Меню Рубрики

Методы молекулярной биологии электрофорез

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Национальный исследовательский университет

Новосибирский государственный университет

Факультет естественных наук

Задания к семинарским занятиям по молекулярной биологии

Учебно — методическое пособие

Предлагаемое учебно-методическое пособие предназначено для студентов 2-го курса биологического отделения факультета естественных наук и медицинского факультета. Оно содержит: краткое описание базовых молекулярно-биологических методов, примеры решения задач и задачи для самостоятельного решения, справочные таблицы.

В данном пособии используются материалы из следующих источников:

Уилсон Дж., Хант Т. Молекулярная биология клетки: Сборник задач: Пер. с англ. — М.: Мир, 1994

В. М. Глазер А. И. Ким, Н. Н. Орлова, И. Г. Удина, Ю. П. Алтухов. Задачи по современной генетике. Книжный дом «Университет». 2008

С. Примроуз, Р. Тваймен Геномика. Роль в медицине. Бином. Лаборатория знаний. 2008.

М. Сингер, П. Берг Гены и геномы (в 2-х томах) М. Мир. 1998

Мусил Я., Новикова О., Кунц К. Современная биохимия в схемах — М.: Мир, 1984

Коничев А.С., Цветков И.Л., Попов А.П., и др.Практикум по молекулярной биологии. М.: КолосС, 2012

Wilson J, Hunt T. Molecular Biology of the Cell 5E — The Problems Book. NY. Garland Science — Taylor & Francis Group. 2008.

Составители: Доцент Колесникова Т.Д., ассистент Зайцева О.О.

Учебно-методическое пособие подготовлено в рамках реализации Программы развития НИУ-НГУ

© Новосибирский государственный университет, 2012

Часть 1. Методы молекулярной биологии

Электрофоретическое разделение фрагментов ДНК

Для визуализации результатов операций, проводимых с ДНК, таких как выделение, рестрикция, ПЦР, молекулярное клонирование, наиболее часто используют электрофорез.

Электрофорез– метод разделения макромолекул (в том числе молекул и фрагментов ДНК) в геле по размеру и заряду в постоянном электрическом поле. Существует два вида электрофореза – горизонтальный и вертикальный.

Рис. 1. Горизонтальный электрофорез в агарозном геле.

Для проведения горизонтального электрофореза используют пластину агарозного геля необходимой концентрации с добавлением специального красителя, например бромида этидия.

Поскольку каждый из нуклеотидов молекулы ДНК несет остаток ортофосфорной кислоты со свободной гидроксильной группой, в нейтральной и особенно в слабощелочной среде молекула ДНК приобретает отрицательный заряд и способность перемещаться в электрическом поле в направлении от катода к аноду. На скорость движения ДНК в геле в процессе электрофореза влияют несколько факторов. Агарозный гель – пористая структура, и увеличение концентрации агарозы в геле приводит к уменьшению размеров его пор и, соответственно, к снижению скорости движения макромолекул сквозь гель. Увеличение напряженности электрического поля ускоряет движение молекул. Заряд молекулы увеличивается пропорционально ее длине, но при этом пропорционально длине увеличивается и ее масса. Поэтому ключевым фактором, определяющим скорость движения молекул в геле является способность молекул «протискиваться» через поры геля. Разделение молекул основано на том, что электрофоретическая подвижность молекулы ДНК снижается с увеличением ее длины. Линейные молекулы ДНК одного размера движутся в геле с одинаковой скоростью. Подвижность суперспирализованных и просто кольцевых молекул ДНК отличается от подвижности линейных молекул того же размера.

При постановке электрофореза можно определить размер (молекулярную массу) только линейной ДНК. Для этого в один из карманов геля наносят стандарт, в качестве которого используют специальные маркеры молекулярной массы (смесь фрагментов ДНК с известными значениями молекулярных масс – как правило, это ДНК известной плазмиды или фага, порезанная определенной рестриктазой, но это могут быть и искусственно синтезированные фрагменты).

Рис. 2. Один из стандартных маркеров молекулярного веса (плазмида pR322, рестриктаза BsuR I).

Рис. 3 Электрофоретический гель, окрашенный бромидом этидия. На левой дорожке нанесен маркер молекулярного веса

Для контроля скорости движения ДНК в геле, а также для определения времени окончания процесса электрофореза применяют краску-лидер (специальный краситель, например, бромфеноловый синий), которая перемещается в геле, немного опережая макромолекулы ДНК, двигающиеся в процессе электрофореза.

Для визуализации результатов электрофореза используют краситель бромид этидия, который вносят в процессе приготовления геля. Данное вещество встраивается (интеркалирует) в двуцепочечные молекулы ДНК плоскими ароматическими группами. После окончания электрофореза гель помещают на светофильтр трансиллюминатора, пропускающего свет в диапазоне 254-400 нм. Краситель начинает флуоресцировать в оранжево-красной области видимого спектра, при этом становится видна ДНК.

Для вертикального гель-электрофореза используют полиакриламидный гель (ПААГ). Электрофорез в ПААГ характеризуется высокой разрешающей способностью.

Рестрикционный анализ

Рестрикция – процесс расщепления чужеродной молекулы ДНК под действием специфических бактериальных ферментов – эндонуклеаз рестрикции или рестриктаз.

Эндонуклеазы рестрикции — это бактериальные ферменты, которые расщепляют молекулы ДНК внутри участков с определенной последовательностью. Фермент расщепляет обе цепи ДНК, причем одноцепочечные разрывы могут располагаться точно друг против друга (образуются «тупые» концы) или с некоторым смещением друг относительно друг друга (образуются «липкие концы»).

Рис. 4. «липкие концы», образующиеся в результате гидролиза ДНК рестриктазами BamH I и Pst I.

Эндонуклеазы рестрикции являются незаменимым инструментом молекулярного биолога, поскольку позволяют делить большие молекулы ДНК на заранее известные фрагменты

Репортерные гены.

Гены флюоресцентных белков. Продукт некоторых репортерных генов можно непосредственно наблюдать в клетках и по его наличию судить о присутствии в клетке рекомбинатного вектора. Такими репортерными генами могут быть гены флюоресцентных белков, излучающих свет при облучении ультрафиолетом.

Гены устойчивости к антибиотикам.Во многих плазмидах, обнаруженных в природе, закодированы гены, позволяющие бактериям противостоять воздействию различных антибиотиков. Это свойство можно использовать для селекции трансформированных клонов.

С помощью генов устойчивости к антибиотикам можно отобрать не только клоны, несущие вектор, но именно те колонии, которые содержат вектор со встройкой. Это очень полезный метод, так как эффективность лигирования вектора со встройкой не всегда стопроцентная, и часть клеток может получить плазмиду, которая зашилась сама на себя и не несет встройки. Для этого в векторе должно содежаться два гена устойчивости к разным антибиотикам, например к ампициллину и хлорамфениколу. Обычно такие гены обозначают Amp re и Chlo re . В одном из этих генов должен находиться сайт рестрикции, по которому происходит встройка целевого фрагмента. Сначала бактерии необходимо высеять на среде, содержащей ампициллин. Выжить на ней смогут только те колонии, которые содержат вектор с геном Amp re . Затем, при помощи бархатной печатки отпечаток колоний переносят на среду с хлорамфениколом. Поскольку в плазмидах, несущих целевую встройку, ген Chlo re нарушен, на этой среде они расти не смогут. Таким образом можно определить, какие колонии несут вектор со встройкой.

Также часто пользуются удобной репортерной системой X-gal/LacZ (в частности, она реализована в популярной плазмиде pBluescript). В таких векторах присутствует ген LacZ, кодирующий фермент β-галактозидазу. Этот фермент взаимодействует с бесцветным полисахаридом X-gal с образованием продукта, окрашенного в ярко-синий цвет. Cайт для внедрения встройки располагают в гене LacZ. Следовательно, те колонии, которые при выращивании на среде, содержащей X-gal, окажутся неокрашеными, несут встройку, поскольку встройка сбивает рамку считывания гена β-галактозидазы. Однако, следует помнить, что длина встройки в парах нуклеотидов не должна быть кратна трем.

Также наличие целевой встройки можно оценить при помощи ПЦР. Для этого необходимо иметь праймеры, располагающиеся по краям встройки. Плазмидную ДНК для анализа можно получить все лишь прикоснувшись носиком пипетки к колонии. Размер ПЦР-продуктов на электрофорезе говорит о длине встройки.

Рис. 7. Стандартный плазмидный вектор

Рис. 8. Типичный вектор, сконструированный на основе фага М13. Цифрами отмечены разные гены фага (гены 2 и 5 ответственны за репликацию, остальные детерминируют образование капсида и сборку). Светлый овал — область начала репликации; некодирующий участок выделен цветом. В некодирующую область фагового генома встроена часть lас-оперона E. coli. Затем в ген lacZ встроен сегмент длиной 42 п.н., содержащий несколько сайтов для эндонуклеаз рестрикции (полилинкер, или мультиклонирующий сайт).

Прежде чем клонировать специфическую генную последовательность, ее необходимо выделить из природных источников. ДНК может быть выделена из различного материала: свежего, замороженного, сушенного, фиксированного и т.д. В каждом случае подбирается соответствующий метод. Методы выделения ДНК могут значительно отличатся деталями, однако любой из них включает три стадии: 1. Гомогенизация 2. Обработка детергентом (лизис клеточных мембран) 3. Очистка ДНК.

