриламида; b – количество мономера, образующего сшивки (бисакриламида); m – объем буфера, мл. Т — обычно варьируется в пределах 3-30%, а С 1-5%. Выбор значений С и Т определяется диапазоном фракционирования белков и ограничивается механическими и адсорбционными свойствами геля. Для крупнопористых гелей необходимо увеличивать степень сшивки (повышать С до 3-5%), для мелкопористых гелей величина С не должна превышать 1-2%. На первый взгляд чем больше Т, тем мельче поры, но это не всегда так, поскольку ПААГ не является регулярной пространственной решеткой с жесткими ячейками определенного среднего размера. При малых значениях С он представляет собой скорее длинные нити, заполняющие весь объем и лишь в отдельных точках случайно сшитые между собой. Такая система не может быть внутренне жесткой. Поэтому мигрирующие в геле макромолекулы, по-видимому, могут раздвигать гибкие длинные участки линейных полимеров акриламида, при этом миграция молекул замедляется и происходит своеобразное трение их о гель. Однако жестких ограничений на размер мигрирующих молекул такая система не накладывает, и это очень существенно. Чем выше концентрация заполимеризованного акриламида, тем меньше размер пор в геле:

Читайте также:  Лидаза электрофорез от шишек

p = 1,5 d / Ö` c р – размер пор в ангстремах c – объемная концентрация акриламида d – диаметр молекулы акриламида Чем больше содержание акриламида (а величина Т, в основном, определяется им), тем гуще нити полимера, меньше промежутки между ними и сильнее трение. Увеличение содержания «сшивки» (С) сначала повышает жесткость геля, т.к. средняя длина свободных участков нитей уменьшается. Трение при этом увеличивается, а миграция биополимеров в геле замедляется. Однако далее картина меняется, экспериментально показано, что с увеличением С выше 10% тормозящий эффект геля (при одних и тех же значениях Т) ослабляется. При С>15% гель ведет себя как крупнопористый даже при высоких значениях Т. Внутренняя структура геля в этом случае приобретает, по-видимому, совсем иной характер. Благодаря частым сшивкам оказывается энергетически выгодным и вероятным многократное связывание нескольких параллельно идущих нитей в своего рода пучки, которые также образуют хаотически сшитую пространственную сетку. Эта сетка оказывается действительно жесткой – нити в пучках раздвинуть невозможно. Зато между пучками полимерных нитей образуются достаточно большие пустоты, заполненные жидкой фазой геля, по которым могут свободно мигрировать молекулы биополимеров. Поэтому содержание сшивки С в геле должно быть в пределе 2-5%. Соотношение между акриламидом и сшивающим агентом определяют механические и физические свойства геля. Для гелей с концентрацией Т 5 – 15 % С рекомендуется выбирать в пределах 2-4 %. Для выбора С была предложена следующая эмпирическая формула: С (%) = 6,5 – 0,3 Т (%) Концентрация полиакриламидных гелей, используемых для разделения макромолекул с различными молекулярными массами Концентрация геля Т, % | Концентрация бисакриламида С, % | Пределы разделения, дальтоны |15-2010-155-1052-5 | 0,20,32 – 356 | 1 х 104 — 4 х 1044 х 104 — 1 х 1051 х 105 — 3 х 1053 х 105 — 5 х 105выше 5 х 105|

2.2. Полиакриламидныи гель (ПААГ).