Таким образом происходит выделение тотальной ДНК, то есть, интересующие исследователя индивидуальные последовательности ДНК (например, индивидуальные гены) «разбавлены» миллионами не относящихся к ним фрагментов ДНК.

Одним из подходов к решению этой проблемы является первоначально тотальное клонирование всех выделенных фрагментов генома – создание библиотеки ДНК. Затем проводится скринингбиблиотеки (то есть, поиск в ней колоний, соответствующих интереующим участкам генома).

Такой скрининг можно осуществлять путем гибридизации с использованием меченого ДНК-зонда. Этот метод выявления нужного клона в библиотеке основан на способности зонда узнавать определенную комплементарную последовательность. Подходящие зонды или праймеры могут быть выбраны на основании данных о структуре частичных клонов данного гена, родственных генов из других организмов, консенсусных последовательностей, характерных для определенного семейства генов, или аминокислотных последовательностей белков.

Полимеразная цепная реакция

Полимеразная цепная реакция (ПЦР) – метод амплификации (умножения числа копий) фрагментов нуклеиновых кислот in vitro, с помощью которого можно быстро и избирательно получить миллионы копий определенных (целевых) нуклеотидных последовательностей.

В ПЦР для амплификации фрагментов ДНК используют термоустойчивую ДНК-полимеразу из термофильной бактарии Thermus aquaticus (Taq-полимераза), которая в присутствии четырех видов дезоксирибонуклеозидтрифосфатов (дАТФ, дГТФ, дСТФ, дТТФ) и коротких 20-30членных затравок (праймеров) осуществляет синтез комплементарных последовательностей ДНК. В качестве матрицы для ПЦР можно использовать тотальную ДНК, полученную из исследуемого материала.

В ходе ПЦР проводят термическую денатурацию двуцепочечной молекулы ДНК про 93-95 °С, после чего пробы охлаждают примерно до 60 °С, хотя оптимальная температура отжига (т. е. возникновения комплементарных взаимодействий между праймером и матрицей) различных праймеров отличается), что дает возможность праймерам связаться с одноцепочечной (в результате денатурации) ДНК. Праймеры подстраиваются по комплементарному принципу к гомологичным участкам «материнской» ДНК и служат для двух целей: запускают работу Taq-полимеразы и одновременно ограничивают участок синтеза ДНК. ПЦР имеет циклический характер. В первом и частично во втором цикле образуются копии (ампликоны), не соответствующие границам амплифицируемого гена. Начиная с третьего цикла длина большинства ампликонов становится стандартной, т.е. соответствует числу пар нуклеотидов ДНК-матрицы между 3’ концами праймеров. Ампликоны накапливаются в геометрической прогрессии, так как синтезированные ампликоны в дальнейшем сами служат матрицей, на которой идет синтез. Повторяя циклы амплификации 30-40 раз, можно за 1,5-3 ч получить миллионы копий гена (2n, где n – число циклов амплификации).

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

· ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.

· Два праймера, комплементарные концам требуемого фрагмента.

· Дезоксинуклеотидтрифосфаты (dATP, dGTP, dCTP, dTTP).

· Ионы Mg2+, необходимые для работы полимеразы.

· Буферный раствор, обеспечивающий необходимые условия реакции — рН, ионную силу раствора. Содержит соли, бычий сывороточный альбумин

Помимо простого увеличения числа копий ДНК (этот процесс называется амплификацией), ПЦР позволяет производить множество других манипуляций с генетическим материалом (введение мутаций, сращивание фрагментов ДНК) и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, выделения новых генов.

Рис. 9. Принцип полимеразной цепной реакции. Двухцепочечную ДНК-матрицу денатурируют (разделяют на отдельные цепи), и проводят отжиг с двумя праймерами. Праймеры присоединяются к противоположным цепям навстречу друг другу, определяя границы целевого амплифицируемого фрагмента. В процессе достройки праймеров происходит копирование участка ДНК, расположенного между двумя праймерами, и в результате количество матрицы удваивается. Цикл реакций денатурации матрицы, отжига и удлинения праймеров повторяется 25—30 раз. При избытке праймеров и других компонентов реакции после 25 циклов теоретически может получиться более 8 млн копий фрагмента.

ПЦР — очень быстрый, чувствительный и производительный метод. Его можно использовать для получения больших количеств специфических фрагментов ДНК, исходя из очень малых количеств исходного материала, причем не обязательно хорошо сохранившегося. Однако копирование с помощью ПЦР в целом менее точное, чем клонирование в клетках, потому что ДНК-полимеразы, используемые в этой процедуре, имеют склонность к ошибкам. Стандартный метод ПЦР пригоден для амплификации фрагментов длиной только до 5 тыс. п. н., в то время как специальные векторы для клонирования позволяют умножать фрагменты ДНК длиной несколько сотен тыс. п. н.

Рис. 10. Метод Саузерн-блоттинга. Сложную смесь молекул ДНК (кДНК, расщепленная геномная ДНК), содержащую интересующую последовательность, подвергают электрофоретическому разделению и переносят на мембрану капиллярным блоттингом. Для этого на поверхность геля помещают мембрану, затем сверху плотно прижимают несколько слоев фильтровальной бумаги, так что буфер, проходя через мембрану, одновременно переносит на нее ДНК. Обычно используют щелочной буфер, так что ДНК денатурирует на отдельные цепи. Иммобилизованную ДНК гибридизуют с меченым зондом, узнающим целевую последова-тельность. В результате детекции на мембране обнаруживают единственную полосу или набор полос, соответствующих только интересующим фрагментам ДНК.

Гибридизация in situ позволяет определить, в каком сегменте хромосомы расположен соответствующий маркер. Флюоресцентная гибридизация in situ (FISH) позволяет одновременно картировать несколько различно окрашенных маркеров ДНК, а гибридизация в период интерфазы — определить порядок маркеров в отдельных участках хромосомы. С помощью этого метода удается надежно выявить хромосомные аномалии

Препараты фиксированных хромосом гибридизуют (инкубируют при повышенной температуре с последующим охлаждением) с исследуемыми последовательностями нуклеотидов, меченными радиоактивной, флуоресцентной или иной меткой. После отмывания несвязавшейся метки оставшиеся меченые молекулы нуклеиновых кислот оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные исследуемым меченым последовательностям нуклеотидов. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после авторадиографии. Для этой группы методов характерна более высокая разрешающая способность, чем для гибридизации соматических клеток , поскольку они позволяют локализовать изучаемые последовательности нуклеотидов на хромосомах.

Рис. 12

Обратная транскрипция

Обратная транскрипция – процесс ферментативного синтеза ДНК на матрице РНК, который катализируется ферментом обратной транскриптазой (ревертаза, РНК-зависимая ДНК-полимераза).

Обратная транскриптаза ретровирусов обладает тремя активностями: РНК-зависимая ДНК-полимеразная, ДНК-зависимая ДНК-полимеразная (обеспечивает синтез второй цепи ДНК), активность РНКазыН (гидролизует РНК в составе ДНК/РНК дуплексов).

Реакцию обратной транскрипции применяют при создании кДНК библиотек – препаратов кДНК, полученных после обработки обратной транскриптазой тотальной РНК, выделенной из определенного организма, органа или ткани, с олиго(дТ) праймерами (комплементарны поли(А) хвосту мРНК). В результате получаются одноцепочечные ДНК-копии всех матричных РНК, по качественному составу и количеству которых можно судить об уровне экспрессии каких-либо генов. Кроме того, размер и первичная структура кДНК при сравнении с соответствующей последовательностью в геномной ДНК, позволяет выявить в ней некодирующие последовательности (интроны).

Рис. 13. Схема обратной транскрипции с использованием олигоТ праймера

Полученную суммарную кДНК можно использовать в ПЦР со специфичными праймерами для получения целевого продукта, для получения библиотеки, клонирования-секвенирования и получения базы данных экспрессирующихся последовательностей – EST (expressed sequence tags), а также для исследования уровня экспрессии тех или иных генов. кДНК используется для техники микроэрреев или биочипов. Сравнение экспрессии генов в разных тканях (здоровых и раковых; на разных стадиях развития; и т.д.) позволяет выявлять различия в экспрессии тех или иных генов, проследить изменения профиля экспрессии генов на разных стадиях развития, выявить возможные мишени для дальнейшей разработки лекарств.

Рис. 15. Электрофорез белков в полиакриамидном геле. Разделение по молекулярному весу.

Изоэлектрическое фокусирование или изоэлектрофорез прменяется для разделения белков по их электрическому заряду.

Аминокислоты содержат по меньшей мере две ионизируемые группы: карбоксильную группу с pK лежащим между 1,7 и 3, и α-аминогруппу с pK около 10. В растворе с pH между 4 и 9 аминокислоты существуют в виде цвиттер-иона, в котором и и амино- и карбоксильная группы ионизированы. Кроме этих двух групп в состав некоторых аминокислот входят и другие группы, способные к ионизации, как, например, еще одна NH2-, или еще одна COOH-, имидазол, ОН-, SH-группы и др.

Например, при физиологическом значении pH ионизованы обе NH2- группы и COOH-группа лизина, что приводит к появлению небольшого положительного заряда молекулы. При том же pH аспарагиновая кислота имеет небольшой отрицательный заряд , вызванный диссоциацией двух карбоксильных групп.

Как и аминокислоты, белковые молекулы в водных растворах заряжены, и величина заряда зависит от pH.

Кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда называется изоэлектрической точкой (pI). Растворимость амфотерных молекул, как правило, является минимальной при pH равной или близкой к изоэлектрической точке pI. Часто они в своей изоэлектрической точке выпадают в осадок. Этим свойством и пользуются при изоэлектрическом фокусировании.

Изоэлектрофокусирование проводят в буфере, который содержит зоны с разным pH. Белок, который находится в рН-зоне ниже собственной изоэлектрической точки, будет положительно заряжен и будет перемещаться к катоду. Белок, находящийся выше своей изоэлектрической точки, будет заряжен отрицательно и будет двигаться к аноду. В результате перемещения заряд молекулы будет приближаться к нулю, а перемещение — замедляться. В конце концов белок войдет в зону рН равного его изоэлектрической точке и станет нейтральным, и больше двигаться в электрическом поле не будет. Таким образом, белки образуют четкие полосы, и каждый белок будет располагаться в градиенте значений рН в соответствии с изоэлетрической точкой.

Изоэлектрическое фокусирование позволяет, в том числе, детектировать такие посттрансляционные изменения в структуре белка, которые изменяют заряд молекулы, такие как, например, фосфорилирование и гликозилирование.

Читайте также:  Продолжительность процедуры электрофореза при общих методиках воздействия

Возможно проведениедвумерного электрофореза,при котором белки сначала разделяют по изоэлектрическим точкам, а затем в перпендикулярном направлении по молекулярной массе с помощью электрофореза в акриламидном геле (Рис. 16).

Рис. 16. Изоэлектрическое фокусирование белков

Рис. 17. Двумерный электрофорез белков. Сначала проводится изоэлектрофокусирование, затем разделение по молекулярной массе в другом направлении.

Иммунодетекция белков

Для детекции определенного белка в образце можно пользоваться методом, по своей логике аналогичным блоттингу нуклеиновых кислот — т. н. Вестерн-блоттингом. В основе этого метода лежит специфическое комплиментарное взаимодействие антиген-антитело.

Антитела (иммуноглобулины) — это особый класс гликопротеинов, присутствующих на поверхности В-клеток в виде мембраносвязанных рецепторов и всыворотке крови и тканевой жидкости в виде растворимых молекул. Они являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов.

Рис. 18. Структура иммуноглобулина G. Иммуноглобулин со­стоит из четырех полипептидных цепей: двух идентич­ных легких и двух идентичных тяжелых. Структура ста­билизируется с помощью дисульфидных связей, обра­зующихся между двумя тяжелыми цепями и тяжелыми и легкими. В самих тяжелых и легких цепях также образуются дисульфидные связи.

Антитела синтезируются плазматическими клетками, которыми становятся В-лимфоциты в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом — характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

На первом этапе проведения Вестерн-блота белки разделяют электрофорезом в ПААГ.

Затем переносят белки на нитроцеллюлозную мембрану, которая неспецифично связывает белки. Связывание белков основано как гидрофобных взаимодействиях, так и на электростатических взаимодействиях между мембраной и белком. Мембрана накладывается поверх геля, поверх мембраны кладут стопку фильтровальной бумаги. Всю стопку помещают в буфер для переноса, который продвигается верх по бумаге под действием капиллярных сил, уносит с собой белки. Другой метод переноса белков называется электроблоттингоми использует электрический ток, который переносит белки из геля на мембрану. Белки перемещаются из геля на мембрану с сохранением своего расположения. В результате этого «промакивания» (от. англ. blotting) белки удерживаются на тонком поверхностном слое мембраны для детекции.

Затем нитроцеллюлозную мембрану обрабатывают раствором бычьего сывороточного альбумина или сухого молока. Белок из разбавленного раствора прикрепляется к мембране во всех местах, где не прикрепился целевой белок. Эта процедура исключает неспецифичное связывание антитела мембраной.

Затем приливают раствор специфического антитела к целевому белку, после чего следует отмывка от несвязавшегося антитела. Специфические антитела получают иммунизацией животных очищенным целевым белком.

Детекция возможна в одну или две стадии.

Детекцию проводят в одну стадию, если антитело на целевой белок помечено каким-либо образом. Это может быть радиоактивная метка, или флюоресцентная метка, пришитая к антителу ковалентно. Существуют антитела, связанные с репортёрным ферментом, например, с щелочной фосфотазой или пероксидазой хрена. В этом случае блот выдерживается на подложке с соответствующим субстратом. Субстрат выбрают так, чтобы в результате взаимодействия с ферментом он изменял свой цвет.

Как правило, однако, детекцию проводят в две стадии. В этом случае первичное антитело, специфически узнающее целевой белок, не детектируется. Меченым являетсявторичное антитело. Вторичное антитело представляет из себя антитело, распознающее видоспецифичные консервативные участки первичного антитела. Если, например, первичное антитело получали путем иммунизации мыши очищенным целевым белком, то вторичное антитело получают иммунизируя другое животное, например, козу, консервативным участком мышиного антитела. Такое антитело будет называться «anti-mouse” и будет специфически распознавать большинство любых мышиных антител. Двухступенчатая детекция позволяет иметь универсальные вторичные антитела для детекции любых первичных, полученных в данном животном, что удешевляет анализ. Кроме того, несколько вторичных антител могут связываться с одним первичным и усиливать сигнал.

Рис. 19. Общая схема Вестерн-блот анализа

Рис. 20. Общая схема метода секвенирования ДНК по методу Сэнгера. Исследуемая матрица амплифицируется отдельно в присутствии каждого из дидезоксинуклеотидтрифосфатов. В каждой пробирке образуется уникальный набор продуктов. Далее эти продукты разделяются электрофорезом с разрешением до одного нуклеотида. По длине фрагментов, образовавшихся в каждой пробирке, восстанавливают последовательность матрицы.

Одна из самых широко применяемых технологий, основанная на принципе гибридизации нуклеиновых кислот — использование ДНК-микрочипов.

ДНК-микрочип (микроэррей) представляет из себя набор микроскопических фрагментов ДНК (зондов), иммобилизованных, как правило, ковалентно на твердой подложке. Это могут быть короткие участки ДНК как генов, так и любых других последовательностей ДНК, способные специфично гибридизоваться с исследуемой кДНК (мишенью). Степень гибридизации зонда с мишенью обычно оценивают по уровню флюоро- или хемилюминисценции метки, присоединенной к мишени.

Сушествует два основных типа микрочипов: точечные микрочипы, получаемые нанесением фрагментов ДНК на покрытое гелем предметное стекло микроскопа, и олигонуклеотидные микрочипы высокой плотности, которые производят путем прямого синтеза олигонуклеотидов на стеклянной подложке.

Поскольку на одном микрочипе обычно помещаются десятки тысяч зондов, можно одновременно оценивать экспрессию очень большого числа генов, что упрощает анализ.ДНК-микрочипы применяются для одновременного измерения уровня экспрессии большого числа генов, генотипирования, количественных оценок, детектирования ОНП, альтернативного сплайсинга и т.д.

Предположим, перед нами стоит задача сравнить экспрессию генов в печени у здорового человека и больного. Для этого обычно применяют двухцветные (или двухканальные) микрочипы.

Сначала необходимо выделить тотальную мРНК из печени здорового и больного. Затем по матрице этой РНК при помощи обратной транскриптазы получить кДНК, меченую флюорофорной меткой. Для это используют меченые аналоги нуклеозидтрифосфатов. Флюоресцентные краски, которые обычно применяют для мечения кДНК, имеют длину волны эмиссии флюоресценции в областях спектра, соответствующих красному или зеленому. Пометим кДНК, полученную от больного человека, например, красным флюорофором, а от здорового — зеленым.

Полученную суммарную кДНК можно использовать в ПЦР со специфичными праймерами для получения целевого продукта, для получения библиотеки, клонирования-секвенирования и получения базы данных экспрессирующихся последовательностей – EST (expressed sequence tags), а также для исследования уровня экспрессии тех или иных генов. кДНК используется для техники микроэрреев или биочипов. Сравнение экспрессии генов в разных тканях (здоровых и раковых; на разных стадиях развития; и т.д.) позволяет выявлять различия в экспрессии тех или иных генов, проследить изменения профиля экспрессии генов на разных стадиях развития, выявить возможные мишени для дальнейшей разработки лекарств.

Полученная смесь молекул кДНК отражает содержание транскриптов в исходной смеси мРНК: чем больше данной мРНК было в исходной смеси, тем больше ее кДНК-копий. На следующем этапе кДНК из двух образцов смешивают и гибридизуют с одним и тем же микрочипом. При этом индивидуальные олигонуклеотиды, закрепленные на подложке взаимодействуют со своими мишенями, находящимися в образце. После окончания процесса гибридизации чипы промываются для удаления остатков материала.