Исходные материалы: Акриламид (СН2 = СН — CONH2) представляет собой белый кристаллический порошок. Хорошо очищенный продажный препарат содержит не более 0,05% акриловой кислоты. Его 5%-ный водный раствор должен иметь рН не ниже 5, а оптическая плотность 1%-ного раствора при 290 нм (А290) не должна превышать 0,15. Такой препарат можно использовать без дополнительной очистки или перекристаллизации. Акриламид следует хранить сухим, в темной посуде, предпочтительно на холоду. В этих условиях он может храниться до года. Акриламид токсичен (воздействует на кожу и нервную систему), поэтому отвеши-вать и растворять его следует в перчатках и под тягой. Недостаточно чистый пре-парат можно перекристаллизовать. Для этого 70 г акриламида растворяют в 1 л хлороформа при 50°, фильтруют при этой же температуре, затем охлаждают до — 20°, быстро промывают кристаллы холодным хлороформом и высушивают в вакуум-эксикаторе. Для освобождения от УФ-поглощающих примесей акриламид можно обработать активированным углем. Для этого в маточный 30 — 40%-ный водный раствор акриламида в смеси с метиленбисакриламидом добавляют акти-вированный уголь (примерно 50 г/л), суспензию перемешивают в течение 30 мин и фильтруют сначала через бумажный, а затем через стекловолокнистый фильтр. NN’-Метиленбисакриламид («Бис») — используют в качестве «сшивки» линейных полимеров акриламида. Продажные препараты, содержащие не более 0,02% акриловой кислоты, не нуждаются в дополнительной очистке. В случае необходимости Бис можно перекристаллизовать из ацетона (12 г/л) в тех же усло-виях, что и акриламид. Условия хранения и токсичность — такие же, как у акриламида. В качестве «сшивки» иногда используют этилендиакрилат — СН2 = СН — СО — O — СН2 — СН2 — О — СО — СН = СН2, а также NN’-диаллилтартардиамид (ДАТД) —

CH2 = CH — CH2 — NH —CO — CH(OH) — CH(OH) — CO — NH — CH2 — CH = CH2. С их помощью получают «растворимые» гели. В первом случае эфирную связь можно разорвать обработкой геля щелочью или водным раствором пипери-дина. Гели, сшитые ДАТД, растворяются за 20 — 30 мин при комнатной темпера-туре в 2%-ной йодной кислоте.

2.3. Процесс полимеризации ПААГ.

При подготовке определенной серии опытов удобно заранее приготовить концентрированный (30 — 40%) водный раствор акриламида и метиленбисакрил-амида с определенным соотношением обоих мономеров. Такой раствор можно хранить в холодильнике в течение нескольких недель. Так же хранят и маточный раствор буфера, например 10-кратной концентрации. ТЕМЕД хранится хорошо, а персульфат аммония растворяют в воде непо-средственно перед началом опыта. Для приготовления геля маточные растворы мономеров и буфера смешивают в такой пропорции, чтобы получить нужную конечную концентрацию акриламида и буфера, дополняют до расчетного объема водой и вносят ТЕМЕД. После этого раствор деаэрируют в колбе Бунзена, присоединенной к водоструйному насосу, добавляют расчетный объем раствора персульфата и заливают в трубку или между стеклами для формирования пластин. При правильном выборе концентраций персульфата и ТЕМЕД полимеризация занимает 30 — 40 мин.Ее следует вести вдали от яркого источника света. Рассмотрим некоторые факторы, влияющие на этот процесс. Наибольшую опасность для нормального протекания полимеризации акриламида представляет растворенный в воде кислород, молекула которого является опреде-ленного рода бирадикалом и потому способна оборвать цепную реакцию свободно-радикальной полимеризации акриламида. Деаэрация смеси растворов необходима именно для удаления из нее растворенного кислорода. Ее можно вести достаточно энергично и с перемешиванием — так, чтобы жидкость при пониженном давлении закипела, но как только интенсивное выделение пузырей газа закончится, деа- эрацию следует прекратить, не допуская заметного испарения воды. Обычно эта процедура занимает несколько минут при комнатной температуре. Кислород воздуха в контакте с раствором мономеров может помешать полимеризации, поэто-му на поверхность раствора осторожно наслаивают до высоты 3 — 5 мм деаэри-рованную кипячением воду или изобутанол. Наслаивать следует по стенке формы через иглу от шприца с помощью перистальтического насоса. Им же удобно отсо-сать воду после окончания полимеризации геля. Вначале граница между гелем и водой исчезает, но затем вновь появляется, что указывает на окончание процесса полимеризации. Если в качестве инициатора используют рибофлавин, то форму с раствором мономеров освещают люминесцентной лампой «дневного света» с расстояния около 5см в течение30 — 45мин. Уже указывалось, что рибофлавин является более эффективным инициатором, чем персульфат. Кроме того, продукты его распада не опасны для белков и нуклеиновых кислот, в то время как ион пер-сульфата может вступать в реакцию с белками, создавая артефакты при их фракци-онировании. В тех случаях, когдаэто существенно, персульфат удаляют путем предварительного электрофореза («преэлектрофореза») геля до внесения в него препарата, однако полностью это сделать не удается. Тем не менее в последние годы в качестве инициатора предпочтение отдают персульфату, поскольку при работе с рибофлавином довольно трудно подобрать оптимальную степень деаэри-рования растворов. С одной стороны, растворенный кислород препятствует полимеризации, а с другой — он необходим, хотя и в небольшом количестве, для самого процесса инициации с участием рибофлавина. Полимеризация — экзотер-мический процесс, поэтому в случае высокой концентрации акриламида во избежа-ние образования пузырей газа и нарушения однородности геля необходимо обес-печить отвод тепла. Вместе с тем скорость полимеризации увеличивается с ростом температуры за счет ускорения образования свободных радикалов. Этим можно воспользоваться для замедления полимеризации: при охлаждении геля на 1° ее продолжительность увеличивается примерно на 2 мин. Полимеризацию гелей, содержащих более 15% акриламида, лучше вести на холоду. Гель получается наи-более однородным, если время полимеризации составляет 30 — 40 мин. Обычно этого добиваются эмпирически, подбирая оптимальную концентрацию персуль-фата. Она может варьировать в пределах от 0,02 до 0,2% в зависимости от концен-трации акриламида и качества самого персульфата. С увеличением содержания акриламида концентрацию персульфата приходится уменьшать. Имеет смысл предварительно внести различные количества данного препарата персульфата в ряд пробирок с рабочим раствором мономеров акриламида, наблюдая продолжи-тельность полимеризации в них.