В каждой ячейке микрочипа содержится примерно 10 6 -10 7 копий фрагмента, что намного превышает число копий каждой специфической кДНК в исследуемом образце. В таких условиях происходит ненасыщающая гибридизация. Интенсивность сигнала в каждой ячейке пропорциональна содержанию данного типа кДНК. Микрочип сканируют на двух длинах волн эмиссии флюоресценции, соответствующих излучению каждого красителя. Затем с помощью компьютера результаты накладываются друг на друга и выводятся на экран в виде изображения микрочипа с окрашенными в разные цвета ячейками. Поскольку красным флюорофором мы метили кДНК больного человека, а зеленым — здорового, ячейки, которые окрашены только красным, соответсвуют РНК, присутствовавшей только у больного человека, те, которые окрашены только зеленым — только у здорового. В ячейках, где происходит наложение цветов (в нашем случае они будут желтого цвета), находятся зонды, соответствующие генам, которые экспрессируются и у здорового, и у больного человека. Темными остаются ячейки, с которыми не гибридизовалась никакая кДНК из исследуемых образцов.

Можно проводить подобный анализ и на одноканальном микрочипе. Тогда оба набора кДНК метятся одним и тем же флюорофором, но гибридизуются с двумя копиями микрочипа отдельно. Плюс одноканального подхода в том, что каждый чип взаимодействует только с одним образцом. Это значит, что один плохо подготовленный образец не сможет повлиять на качество данных, полученных по другим образцам. Другой плюс одноканальной системы состоит в том, что данные, полученные с ее помощью в разных экспериментах, проще сравнивать между собой.

Рис. ДНК-микрочип. Сравнительный анализ уровней генной экспрессии. Сначала при помощи обратной транскрипции получают меченную флюорофорами кДНК. кДНК гибридизуют с микрочипом и отмывают от несвязавшихся молекул. Затем снимают флюоресценцию на соответсвующих длинах волн и обрабатывают полученные данные на компьютере. Объединенное изображение демонстрирует четыре типа сигналов: W — гены, экспрессирющиеся одинаково в двух образцах мРНК, X — гены, экспрессирующиеся сильнее в образце 1, Y — гены, экспрессирующиеся сильнее в образце 2, Z – гены, неэкспрессирующиеся ни в одном из образцов.

Часть 2. Задачи

1. Перед вами два примера мембранных липидов. Один характерен для бактерий и эукариот, другой – для архебактерий. Установите соответствие.

2.Что получится при электрофорезе смеси фрагментов ДНК: (T)150, (G≡C)150 и (T=A)150?

3.Будет ли этот фрагмент ДНК разрезаться рестриктазами EcoRI (5’-GAATCC), AluI (5’-AGCT), PstI (5’-CTGCAG)? Если да, то сколько фрагментов получится?

5.Линейный фрагмент ДНК обработали рестриктазами HinсII, NdelI и их смесью. Продукты реакции разделили в агарозном геле и окрасили бромистым этидием. Результаты электрофореза представлены на рис. 22. Цифры справа указывают на приблизительные размеры фрагментов в п.н. Постройте рестрикционную карту фрагмента.

6.На Рис. 23 представлены электрофореграммы исследования полиморфизма экзона 9 гена VDR-3 (ядерный рецептор витамина D) рестриктазой TaqI в контрольной выборке (дорожки 1-21) и у больных остеопорозом (22-42). Цифрами справа обозначены длины фрагментов ДНК в п.н. Составьте возможные варианты рестрикционной карты аллелей T (с одним сайтом рестрикции) и t (с двумя сайтами рестрикции), если исходная длина амплифицированного фрагмента экзона 9 составляет 745 п.н. и в нем есть два сайта для рестриктазы TaqI, один из которых полиморфный, а другой – нет. Определите частоту аллелей T и t в контрольной выборке и у больных.

7.В кодирующей части гена CRR5 рецептора хемокинов встречается делеция 32 п. н. (CRR5de!32). Известно, что рецептор хемокинов CRR5 используется также вирусом иммунодефицита человека ВИЧ-1для проникновения в клетки человека. Данная делеция приводит к дефекту рецептора, препятствует его взаимо-действию с вирусом и тем самым определяет устойчивость к ин-фекции ВИЧ-1у гомозигот по присутствию делеции (CRR5del32/ CRR5del32). На электрофореграмме представлены результаты IIЦР-амплификации участка гена CRR5, затронутого этой делецией, у группы с высоким риском заражения ВИЧ-1. Определите дорож-ки, на которых представлены образцы людей, устойчивых к инфек-ции. Цифрами справа обозначены длины фрагментов ДНК в п. н.

Последнее изменение этой страницы: 2017-02-10; Нарушение авторского права страницы

источник

Электрофорез является движением дисперсных частиц относительно жидкости под действием пространственно-однородного электрического поля.

Электрофорез представляет собой метод, используемый в области молекулярной биологии для отделения частей молекулы ДНК. Это движение частиц в электрическом поле к одному из двух электрических полюсов. Он находит применение в биохимии и медицине для разделения высокомолекулярных соединений на фракции с различной молекулярной массой.

Впервые этот метод был использован в $1809$ году в Московском государственном университете.

Лекарственный электрофорез это комбинированное (одновременное) использование постоянного тока, в основном гальванического тока, а также небольшого количества препарата или комбинации препаратов.

Основное значение в терапевтическом механизме этого метода принадлежит току, который, также, повышает чувствительность тканей к действию лекарственных средств. Характеристики терапевтического действия лекарственных средств электрофореза включают:

Попробуй обратиться за помощью к преподавателям

  • возможность концентрации эффекта на поверхности определенной части тела, например суставе;
  • длительность действия процедуры сохраняется в течение нескольких дней;
  • исключено негативное влияние препаратов на органы пищеварения;
  • введение лекарственного средства в организм в виде ионов, то есть в активной форме.

Принимая во внимание, что ведущее значение в этом методе принадлежит току, основными показаниями для лекарственного электрофореза, а также гальванизации, являются местные и региональные патологические процессы.

Препараты выбираются по тем же основаниям. Системное действие этих методов, можно ожидать, главным образом во время функциональных нарушений вегетативно-сосудистых заболеваний.

Показания к физиотерапии весьма широки. Они определяются фармакотерапевтическими характеристиками вводимых препаратов. Терапевтичсекий электрофорез применяется при заболеваниях центральной и периферической нервной системы, опорно-двигательного аппарата, гинекологических заболеваний и т.д.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Гель-электрофорез (Электрофорез ДНК) это метод разделения и анализа макромолекул (ДНК, РНК и белков), а также их фрагментов, в зависимости от их размера и заряда. Он используется в клинической химии для разделения белков с помощью заряда или размера, а также в области биохимии и молекулярной биологии, чтобы отделить смешанную популяцию ДНК и РНК фрагментов по длине, чтобы оценить размер ДНК и РНК фрагментов или отдельных белков по заряду.

Проще говоря, электрофорез представляет собой процесс, который позволяет проводить сортировку молекул в зависимости от размера.

Термин » гель » в данном случае, относится к матрице, используемой, чтобы сдерживать, а затем отделять молекулы — мишени. В большинстве случаев, гель представляет собой сшитый полимер, состав и пористость выбирается в зависимости от удельного веса и состава мишени для анализа. При разделении белков или небольшие нуклеиновые кислоты (ДНК, РНК) гель обычно состоит из различных концентраций акриламида и поперечно-сшивающего агента.

Электрофорез определяется электродвижущей силой (ЭДС), которая используется для перемещения молекулы через гелиевую матрицу.

Фонофорез является метод использованиея ультразвука для улучшения доставки применяемых препаратов. Фонофорез используют в целях повышения абсорбции местного применения анальгетиков и противовоспалительных средств, с помощью терапевтического применения ультразвука.

Была доказана неэффективность этого метода для некоторого вида лечения.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

источник

Статья на конкурс «био/мол/текст»: Биология — самая быстро развивающаяся наука во второй половине ХХ и ХХI веке. Связано это, в первую очередь, с появлением нового ее раздела — молекулярной биологии, подоплекой возникновения которой, в свою очередь, стало стремительное развитие физики, химии и физико-химических методов. Я расскажу о важнейших (на мой взгляд) методах молекулярной биологии, с помощью которых были сделаны многие открытия, известные не только в узких научных кругах, но и среди широкой публики. Они принесли множество Нобелевских премий как тем, кто их открыл, так и тем, кто их использовал. Многие из них применяются не только в биологии, но и в других областях: медицине, криминалистике, археологии.

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2011 в номинации «Лучшая обзорная статья».

Началом молекулярной биологии принято считать открытие структуры ДНК (рис. 1) в 1953 году Джеймсом Уотсоном и Френсисом Криком, за что они (совместно с Морисом Уилкинсом) в 1962 году получили Нобелевскую премию по физиологии и медицине [1], [2]. Они выяснили, что молекула ДНК представляет из себя две противоположно направленные цепочки полинуклеотидов, закрученных вокруг общей оси в двойную спираль, причем друг напротив друга в спирали всегда стоят определенные азотистые основания: напротив гуанина (Г или G) — цитозин (Ц или C), а напротив аденина (А) — тимин (Т) (рис. 1). Это называют правилом комплементарости: цепи удерживаются вместе за счет водородных связей, возникающих между нуклеотидами. Водородная связь гораздо слабее ковалентной, с помощью которой нуклеотидные остатки соединяются между собой в одной цепи ДНК, формируя так называемый сахаро-фосфатный остов. Его так называют, поскольку в нем остатки сахара (дезоксирибозы) в нуклеотидах связаны друг с другом через остатки ортофосфорной кислоты — фосфаты. Концы обеих цепей не равноценны: по порядковому номеру атома углерода в остатке сахара один из них называют 3´, а другой — 5´. Синтез ДНК (как и РНК) в природе, как правило, идет от 5´ к 3´-концу.

Читайте также:  Массаж и электрофорез для грудничков на дому

Возможно, следовало бы начать отсчет с экспериментов Бидла, Татума, Ледерберга, но это дело вкуса. — Ред.

Рисунок 1. Схема строения двуцепочечной молекулы ДНК.

Однако ДНК не обязательно бывает двуцепочечной — иногда встречаются и одноцепочечные молекулы (например, в геномах некоторых вирусов). Это очень важно, поскольку, как будет рассказано ниже, двуцепочечные молекулы могут денатурировать на одноцепочечные, и, наоборот, одноцепочечные образовывать двуцепочечные.

Строение РНК аналогично (хотя обычно она состоит из одной цепи и часто образует комплементарные взаимодействия между участками одной молекулы), только вместо тимина в ее состав входит урацил, а вместо дезоксирибозы — рибоза. Подробнее обо всем этом написано в учебниках по молекулярной биологии [3].

Я кратко напомню так называемую центральную догму молекулярной биологии, в первоначальном виде сформулированную Фрэнсисом Криком [4]. В общем случае она гласит, что генетическая информация при реализации передается от нуклеиновых кислот к белку, но не наоборот. А точнее, возможно передача ДНК → ДНК (репликация), ДНК → РНК (транскрипция) и РНК → белок (трансляция). Так же существуют значительно реже реализуемые пути, свойственные некоторым вирусам: РНК → ДНК (обратная транскрипция) и РНК → РНК (репликация РНК). Также напомню, что белки состоят из аминокислотных остатков, последовательность которых закодирована в генетическом коде организма: три нуклеотида (их называют кодон, или триплет) кодируют одну аминокислоту, причем одну и ту же аминокислоту может кодировать несколько кодонов.

Во второй половине XX века получили развитие технологии рекомбинантной ДНК (то есть, методы манипуляции ДНК, позволяющие различными способами изменять последовательность и состав нуклеотидов в молекуле). Именно на их основе происходит развитие всех молекулярно-биологических методов и поныне, хотя они стали значительно сложнее, как идейно, так и технологически. Именно молекулярная биология вызвала такой бурный рост количества биологической информации за последние полвека.

Я расскажу о методах манипуляции и изучения ДНК и РНК, совсем немного коснусь белков, поскольку в основном методы, связанные с ними, ближе к биохимии, чем к молекулярной биологии (хотя грань между ними в последнее время стала очень расплывчатой).

Ферменты — белки, ускоряющие прохождение химических реакций. Они очень эффективны: ускорение может составлять несколько порядков! Например, фермент каталаза, расщепляющий перекись водорода, ускоряет реакцию примерно на 12 порядков, то есть в триллион раз! В то же время неорганический катализатор — мелкодисперсная платина — ускоряет эту же реакцию только на шесть порядков, или в миллион раз. Однако за это приходится платить очень строгими условиями работы большинства из них.

Рисунок 2. Сайты рестрикции. Сверху — целевая последовательность рестриктазы SmaI, при работе которой образуются «тупые» концы. Снизу — целевая последовательность рестриктазы EcoRI, при работе которой образуются «липкие» концы.

Одним из первых и важнейших из шагов молекулярной биологии стала возможность разрезать молекулы ДНК, причем в строго определенных местах [3]. Этот метод был изобретен при изучении в 1950—1970-е годы такого феномена: некоторые виды бактерий при добавлении в среду чужеродной ДНК разрушали ее, в то время, как их собственная ДНК оставалась невредимой. Оказалось, что они для этого используют ферменты, позднее названные рестрикционными нуклеазами или рестриктазами. Существует множество видов рестриктаз: к 2007-му году их было известно более 3000 [5]. Важным свойством каждого подобного фермента является его способность разрезать строго определенную — целевую — последовательность нуклеотидов ДНК (рис. 2). Рестриктазы не воздействуют на собственную ДНК клетки, поскольку нуклеотиды в целевых последовательностях модифицированы так, что рестриктаза не может с ними работать. (Правда, иногда, наоборот, они могут разрезать только модифицированные последовательности — для борьбы с теми, кто модифицирует ДНК, защищаясь от вышеописанных рестриктаз.) Из-за того, что целевые последовательности бывают различной длины, частота встречаемости их в молекулах ДНК варьирует: чем длиннее необходимый фрагмент, тем меньше вероятность его появления. Соответственно, образующиеся при обработке различными рестриктазами фрагменты ДНК будут иметь различную длину.

Новые эндонуклеазы продолжают открывать и по сей день. Многие из них до сих пор не клонированы, то есть, не известны гены, которые их кодируют, и в качестве «фермента» используют некую очищенную фракцию белков, обладающую нужной каталитической активностью. Новосибирская компания СибЭнзим долгое время успешно соревновалась с компанией New England Biolabs — признанным во всем мире лидером по поставке рестритаз (то есть предлагала такое же или большее различных рестриктаз, некоторые из которых весьма экзотичны). — Ред.

За выделение первой рестриктазы, изучение ее свойств и первое применение для картирования хромосом Вернер Арбер (Werner Arber), Дэн Натанс (Dan Nathans) и Гамильтон Смит (Hamilton Smith) в 1978 году получили Нобелевскую премию по физиологии и медицине.

Для создания новых молекул ДНК, разумеется, кроме разрезания, необходима еще и возможность сшивания двух цепей. Это делают с помощью ферментов, называемых ДНК-лигазами, которые сшивают сахаро-фосфатный остов двух цепей ДНК. Поскольку по химическому строению ДНК не отличается у разных организмов, можно сшивать ДНК из любых источников, и клетка не сможет отличить полученную молекулу от своей собственной ДНК.

Часто приходится иметь дело со смесью молекул ДНК разной длины. Например, при обработке химически выделенной из организма ДНК рестриктазами как раз получится смесь фрагментов ДНК, причем их длины будут различаться.

Поскольку любая молекула ДНК в водном растворе отрицательно заряжена, появляется возможность разделить смесь фрагментов ДНК различных размеров по их длине с помощью электрофореза [3], [6]. ДНК помещают в гель (обычно, агарозный для относительно длинных и сильно отличающихся молекул или полиакриламидный для электрофореза с высоким разрешением), который помещают в постоянное электрическое поле. Из-за этого молекулы ДНК будут двигаться к положительному электроду (аноду), причем их скорости будут зависеть от длины молекулы: чем она длиннее, тем сильнее ей мешает двигаться гель и, соответственно, тем ниже скорость. После электрофореза смеси фрагментов разных длин в геле образуют полосы, соответствующие фрагментам одной и той же длины. С помощью маркеров (смесей фрагментов ДНК известных длин) можно установить длину молекул в образце (рис. 3).

Рисунок 3. Схема проведения электрофореза ДНК в агарозном геле.

Визуализовать результаты фореза можно двумя способами. Первый, наиболее часто используемый в последнее время — добавление в гель веществ, флуоресцирующих в присутствии ДНК (традиционно использовался довольно токсичный бромистый этидий; в последнее время в обиход входят более безопасные вещества). Бромистый этидий светится оранжевым светом при облучении ультрафиолетом, причем при связывании с ДНК интенсивность свечения возрастает на несколько порядков (рис. 4). Другой метод заключается в использовании радиоактивных изотопов, которые необходимо предварительно включить в состав анализируемой ДНК. В этом случае на гель сверху кладут фотопластинку, которая засвечивается над полосами ДНК за счет радиоактивного излучения (этот метод визуализации называют авторадиографией).

Рисунок 4. Электрофорез в агарозном геле с использованием бромистого этидия для визуализации результатов в ультрафиолете (слева). Вторая слева дорожка — маркер с известными длинами фрагментов. Справа — Установка для проведения электрофореза в геле.

Кроме «обычного» электрофореза в пластине из геля, в некоторых случаях используют капиллярный электрофорез, который проводят в очень тонкой трубочке, наполненной гелем (обычно полиакриламидным). Разрешающая способность такого электрофореза значительно выше: с его помощью можно разделять молекулы ДНК, отличающиеся по длине всего на один нуклеотид. Об одном из важных приложений такого метода читайте ниже в описании метода секвенирования ДНК по Сэнгеру.

С помощью электрофореза можно узнать размер молекул ДНК в растворе, однако он ничего не скажет о последовательности нуклеотидов в них. С помощью гибридизации ДНК можно понять, какая из полос содержит фрагмент со строго определенной последовательностью. Гибридизация ДНК основана на образовании водородных связей между двумя цепями ДНК, приводящем к их соединению [3], [7].