2.4. Выбор концентраций мономеров.

Для удобства изложения используются следующие обозначения: Т — процентное отношение суммарной массы обоих мономеров к объему их раствора, С — процентное отношение массы метиленбисакриламида к общей массе обоих мономеров. Величина Т практически варьирует в пределах 3 — 30%, а С, как правило, составляет 1—5%, что соответствует отношению акриламид/Бис в пределах от 99:1 по 19:1. Однако в некоторых особых случаях, рассмотренных ниже, имеет смысл увеличивать С до 20% и более. При указании значений Т и С значок «%» далее будет опущен. Для крупнопористых гелей надо увеличивать степень сшивки (повышать величину С до 3 — 5), т. е. отношение акриламид/Бис брать в пределах от 35:1до20:1. При этом происходит одновременное повышение прочности геля и ухудшение его способности прилипать к стеклу — гель как бы «замыкается». Мелкопористые гели (T около 20) при высоком содержании «сшивки» оказываются хрупкими и мутными, поэтому для них величина С не должна превышать 1 — 2. Неправильно было бы считать ПААГ регулярной пространственной решеткой с жесткими ячейками определенного среднего размера. При малых зна-чениях С он представляет собой скорее длинные нити, заполняющие весь объем и лишь вот дельных точках случайным образом сшитые между собой. Расстояние между этими точками вдоль нити (при C 2) в среднем равно 50 — 100 мономерных единиц. Такая система не может быть внутренне жесткой. Мигрирующие в геле мак- ромолекулы, по-видимому, могут раздвигать гибкие длинные участки линей-ных полимеров акриламида. Разумеется, на это расходуется энергия, миграция мо-лекул замедляется и происходит своеобразное «трение» их о гель. Однако жестких ограничений на размер мигрирующих молекул такая система не накладывает, и это очень существенно. Чем больше содержание акриламида, тем гуще нити полимера, меньше промежутки между ними и сильнее трение. Увеличение содержания «сшивки» (С) сначала повышает жесткость геля, так как средняя длина свободных участков нитей уменьшается. Трение при этом увеличивается, а миграция биопо-лимеров в геле замедляется, — именно этого и можно было ожидать. Возвращаясь к ПААГ, следует указать, что гели с очень высоким содержанием метиленбисак-риламида (С > 15) хрупки, легко отстают от стенок, непрозрачны и сильно окраши-ваются. Этих недостатков лишены гели, сшитые NN/-диaллилтapтapдиaмидом. Например, гель с T = 5 и С = 15, сшитый ДАТД, оказывается настолько крупно пористым, что не тормозит миграцию биополимеров с молекулярной массой 0,5млн. дальтон; при этом он механически прочен, хорошо сцепляется со стеклом и прозрачен. Вспомним, что такой гель к тому же растворим в йодной кислоте.

Недавно описано успешное использование для электрофореза белков еще сильнее сшитого геля этого типа. В нем величина С достигала 27,т.е. отношение акриламид/ДАТД не превышало 4 : 1. Рассмотрим теперь подробнее влияние выбора значений Т и С для обыч-ного ПААГ на скорость миграции в нем биополимеров. Тормозящий эффект тре-ния о гель проявляется в снижении электрофоретической подвижности заряженных макромолекул вгеле (и’) по сравнению с их подвижностью в свободной жидкости с такими же, как у буфера геля, значениями рН и ионной силы раствора (u0). Электрофоретическую подвижность определяют как величину скорости миграции заряженных молекул(см/ч)при напряженности поля 1 В/см. Величина и0 зависит от соотношения суммарного электрического заряда макромолекулы(при данном рН) и ее массы. Сила, действующая на молекулу в электрическом поле, пропорциональна заряду, а противодействующая миграции вдоль силовых линий поля сила трения о жидкость пропорциональна линейному размеру молекулы, а следовательно, кубическому корню из ее массы. Для ориентировки заметим, что электрофоретическая подвижность большинства кислых белков в свободной жид-кости при рН 8,8 лежит в пределах 0,1 — 0,5 см/ч на 1 В/см. Прямой корреляции между массой молекулы и величиной и0, очевидно, быть не должно. В геле трение существенно возрастает, причем тем сильнее, чем больше масса молекул и меньше средний размер пор, т. е. чем больше величина Т (для малых значений С).

Показано, что имеет место соотношение: ln(и’/и0) = — kRT. Величина коэффициента торможения kR (порядка 0,1— 0,4) зависит от среднего радиуса молекулы R и степени сшивки геля С, слабо увеличиваясь с ростом последней в пределах от 1 до 7. Для глобулярных белков R лежит в диапазоне от 1,57 нм для лактальбумина(M = 12400) до 3,61 нм для церулоплазмина (M = 151 000). Для эффективного разделения белков при электрофорезе в ПААГ соотношение u’/u0 должно составлять 0,1 — 0,2. Отсюда следует, что оптимальная электрофорети-ческая подвижность белков в ПААГ лежит в пределах 0,01— 0,1 см/ч на 1 В/см. При напряженности поля 10 — 20 В/см этому соответствуют скорости миграции белков в диапазоне 0,1 — 2 см/ч. Таким образом, прирабочей длине геля 10см за 5ч электрофореза наиболее быстрые белки могут достигнуть конца геля, в то время как наименее подвижные продвинутся лишь на 0,5 см. Цифры эти — сугубо приближенные и приведены здесь лишь для общей ориентировки. В конкретных случаях возможны существенные отклонения от них. Например, если заранее известно, что разделяемые белки сильно различаются между собой по заряду или размерам, то можно вести электрофорез в условиях более высоких подвижностей (и’), т. е. в более крупно пористых гелях, и тем сократить время фракционирования в 2 — 3 раза. Выбор значения Т зависит от природы различия электрофоретических подвижностей белков в геле. Если сильно различаются размеры молекул, а отноше-ние заряда к массе у них более или менее одинаково, то имеет смысл выбрать Т максимальным. Разделение в этом случае будет происходить только за счет трения о гель, причем тем эффективнее, чем больше Т, хотя при этом в связи с увеличени-ем продолжительности электрофореза усилится диффузия белков. Если же компо-ненты анализируемой смеси имеют различные отношения заряда к массе, то может оказаться выгодным вести разделение в крупнопористом геле при малых значениях Т), т.е. как бы в свободной жидкости, почти не используя эффект трения молекул о гель. По крайней мере, это обеспечит выигрыш во времени фракционирования.

Читайте также:  Электрофорез с лидазой на голову

2.5. Миграция белков в геле.