Сначала необходимо синтезировать ДНК-зонд, комплементарный той последовательности, которую мы ищем. Он обычно представляет собой одноцепочечную молекулу ДНК длиной 10–1000 нуклеотидов. Из-за комплементарности зонд свяжется с необходимой последовательностью, а за счет флуоресцентной метки или радиоизотопов, встроенных в зонд, результаты можно увидеть.

Для этого используют процедуру, называемую Саузерн-блоттинг или перенос по Саузерну, названную по имени ученого, ее изобретшего (Edwin Southern). Первоначально смесь фрагментов ДНК разделяют с помощью электрофореза. На гель сверху кладут лист нитроцеллюлозы или нейлона, и разделенные фрагменты ДНК переносятся на него за счет блоттинга: гель лежит на губке в ванночке с раствором щелочи, который просачивается через гель и нитроцеллюлозу за счет капиллярного эффекта от бумажных полотенец, сложенных сверху. Во время просачивания щелочь вызывает денатурацию ДНК, и на поверхность пластины нитроцеллюлозы переносятся и закрепляются там уже одноцепочечные фрагменты. Лист нитроцеллюлозы аккуратно снимают с геля и обрабатывают радиоактивно меченной ДНК-пробой, специфичной к необходимой последовательности ДНК. Лист нитроцеллюлозы тщательно отмывают, чтобы на нем остались только те молекулы пробы, которые гибридизовались с ДНК на нитроцеллюлозе. После авторадиографии ДНК, с которой гибридизовался зонд, будет видна как полосы на фотопластинке (рис. 5).

Рисунок 5. Схема проведения Саузерн-блоттинга.

Адаптация этой методики для определения специфических последовательностей РНК называется, в противоположность Саузерн-блоттингу, норзерн-блоттингом (northern blotting: southern по-английски означает «южный», а northern — «северный»). В этом случае проводят электрофорез в геле с молекулами мРНК, а в качестве зонда выбирают одноцепочечную молекулу ДНК или РНК.

Мы уже знаем, каким образом можно разрезать геном на части (а их сшивать с произвольными молекулами ДНК), разделять полученные фрагменты по длине и с помощью гибридизации выбрать необходимый. Теперь настало время узнать, как, скомбинировав эти методы, мы можем клонировать участок генома (например, определенный ген). В геноме любой ген занимает крайне маленькую длину (по сравнению со всей ДНК клетки). Клонирование ДНК буквально означает создание большого числа копий определенного ее фрагмента. Именно за счет этой амплификации мы получаем возможность выделить участок ДНК и получить его в достаточном для изучения количестве.

Каким образом разделить фрагменты ДНК по длине и идентифицировать нужный — было рассказано выше. Теперь надо понять, каким образом можно копировать необходимый нам фрагмент. Существует два основных метода: использование быстро делящихся организмов (обычно бактерий Escherichia coli — кишечной палочки — или дрожжей Saccharomyces serevisiae) или проделать аналогичный процесс, но in vitro с помощью полимеразной цепной реакции.

Поскольку при каждом клеточном делении бактерии (как и любые другие клетки, не считая предшественников половых клеток) удваивают свою ДНК, это можно использовать для умножения количества необходимой нам ДНК [3]. Для того, чтобы внедрить наш фрагмент ДНК в бактерию, необходимо «вшить» его в специальный вектор, в качестве которого обычно используют бактериальную плазмиду (небольшую — относительно бактериальной хромосомы — кольцевую молекулу ДНК, реплицирующуюся отдельно от хромосомы). У бактерий «дикого типа» часто встречаются подобные структуры: они часто переносятся «горизонтально» между разными штаммами или даже видами бактерий. Чаще всего в них содержатся гены устойчивости к антибиотикам (именно из-за этого свойства их и открыли) или бактериофагам, а также гены, позволяющие клетке использовать более разнообразный субстрат. (Иногда же они «эгоистичны» и не несут никаких функций.) Именно такие плазмиды обычно и используют в молекулярно-генетических исследованиях. В плазмидах обязательно содержится точка начала репликации (последовательность, с которой начинается репликация молекулы), целевая последовательность рестриктазы и ген, позволяющий отобрать те клетки, которые обладают этой плазмидой (обычно, это гены устойчивости к какому-нибудь антибиотику). В некоторых случаях (например, при изучении очень больших фрагментов ДНК) используют не плазмиду, а искусственную бактериальную хромосому.

В плазмиду с помощью рестриктаз и лигаз встраивают необходимый фрагмент ДНК, после чего добавляют ее в культуру бактерий при специальных условиях, обеспечивающих трансформацию — процесс активного захвата бактерией ДНК из внешней среды (рис. 6). После этого проводят отбор бактерий, трансформация которых прошла успешно, добавляя соответствующий гену в плазмиде антибиотик: в живых остаются только клетки, несущие ген устойчивости (а, следовательно, и плазмиду). Далее, после роста культуры клеток, из нее выделяют плазмиды, а из них с помощью рестриктаз выделяют «наш» фрагмент ДНК (или использую плазмиду целиком). Если же ген вставили в плазмиду для того, чтобы получить его белковый продукт, необходимо обеспечить культуре условия для роста, а потом просто выделить требуемый белок.

Рисунок 6. Схема клонирования участка ДНК (гена) в бактериях.

На этом месте сразу же должен возникать вопрос: как же все это возможно было использовать до того, когда были расшифрованы геномы, да и чтение последовательности ДНК было еще дорогим и малораспространенным? Положим, с помощью рестрикции и клонирования полученных фрагментов мы получим библиотеку ДНК, то есть набор бактерий, несущих различные плазмиды, содержащие суммарно весь геном (или заметную его часть). Но каким образом мы сможем понять, в каком из фрагментов содержится необходимый ген? Для этого использовали метод гибридизации. Сначала необходимо было выделить белок нужного гена. После чего отсеквенировать его фрагмент, обратить генетический код и получить последовательность нуклеотидов (конечно, из-за вырожденности генетического кода приходилось пробовать много различных вариантов). В соответствии с ней химически синтезировали короткую молекулу ДНК, которую и использовали в качестве зонда для гибридизации.

Но в некоторых случаях этот метод давал сбои — например, так произошло с фактором свертывания крови VIII. Этот белок участвует в свертывании крови , и нарушения в его функциональности являются причиной одного из самых распространенных генетических заболеваний — гемофилии А. Раньше для лечения приходилось выделять этот белок из большого числа организмов, потому что не удавалось клонировать его для производства бактериями. Связано это было с тем, что его длина составляет около 180000 пар нуклеотидов, и он содержит много интронов (некодирующих фрагментов между кодирующими) — неудивительно, что ни в одну плазмиду этот ген не попал целиком.

Полимеразная цепная реакция — молекулярно-биологический метод, позволяющий добиться колоссального (до 10 12 раз) увеличения числа копий определенного фрагмента ДНК in vitro [3], [9]. Она была изобретена Кэри Муллисом (Kary Mullis) в 1983 году, за что в 1993 году он получил Нобелевскую премию по химии (совместно с М. Смитом). (См. также: «Кари Маллис, изобретатель ПЦР» [10].)

Метод основан на многократном избирательном копировании определенного участка ДНК при помощи ферментов в искусственных условиях. При этом происходит копирование только того участка ДНК, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от репликации ДНК в клетках живых организмов, с помощью ПЦР амплифицируют сравнительно короткие участки ДНК (обычно, не более 3000 пар нуклеотидов, однако есть методы позволяющие «поднимать» до 20 тысяч пар нуклеотидов — так называемый Long Range PCR).

Фактически, ПЦР является искусственной многократной репликацией фрагмента ДНК (рис. 7). ДНК-полимеразы так устроены, что не могут синтезировать новую ДНК, просто имея в наличии матрицу и мономеры. Для этого необходима еще и затравка (праймер), с которого они начинают синтез. Праймер — это короткий одноцепочечный фрагмент нуклеиновой кислоты, комплементарный ДНК-матрице. При репликации в клетке такие праймеры синтезируются специальным ферментом праймазой и являются молекулами РНК, которые позже заменяются на ДНК. Однако в ПЦР используют искусственно синтезированные молекулы ДНК, поскольку в этом случае не нужна стадия удаления РНК и синтеза на их месте ДНК. В ПЦР праймеры ограничивают амплифицируемый участок с обеих сторон.

Рисунок 7. Репликация ДНК — важнейший для живых организмов процесс, основа множества молекулярно-биологических методов. Поскольку каждая из цепей ДНК содержит последовательность нуклеотидов, комплементарную другой цепи (их информационное содержание одинаково), при удвоении ДНК цепи расходятся, а затем каждая цепь служит матрицей, на которой выстраивается комплементарная ей новая цепь ДНК. В результате образуются два дуплекса ДНК, каждый из которых является точной (без учета ошибок синтеза) копией первоначальной молекулы.

Итак, пора объяснить, как же ПЦР работает. Изначально в реакционной смеси находятся: ДНК-матрица, праймеры, ДНК-полимераза, свободные нуклеозиды (будущие «буквы» в новосинтезированной ДНК), а также некоторые другие вещества, улучшающие работу полимеразы (их добавляют в специальные буферы, используемые в реакции).

Чтобы синтезировать ДНК, комплементарную матрице, необходимо, чтобы один из праймеров образовал с ней водородные связи (как говорят, «отжегся» на ней). Но ведь матрица уже образует их со второй цепью! Значит, сначала необходимо расплавить ДНК, — то есть разрушить водородные связи. Делают это с помощью простого нагревания (до ≈95 °С) — стадия, называемая денатурацией. Но теперь и праймеры из-за высокой температуры не могут отжечься на матрице! Тогда температуру понижают (50–65 °С), праймеры отжигаются, после чего температуру немного поднимают (до оптимума работы полимеразы, обычно, около 72 °С). И тогда полимераза начинает синтезировать комплементарные матрице цепи ДНК — это называют элонгацией (рис . 8). После одного такого цикла количество копий необходимых фрагментов удвоилось. Однако ничто не мешает повторить это еще раз. И не один, а несколько десятков раз! И с каждым повтором количество копий нашего фрагмента ДНК будет удваиваться, ведь новосинтезированные молекулы тоже будут служить матрицами (рис. 9)! (На самом деле эффективность ПЦР редко настолько высока, что количество копий именно удваивается, но в идеале это так, да и реальные числа часто бывают близки к этому.)

Читайте также:  Чем делают электрофорез при межпозвонковой грыже

Рисунок 8. Схема ПЦР.

Рисунок 9. С каждым циклом ПЦР количество целевой ДНК удваивается.

Увидеть результаты ПЦР очень просто: достаточно провести электрофорез реакционной смеси после ПЦР, и будет видна яркая полоса с полученными копиями.

Раньше полимеразу, инактивирующуюся при нагревании с каждым циклом, приходилось все время добавлять, но вскоре было предложено использовать термостабильную полимеразу из термофильных бактерий, которая выдерживает такой нагрев, что сильно упростило проведение ПЦР (чаще всего используют Taq-полимеразу из бактерии Thermus aquaticus [11]).

Чтобы избежать сильного испарения воды из реакционной смеси, в нее добавляют масло, покрывающее ее сверху, и/или используют нагревающуюся крышку термоциклера — прибора, в котором проводят ПЦР. Он быстро меняет температуру пробирок, и их не приходится постоянно перекладывать из одного термостата в другой. Для предотвращения неспецифического синтеза еще до нагрева и собственно начала циклов, часто использую ПЦР с «горячим стартом»: вся ДНК и полимераза разделяются между собой парафиновой прослойкой, которая плавится при высокой температуре и дает им взаимодействовать уже в правильных условиях. Иногда же используют модифицированные полимеразы, которые не работают при низкой температуре.

Можно еще много говорить о различных тонкостях ПЦР, но важнее всего сказать об альтернативных классическому форезу методах определения результатов. Например, довольно очевидным вариантом является добавление в реакционную пробирку перед началом реакции веществ, флуоресцирующих в присутствии ДНК. Тогда, сравнив изначальную флуоресценцию с конечной, можно увидеть, синтезировалось ли значительное количество ДНК или нет. Но этот способ не специфичен: мы никак не сможем определить, синтезировался ли необходимый фрагмент, или это какие-то праймеры слиплись и достроились до непредсказуемых последовательностей.

Наиболее интересным вариантом является ПЦР «в реальном времени» («real-time PCR») . Существует несколько реализаций этого метода, но идея везде одна и та же: можно прямо в ходе реакции наблюдать за накоплением продуктов ПЦР (по флуоресценции). Соответственно, для проведения ПЦР «в реальном времени» нужен специальный прибор, способный возбуждать и считывать флуоресценцию в каждой пробирке. Самое простое решение — добавить в пробирку те же самые вещества, которые флуоресцируют в присутствии ДНК, однако минусы такого метода уже были описаны выше.

Строго это называется «ПЦР с регистрацией флуоресценции в режиме реального времени» или «количественная ПЦР». — Ред.

Рисунок 10. Схема работы ПЦР «в реальном времени»: Taq Man Assay.

Рисунок 11. Пример кривых накопления флуоресценции в ПЦР «в реальном времени»: зависимость интенсивности флуоресценции (в нескольких пробирках — на каждую своя кривая) от номера цикла.

Самой популярной реализацией такого подхода является метод выщепления флуорофора за счет разрушения зонда (TaqMan Assay; рис. 10). В этом случае в реакционной смеси должен присутствовать еще один компонент — специальный одноцепочечный ДНК-зонд: молекула ДНК, комплементарная последовательности амплифицируемого фрагмента, расположенной между праймерами. При этом к одному его концу должен быть химически приделан флуорофор (флуоресцирующая молекула), а к другому — гаситель (молекула, поглощающая энергию флуорофора и «гасящая» флуоресценцию). Когда такой зонд находится в растворе или комплементарно связан с целевой последовательностью, флуорофор и гаситель находятся относительно недалеко друг от друга, и флуоресценции не наблюдается. Однако за счет 3´-экзонуклеазной активности, которой обладает Taq-полимераза (то есть она расщепляет ДНК, на которую «натыкается» в ходе синтеза, и на ее месте синтезирует новую), зонд при синтезе второй цепи разрушается, флуорофор и гаситель за счет диффузии удаляются друг от друга, и появляется флуоресценция.

Поскольку число копий в ходе ПЦР растет экспоненциально, так же растет и флуоресценция. Однако это продолжается недолго, поскольку в какой-то момент эффективность реакции начинает падать из-за постепенной инактивации полимеразы, нехватки каких-то компонентов и т. п. (рис. 11). Анализируя графики роста флуоресценции, можно много понять о протекании ПЦР, но, самое важное, можно узнать, сколько ДНК-матриц было изначально: это так называемая количественная ПЦР (quantitative PCR, qPCR).

Все варианты применения ПЦР в науке невозможно перечислить. Выделение фрагмента ДНК, секвенирование, мутагенез. ПЦР — один из самых востребованных для ненаучных целей метод (видео 1). Он широко применяется в медицине для ранней диагностики наследственных и инфекционных заболеваний, определения отцовства, в расследованиях для установления личности и для многого другого.

Видео 1. Восторг ученых по поводу изобретения ПЦР хорошо передает песня «Scientists for Better PCR» (хотя это и реклама фирмы BioRad, производящей, в том числе, оборудование и реагенты для ПЦР).

Все основные молекулярно-биологические процессы могут быть легко проведены in vitro (то есть, в пробирке). Пример приведен выше: ПЦР — это аналог репликации ДНК. Для этого достаточно просто смешать необходимые реагенты в подходящих условиях: для транскрипции нужны ДНК-матрица, РНК-полимераза и рибонуклеотиды, для трансляции — мРНК, субъединицы рибосом и аминокислоты, для обратной транскрипции — РНК-матрица, обратная транскриптаза ( она же ревертаза) и дезоксирибонуклеотиды. Эти методы широко применяются в различных областях биологии, когда необходимо, например, получить чистую РНК определенного гена. В этом случае нужно сначала провести обратную транскрипцию его (гена) мРНК, с помощью ПЦР амплифицировать ее, а затем с помощью in vitro-транскрипции получить много мРНК. Первая стадия необходима из-за того, что перед образованием зрелой мРНК в клетке проходит сплайсинг и процессинг РНК (у эукариот; у бактерий в этом смысле все проще) — подготовка к работе матрицей для синтеза белка. Иногда этого удается избежать, если вся кодирующая последовательность гена расположена в одном экзоне.

Можно сказать, важнейшие методы манипуляции с ДНК уже описаны. Следующий этап — определение собственно нуклеотидной последовательности цепи в молекуле — секвенирование. Определение нуклеотидной последовательности ДНК крайне важно для множества фундаментальных и прикладных задач. Особое место оно занимает в науке: для анализа результатов секвенирования геномов была, фактически, создана новая наука — биоинформатика. Секвенированием сейчас пользуются молекулярные биологи, генетики, биохимики, микробиологи, ботаники и зоологи, и, конечно же, эволюционисты: практически вся современная систематика основана на его результатах. Секвенирование широко применяется в медицине как метод поиска наследственных заболеваний и изучения инфекций. (См., например, «Уточнение „родословной“ членистоногих» и « Ск верный анекдот: негр, китаец и Крейг Вентер. ». — Ред.)

На самом деле хронологически методы изобретались совсем в другом порядке. Например, секвенирование по Сэнгеру было разработано в 1977 году, а ПЦР, как говорилось выше, только в 1983-м.

Существует множество различных методик секвенирования, но все методы можно разделить на две категории: «классические» и нового поколения. Сейчас используется фактически только один «классический» метод — секвенирование по Сэнгеру , или метод терминаторов. По сравнению с новыми методами, у него есть важное преимущество: длина прочтения, то есть количество нуклеотидов в последовательности, которое можно получить за один раз, у него выше — до 1000 нуклеотидов [12]. В то же время у самого «хорошего» в этом плане «нового» метода секвенирования — 454-, или пиросеквенирования [13] — этот параметр не превышает 500 нуклеотидов . Именно длина прочтения ограничивает возможности новых методов: оказывается крайне сложно «собрать» целый геном из фрагментов размером в несколько десятков нуклеотидов. Как минимум, для этого требуются суперкомпьютеры, а некоторые места в геноме разрешить оказывается просто невозможно, если они содержат высокоповторяющиеся последовательности. В таком случае может помочь сравнение полученных фрагментов с уже имеющимся целым геномом, но таким образом невозможно прочесть геном организма впервые (de novo). (См. также: «Код жизни: прочесть не значит понять». — Ред.)

Английский биохимик и корифей молекулярной биологии, дважды лауреат Нобелевской премии по химии: за определение аминокислотной последовательности инсулина (1955 г.) и за разработку метода секвенирования ДНК (1980 г.). — Ред.

Есть метод нового поколения, позволяющий читать несколько тысяч пн, но с большими ошибками (Pacific Biosciences). 454/Roche сегодня могут читать и больше 500 пн; то же самое уже может и молодое «полупроводниковое секвенирование». — Ред.

Оба упомянутых выше метода секвенирования уже достаточно подробно описаны на «биомолекуле» [13]: очень советую ознакомиться. Я же для примера расскажу про другой распространенный быстрый и дешевый метод (в расчете на один прочитанный нуклеотид) — метод, реализованный в секвенаторах Illumina (видео 2). Основной его недостаток — чтение фрагментов очень короткой длины, не больше 100 нуклеотидов, и вытекающая отсюда сложность прочтения геном «с нуля» [14].

В этом методе можно выделить три стадии: подготовку библиотеки фрагментов (1), создание кластеров (2) и собственно секвенирование (3).

Видео 2. В интернете есть несколько хороших видео, на которых описан процесс секвенирования Illumina, например на официальном сайте компании (вкладка Technology). Правда, они все на английском языке.

  1. Сначала создается библиотека фрагментов ДНК из секвенируемого генома (или любого другого источника ДНК). ДНК с помощью ультразвука или специального фермента расщепляется на произвольные фрагменты длиной в несколько сотен нуклеотидов, из которых выбираются обладающие заданной длиной (выбирается экспериментатором). После этого к ним с двух концов ковалентно присоединяются различные адаптерные последовательности (рис. 12: 1);

Рисунок 12. Подготовка к секвенированию Illumina.

Рисунок 13. Собственно секвенирование Illumina.

Было уже довольно много сказано про методы работы с нуклеиновыми кислотами и их изучения. Пришло время узнать, каким образом можно выяснить, как же клетка работает — в частности, попытаться определить функцию гена и белка, который он кодирует.

Для изучения функции белка очень важно научиться вносить в него мутации. Например, имея организм с неработающим ферментом, можно по биохимическим отличиям понять, что делает нормальный белок. Существуют разные способы создать полностью неработающий ген (как произвольный из всего генома, так и совершенно конкретный — тогда это называется нокаутом этого гена). Один из таких способов — вставка какого-то фрагмента ДНК в геном: если эта вставка придется на ген, то он (точнее, скорее всего, белок, который он кодирует) перестанет нормально функционировать.

Однако существуют способы очень точного изменения последовательности гена и, соответственно, белка. Про один из таких методов — сайт-специфичный мутагенез — я и расскажу. Суть его заключается в изменении конкретного (обычно одного) нуклеотида в последовательности. Для его использования сначала необходимо клонировать этот ген в плазмиде. После этого нужно провести как бы ПЦР с одним праймером. Причем этот праймер должен как раз включать в себя последовательность, которую мы хотим изменить — уже в нужном нам виде. Например, на рис. 14 вместо буквы А, которая должна была бы стоять напротив Т в родительской цепи, в праймере стоит Ц. После синтеза второй цепи ДНК плазмиды, содержащей праймер, в нее будет внесена мутация — А заменится на Ц. Такие плазмиды вводятся в клетки, в которых при делении две цепи окажутся в разных дочерних клетках. Таким образом, в половине клеток-потомков будет изначальный вариант плазмиды, а в половине — мутантный. Тогда, соответственно, половина клеток будет производить нормальный белок, кодируемый этим геном, а половина — мутантный. В случае, изображенном на рис. 14, в нем вместо одной аминокислоты (аспарагина) будет стоять другая (аланин). По аналогии можно вносить случайные мутации с помощью специальной ДНК-полимеразы, вносящей повышенное число ошибок.

Рисунок 14. Схема проведения сайт-специфичного мутагенеза.

Bruce Alberts et al. Molecular biology of the cell. 5 th edition.

РНК-интерференция — недавно (менее 20 лет назад) открытый феномен подавления экспрессии генов в присутствии определенных коротких фрагментов РНК. За открытие и изучение этого явления Эндрю Файер (Andrew Fire) и Крейг Мелло (Craig Mello) получили Нобелевскую премию по физиологии и медицине в 2006 году. Биомолекула уже достаточно писала про РНК-интерференцию: «Обо всех РНК на свете, больших и малых» [15], я же расскажу о так называемой системной РНК-интерференции у «модельной» нематоды C. elegans, — то есть, об отключении гена во всех (почти) клетках этого червя.

Такой поразительный эффект достигается с помощью введения в клетку двуцепочечных молекул РНК (дцРНК), одна из цепей в каждой из которых комплементарна участку мРНК «выключаемого» гена. Это открывает поразительные возможности для изучения функций генов. Раньше для отключения генов приходилось создавать «нокаутных» животных (что ученые все равно вынуждены делать, например, с мышами — см. «Нобелевскую премию по физиологии и медицине вручили за технологию нокаутирования мышей». — Ред.), у которых изучаемый ген в принципе отсутствует в геноме. Однако создание нокаутов достаточно сложно, а обратно включить ген у таких организмов уже невозможно. С помощью РНК-интерференции отключить ген очень легко, — так же, как и включить, перестав водить в организм соответствующие дцРНК [16].

Существует три основных способа введения дцРНК в организм. Самый очевидный — впрыскивание в животное их раствора. Пользуются также «вымачиванием» нематод в растворе РНК. Однако оказалось, что можно делать все гораздо проще: скармливать нематодам эти молекулы! Причем особенно удобно то, что это так же замечательно работает, если нематод кормить бактериями (E. coli), синтезирующими эти дцРНК (рис. 15) [17].

Рисунок 15. Системная РНК-интерференция. Червь C. elegans экспрессирует зеленый флуоресцентный (светящийся) белок в клетках глотки (ph) и мышцах стенки тела (bm). Слева — изначальный внешний вид. Справа — при РНК-интерференции с помощью «подкормки» бактериями ген инактивируется.

В принципе то, что молекулы РНК из кишечника распространяются практически по всем тканям, довольно удивительно. Известно, что за попадание молекул РНК в клетки кишечника отвечает белковый канал s > .

К слову, использование РНК-интерференции именно на культуре клеток человека позволило выявить, что многие гены человека способствуют развитию вируса гриппа: «Молекулярное двурушничество: гены человека работают на вирус гриппа». — Ред.

При изучении функции гена очень важно узнать, когда и в каких тканях организма он работает (экспрессируется), а также вместе с какими другими генами. Если требуется узнать это про небольшое число генов и тканей, то можно это сделать очень просто: выделить РНК из ткани, провести обратную транскрипцию (то есть, синтезировать кДНК — комплементарную ДНК) и затем, провести количественную ПЦР. В зависимости от того, прошла ли ПЦР, мы узнаем, имеется ли мРНК исследуемого гена в ткани.

Однако если необходимо проделать то же самое для множества тканей и многих генов, то эта методика становится очень долгой и затратной. В таком случае используют ДНК-микрочипы [3]. Это небольшие пластинки, на которые нанесены и прикреплены молекулы ДНК, комплементарные РНК изучаемых генов, причем заранее известно, где на них (пластинках) какая молекула расположена. Одним из способов создания чипа является синтез молекул ДНК прямо на нем с помощью робота.

Чтобы изучать экспрессию генов с помощью чипов, необходимо также синтезировать их кДНК и пометить ее флуоресцентным красителем (не разделяя кДНК разных генов). Такую смесь наносят на микрочип, добиваясь, чтобы кДНК гибридизовалась с молекулами ДНК на чипе. После этого смотрят, где наблюдается флуоресценция и сравнивают это с расположением молекул ДНК на чипе. Если место флуоресценции совпадает с положением молекулы ДНК, то в данной ткани этот ген экспрессирован. Кроме того, пометив кДНК из разных тканей разными красителями, можно изучать экспрессию сразу нескольких (обычно все-таки не больше 2) тканей на одном чипе: по цвету флуоресценции можно определить, в какой из тканей он экспрессирован (если сразу в нескольких — получится смешанный цвет) (рис. 16).

Рисунок 16. Флуоресценция на ДНК-микрочипе после обработки раствором кДНК. Всего тут примерно 37500 прикрепленных молекул ДНК.

Однако в последнее время все чаще вместо чипов используют массовое секвенирование всей кДНК из ткани (создание так называемых транскриптомов), что сильно упростилось из-за развития методов секвенирования. Это оказывается дешевле и эффективнее, поскольку знание полных последовательностей всех мРНК дает больше информации, чем просто сам факт их наличия или отсутствия.

Мы рассмотрели основные методы молекулярной биологии. Надеюсь, что вам стало немного понятнее, каким образом делаются молекулярно-биологические исследования, за что дают Нобелевские премии, и как они могут помочь в некоторых прикладных задачах. Но, более всего, я надеюсь, что вы тоже увидели красоту идей, лежащих в их основе, и, возможно, вам захотелось узнать о каких-то из этих методик подробнее.

источник