Отличие и’ от uо является сила трения о гель, которая зависит от соотно-шения линейных размеров макромолекул и пор геля, а следовательно, от молеку-лярных масс белков и концентрации ПААГ. Молекулярные массы подавляющего большинства индивидуальных белков не превышают 500 000. Поэтому исполь-зование гелей агарозы оказывается нецелесообразным, кроме тех случаев, когда разделение белков хотят вести только по величине отношения заряда к массе. Как правило, электрофорез белков проводят в ПААГ, содержащем 5 — 20% акриламида. Белки являются, цвиттерионами. Их суммарным зарядом, а следовательно и отношением заряда к массе, можно управлять путем изменения рН буфера, в котором полимеризуют ПААГ и ведут электрофорез и который далее будем именовать рабочим. Очевидно, что оптимальное значение рН рабочего буфера обусловливает не максимальный заряд, а максимальное различие зарядов разных белков, состав-ляющих исходную смесь. Поэтому в большинстве случаев нецелесообразно ис-пользовать экстремальные величины рН рабочего буфера, слишком удаленны не от изоэлектрических точек всех белков смеси. Для обычных кислых белков оптималь-ные значения рН буфера оказываются в нейтральной или слабощелочной области; миграция белков идет в направлении от катода к аноду. Для щелочных белков (гистонов, белков рибосом и др.) целесообразно использовать слабокислые буферы (рН 4 — 5). Эти белки различаются по величине суммарного положительного заряда и мигрируют в направлении от анода к катоду. Отметим, что эффект трения о гель зависит не только от молекулярной массы, но и от конфигурации и жесткости белковой макромолекулы. Глобулярные белки, неспособные к агрегации или диссоциации на субъединицы, ведут себя более или менее одинаково, хотя их размеры зависят от плотности упаковки глобу-лы. Рыхлые глобулярные и, особенно, фибриллярные белки могут деформировать-ся при взаимодействии с гелем и тем самым облегчать себе миграцию между его нитями. Этот эффект особенно сильно выражен у высокомолекулярных нуклеино-вых кислот. Для однозначного определения молекулярной массы белка по скорости его миграции при электрофорезе бывает целесообразно распрямить полипептидную цепочку белка и придать ей жесткость. Именно такой прием используется при электрофорезе белков, обработанных додецилсульфатом натрия.

  1. Красители используемые для проявления белков. Для наблюдения за ходом электрофореза в исходный препарат вносят краситель, мигрирующий в том же направлении, что и фракционируемые белки. Он не должен заметным образом связываться с белками, а скорость его продвиже-ния по гелю должна быть заведомо больше, чему наиболее быстро мигрирующего белка. Вместе с тем краситель не должен слишком сильно отрываться от белков, чтобы его прохождению до конца пластины или трубки соответствовало исполь-зование большей частинаходящегося в них геля для фракционирования белков. В щелочных и нейтральных буферах, когда кислые белки заряжены отрицательно и мигрируют к аноду, а также для любых белков в комплексе с ДДС-Na используют отрицательно заряженные красители. Наибольшее распространение получил Бромфеноловый синий, имеющий достаточно сложную структуру; в его состав, в частности, входят два дибромфенольных остатка. Иногда используют еще более сложно построенный краситель — ксиленцианол, электрофоретическая подвижность которого примерно вдвое ниже, чем бромфенолового синего, поэтому его используют при фракционировании крупных белков и нуклеиновых кислот. Для характеристики электрофоретической подвижности белка в данных условиях электрофореза принято указывать отношение расстояния, пройденного белковой полосой от начала рабочего геля, к аналогичному расстоянию до полосы красителя в этом же геле. Это отношение, как и в хроматографии, обозначают Rf В качестве положительно заряженного красителя для электрофореза в кислой среде, когда белки мигрируют в направлении катода, используют метиловый зеленый или пиронин.

В ходе работы был изучен метод электрофореза белков. Использование метода электрофореза в полиакриламидном геле для анализа и разделения сложных смесей белков и нуклеиновых кислот значительно расширило наши знания о белках. Электрофорез в полиакриламидном геле имеет ряд преимуществ перед другими аналитическими методами: он отличается простотой в исполнении, хорошей воспроизводимостью результатов и не требует сложного оборудования.

Все цели и задачи которые были поставлены – изучены.

Список использованных источников.

источник

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник