Меню Рубрики

Методы разделения веществ электрофорез

Движение частиц в жидкой фазе под действием электрического поля называется, электрофорезом. Скорость движения макромолекул в электрическом поле можно использовать для определения молекулярной массы белков, для идентификации макромолекул по заряду, по форме, для определения изменений в первичной структуре, а также для количественного разделения различных видов макромолекул.

Рассмотрим коротко теоретические основы электрофореза. На макромолекулы с суммарным зарядом q в электрическом поле с напряженностью Е действует электрическая сила

Под действием этой силы происходит ускоренное движение макромолекул. В результате такого движения возникает сопротивление вязкой среды с силой трения Fc = fv, где v скорость движения макромолекул. Через определенное время, когда силы уравновешиваются (Fэ = Fc), наступает стационарное состояние, и макромолекулы движутся с постоянной скоростью v . Тогда

Отношение скорости v к напряженности электрического поля Е называется электрофоретической подвижностью u. Из (3.45)

Электрофоретическая подвижность измеряется в м 2 •В -1 •с -1 . Для сферических макромолекул f = 6πηr, тогда

где η вязкость среды; г–радиус макромолекулы.

Как видно, коэффициент электрофоретической подвижности, дает информацию о радиусе макромолекулы, соответственно, и о ее размерах. Однако среда, в которой происходит движение заряженных частиц, является не изолятором, а электролитом, состоящим из различных ионов. Это обстоятельство вносит большие затруднения для теоретического описания движения заряженной частицы в электрическом поле. Макромолекула в растворе электролита окружена ионной оболочкой, экранирующей ее от приложенного электрического поля. Ионная оболочка частично нарушается как действием электрического поля, так и при движении частицы. Существующая теория электрофореза пока не в состоянии точно описать эти ( ряд других) процессов, и поэтому данные электрофореза не могут трактоваться с точки зрения информации о макромолекулярной структуре. Но, тем не менее, различные варианты электрофореза широко применяются для аналитических и препаративных целей. Методы препаративного электрофореза разработаны для получения относительно больших количеств чистого (гомогенного) материала. Аналитический электрофорез используется для контроля чистоты препаратов, определения количества компонентов в смеси, оценки их соотношения и т. д. На практике оптимальные условия для электрофореза тех или иных препаратов подбираются в большинстве случаев эмпирическим путем.

Для разделения макромолекул электрофорезом используют специальные приборы. Существуют три основных типа электрофореза: с подвижной границей, зональный и непрерывный.

При электрофорезе с подвижной границей макромолекулы присутствуют во всем обьеме раствора и положение молекул с течением времени можно определять оптическими методами.

В зональном электрофорезе раствор препарата наносят в виде пятна или полосы, и частицы мигрируют через растворитель. Растворитель обычно содержится в гомогенной инертной среде ( бумага, гель).

В непрерывном электрофорезе образец также наносят в виде зоны, но раствор наносится не однократно, а прибавляется постоянно по мере проведения электрофореза.

Наибольшее применение на практике нашли различные модификации зонального электрофореза с различными носителями: на бумаге, на ацетате целлюлозы, на геле. Два остальных типа электрофореза используются сравнительно редко. Рассмотрим более подробно один из методов зонального электрофореза – гель-электрофорез, нашедший наиболее широкое применение в исследовании макромолекул.

Лучшие результаты при электрофоретическом разделении белков и нуклеиновых кислот достигаются при использовании в качестве носителя гелей из крахмала, полиакриламида, агарозы и комбинированных гелей из этих веществ. Качественное разделение макромолекул при использовании этих носителей достигается тем, что эффект электрофоретического разделения дополняется разделяющим действием гель-проникающей хромотаграфии (эффект «молекулярного сита»). Первоначально для гель-электрофореза применяли крахмальный гель, однако, в настоящее время его заменили полиакриламидные и агарозные гели. Полиакриламид оказался наиболее эффективным носителем для электрофореза белков и небольших молекул РНК, например т-РНК. Это связано с тем, что в полиакриламидном геле можно контролировать эффект молекулярного сита ( размер пор в геле ) с помощью изменения концентрации геля. Для нуклеиновых кислот, размер молекул которых больше размеров пор полиакриламида, используются агарозные или агарозно-полиакриламидные гели. Полиакриламидный гель получается при сшивании акриламида с метилен-бис-акриламидом. Такой гель готовят непосредственно перед экспериментом в контейнере ( стеклянная трубка, пластина) для проведения электрофореза (Рис. 9). После окончания электрофоретического разделения, зоны распределения макромолекул в геле обнаруживают путем окрашивания специфическими красителями и или другими способами. Например, для обнаружения белков используются красители амид черный, бромфеноловый синий, Кумасси бриллиантовый голубой. Если разделяются биологически активные молекулы, положение молекулы можно идентифицировать по измерению активности, например, по измерению ферментативной активности. Локализацию нуклеиновых кислот в гелях определяют после обработки флоуресцентными красителями (например, бромид этидия) или по радиоактивности разделенных фрагментов.

Рис.. 9. Устройство для электрофореза на горизонтальных пластинах геля ( Фрайфельдер, с.229)

1. Пластина геля; 2. охлаждающая подложка; 3. отсек для буферного раствора; 4. бумажный электрод между гелем и буфером; 5. циркуляционный термостат с охлаждающей жидкостью; 6. электроды; 7. источник электрического тока

Электрофорез в полиакриламидном геле проводят или в колонках (трубках) с гелем или на пластинах с гелем. Рассмотрим один из вариантов этого метода, наиболее широко используемых для разделения белков .

ДСН-гель-электрофорез. Для определения молекулярной массы белков используют электрофорез в присутствии додецилсульфата натрия в полиакриламидном геле. Этот метод предложили в 1969 году Клаус Вебер и Мери Осборн.

До проведения электрофореза белок обрабатывают 1 % раствором додецилсульфата натрия (ДСН) с 0,1 М β-меркаптоэтанолом при нейтральном рН. В таком растворе большинство многоцепочечных белков связываются с ДСН и диссоциируют, дисульфидные связи разрываются, вторичная структура белка исчезает.

Додецилсульфат натрия совершенно одинаково связывается с молекулами различных белков: 1,4 кг ДСН связывается с 1 кг белка. Каждая молекула ДСН несет один отрицательный заряд и, таким образом, общая плотность заряда примерно одинаковая для разных белков. Таким образом, поверхностная шуба из молекул ДСН устраняет зарядовые различия, существующие в нативных белках. После обработки ДСН, полипептидная цепь представляет вытянутый цилиндр с диаметром 1,8 нм. Длина таких стержней коррелирует с молекулярной массой белков: чем длиннее цилиндр, тем больше молекулярная масса (рис. 1, а). Обработанные таким образом белки имеют одну и ту же форму и одинаковое отношение заряд/масса. Электрофоретическая подвижность таких молекул будет зависеть только от молекулярной массы вследствие движения в молекулярном сите.

В качестве носителя при электрофорезе используют полиакриламидный гель в концентрации от 5 до 15 %. Экспериментально установлена линейная связь между электрофоретической подвижностью и логарифмом молекулярной массы:

где а и b постоянные величины, зависящие от свойств полиакриламидного геля.

Определение молекулярной массы исследуемого белка проводят по калибровочной кривой. Для построения калибровочной кривой в идентичных условиях проводится электрофорез маркерных белков с известной молекулярной массой и строится зависимость u = f (lgM) (рис. 1, б). По значению электрофоретической подвижности на калибровочной кривой с высокой точностью (до 5 %) находят молекулярную массу исследуемого белка.

Кроме измерения молекулярной массы, ДСН-гель- электрофорез позволяет определить и идентифицировать субъединичное строение сложных белков, имеющих четвертичную структуру.

Изоэлектрическое фокусирование белков.

Белковые молекулы являются амфолитами, т.е. содержат положительно и отрицательно заряженные группировки. Для таких молекул характерна зависимость их заряда от рН . При низких значениях рН отрицательные заряженные группировки молекулы нейтрализуются ионами Н + и в целом она имеет положительный заряд. При высоких значениях рН такие молекулы заряжены отрицательно, т.к. положительно заряженные группировки молекулы нейтрализуются ионами гидроксила. Для каждого амфолита существует такое значение рН, при котором заряд молекулы равен нулю. Это значение рН называется изоэлектрической точкой рI молекулы. При электрофорезе в градиенте рН молекулы белков будут двигаться до тех пор, пока не достигнут области геля, где рН геля будет равен значению рI молекулы. В этой точке заряд молекулы будет равен нулю, т.е. она станет незаряженной и перестанет двигаться. В случае разгонки смеси белков, каждый белок остановится в той области градиента рН, которая соответствует значению изоэлектрической точки соответствующей молекулы (рис 11). Такой метод разделения белков в градиенте рН, основанный на различиях значений изоэлектрических точек, называется изоэлектрическим фокусированием. Для создания стабильного градиента рН в состав геля добавляют синтетические низкомолекулярные полиамфолиты (многозарядные молекулы с м.м. 300-600). Полиамфолиты представляют собой смесь полимеров алифатических амино- и карбоновых кислот, например, амфолины фирмы LKB. Меняя соотношение различных амфолитов, можно приготовить гель с соответствующим, для определенных белковых молекул, интервалом градиента рН. При приложении на гель электрического поля начинается движение полиамфолитов и через определенное время устанавливается градиент рН

Изоэлектрическое фокусирование по сравнению с электрофорезом характеризуется более высокой разрешающей способностью разделения и возможностью концентрации разделяемых фракций. В последние годы появились методы, комбинирующие оба способа разделения белковых молекул. На гелевых пластинах в одном направлении проводят разделение электрофорезом, в другом, перпендикулярном направлении – изоэлектрическим фокусированием. За счет такого двумерного разделения, разрешающая способность метода резко возрастает, что делает возможным разделение компонентов, которое нельзя осуществить другими методами.

Рис. 11. Принцип электрофоретического разделения заряженных молекул в градиенте рН ( метод изоэлектрического фокусирования ) . (Фрайфельдер,240с)

источник

Электрофорез занимает сейчас центральное место среди методов исследования белков и нуклеиновых кислот. В современной научной литературе редко можно встретить статью, в которой бы на той или иной стадии фракционирования или характеристики этих биополимеров не был использован электрофорез. Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор, заключенный в канал из изолирующего материала, например, стеклянную трубку, начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т. е. сформируется электрическое поле. Его напряженность измеряется разностью потенциалов по концам рабочего канала (или его участка), отнесенной к его длине (В/см). Под действием поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом — сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул, мигрирующих с одной и той же скоростью. Со временем эти зоны распределяются по длине канала. В настоящее время почти исключительно используются полиакриламидные гели (ПААГ) и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость.

В ходе электрофореза зоны растворенных макромолекул остаются невидимыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же знака, что и фракционируемые макромолекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость миграции наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают.

Разделившиеся зоны биополимеров во избежание их диффузии немедленно фиксируют. Для этого гель извлекают из стеклянной формы и вымачивают в смеси кислоты со спиртом так, что белки или нуклеиновые кислоты выпадают в осадок в том самом месте, где закончилась их миграция в ходе электрофореза. После фиксации (или одновременно с ней) проводят окрашивание зон путем вымачивания геля в растворе красителя, прочно связывающегося с белком или нуклеиновой кислотой. Излишек красителя удаляют.

Вместо цилиндрических часто используют гели в виде тонких пластин, заполимеризованные между двумя плоскими стеклами. Такие пластины имеют важное преимущество: на них можно одновременно фракционировать несколько препаратов. Обычно их вносят с одного края геля на равных расстояниях друг от друга. Каждый препарат разделяется в электрическом поле независимо от своих соседей, образуя свой набор зон. Вместо окрашивания или наряду с ним часто используют методы обнаружения разделенных зон по их радиоактивности. К ним относятся приемы регистрации полос на фотопленке посредством авторадиографии или флюорографии и различные способы счета радиоактивности в геле с помощью жидкостных сцинтилляционных счетчиков.

Фракционированием в ПААГ и агарозе не исчерпываются современные методы электрофореза. В качестве «носителей» жидкой фазы широко используют также пленки из ацетата целлюлозы, фильтровальную бумагу, тонкие слои силикагеля, целлюлозы, сефадекса и др. В некоторых случаях, например для разделения низкомолекулярных веществ, эти системы имеют свои преимущества, однако для фракционирования белков, нуклеиновых кислот и их фрагментов в настоящее время используют почти исключительно гель-электрофорез

Важное место в биохимических исследованиях занимает выделение индивидуальных белков из органов и тканей. Очищенные индивидуальные белки нужны для изучения их первичной структуры, получения кристаллов белков с целью исследования их пространственной структуры методом рентгеноструктурного анализа, установления взаимосвязи между первичной, пространственной структурой белка и его функцией.

Некоторые очищенные индивидуальные белки используют в медицине как лекарственные препараты, например гормон инсулин применяют для лечения сахарного диабета, а пищеварительные ферменты поджелудочной железы назначают при нарушении её функций в качестве заместительной терапии. Кроме того, очищенные ферменты часто используют в биохимических исследованиях в качестве химических реактивов для определения веществ в биологических жидкостях.

Большинство методов, используемых для очистки индивидуальных белков, основано на различиях их физико-химических свойств, а также возможности специфично связываться с лигандом.

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

· дробление биологического материала и разрушение клеточных мембран;

· фракционирование органелл, содержащих те или иные белки;

· экстракцию белков (перевод их в растворённое состояние);

· разделение смеси белков на индивидуальные белки.

Для разрушения биологического материала используют методы: гомогенизации ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает и растирает ткань о притёртые стенки сосуда.

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протомерами в олигомерных белках.

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их Особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

Наиболее трудоёмкий этап получения индивидуальных белков — их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.

На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка.

Большинство белков денатурирует и выпадает в осадок уже при кратковременном нагревании раствора до 50-70°С или подкислении раствора до рН 5. Если выделяемый белок выдерживает эти условия, то с помощью избирательной денатурации можно удалить большую часть посторонних белков, отфильтровав выпавшие в осадок-белки, или осадить их центрифугированием.

Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.

Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония — (NH4 )2 SO4 . Чем выше растворимость белка, тем большая концентрация соли необходима для его высаливания.

Для разделения белков часто используют хроматографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хроматографическая колонка заполняется гранулами пористого вещества (сефадекс, агароза и др.). В структуре полисахарида образуются поперечные связи и формируются гранулы с «порами», через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной «пор».

Неподвижная фаза — жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесённую на хроматографическую колонку, вымывают (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутрь гранул сефадекса и на некоторое время попадают в неподвижную фазу, в результате чего их движение задерживается. Величина пор определяет размер молекул, способных проникать внутрь гранул .

Так как гелевая структура сефадекса легко деформируется под давлением, гели стали заменять более жёсткими матрицами (сефактил, той-оперл), представляющими сферические гранулы с разными размерами пор. Выбор размеров пор в гранулах зависит от целей хроматографии (о других хроматографических методах будет сказано ниже).

Метод разделения также основан на различии в молекулярных массах белков. Скорость седиментации веществ в процессе вращения в ультрацентрифуге, где центробежное ускорение достигает 100 000-500 000 g, пропорционально их молекулярной массе. На поверхность буферного раствора, помещённого в кювету, наносят тонкий слой смеси белков. Кювету помещают в ротор ультрацентрифуги. При вращении ротора в течение 10-12 ч более крупные молекулы (с большей молекулярной массой) оседают в буферном растворе с большей скоростью. В результате в кювете происходит расслоение смеси белков на отдельные фракции с разной молекулярной массой .После расслоения белковых фракций дно кюветы прокаливают иглой и по каплям собирают содержимое небольшими порциями в пробирки.

Разделение смеси белков методом гель-фильтрации.

Кювета, заполненная буферным раствором с разделёнными белковыми фракциями.

Метод основан на том, что при определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки — к катоду (-).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, α1 глобулины, α2 -глобулины, β-глобулины и γ-глобулины (рис. 1-57). Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной фазы используют ионообменники — полимерные органические вещества, содержащие заряженные функциональные группы.

Различают положительно заряженные анионообменники, среди которых наиболее часто используют диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлозу), содержащую катионные группы, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу (КМ-цел-люлозу), содержащую анионные группы.

Выбор ионообменника определяется зарядом выделяемого белка. Так, для выделения отрицательно

Электрофорез белков сыворотки крови здорового человека на бумаге.

заряженного белка используют анионообменник. При пропускании раствора белка через колонку прочность связывания белка с анионообменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированные на анионообменнике, можно смыть (элюировать) буферными растворами с различной концентрацией соли, чаще всего NaCI, и разными значениями рН. Ионы хлора связываются с положительно заряженными функциональными группами анионообменника и вытесняют карбоксильные группы белков. При низких концентрациях соли элюируются белки, слабо связанные с анионообменником. Постепенное увеличение концентрации соли или изменение рН, что меняет заряд белковой молекулы, приводит к выделению белковых фракций, в одной из которых находится искомый белок.

Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом. Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

Для удаления низкомолекулярных соединений, в частности сульфата аммония после высаливания, применяют диализ. Метод основан на том, что через полупроницаемую мембрану, пропускающую низкомолекулярные вещества, не проходят белки, имеющие более высокую молекулярную массу. В стакан большой ёмкости (около 1 л) с буферным раствором помещают полупроницаемый мешочек, заполненный раствором белка с солью.

Скорость выхода соли из мешочка в буферный раствор пропорциональна градиенту его концентраций по обе стороны от мембраны. По мере выхода соли из мешочка буферный раствор в стакане меняют.

Для очистки белков от низкомолекулярных примесей используют также метод гель-фильтрации.

Для определения частоты (гомогенности) выделенного белка применяют методы с высокой разрешающей способностью, например электрофорез в полиакриламидном геле, высокоэффективная хроматография высокого давления. От чистоты лекарственного белкового препарата зависят его биологическая эффективность и аллергенность (т.е. способность вызывать аллергические реакции). Чем качественнее очищен препарат, тем меньше вероятность осложнений при его применении.

Нуклеиновые кислоты — это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев — нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида — структурного звена нуклеиновых кислот — входят три составные части:

· азотистое основание — пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два — к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

· моносахарид — рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот — рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

· остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. Нуклеотид — фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

Сочетание технологии электрофореза на микрочипе, автоматизированной пробоподготовки и чувствительного флуориметрического детектирования предлагает высокоэффективную замену традиционному агарозному гель-электрофорезу. Качественный и количественный анализ нуклеиновых кислот становится теперь как никогда быстрым, недорогим и высокоточным. В настоящее время при проведении исследований нуклеиновых кислот основным методом изучения распределения фрагментов ДНК и РНК по молекулярной массе (размеру) остается агарозный гель-электрофорез. К основным недостаткам этого метода следует отнести достаточно высокую стоимость анализа при использовании готовых пластин геля, высокую трудоемкость, связанную с большим количеством ручных операций, длительность анализа, необходимость использования дополнительного весьма дорогостоящего оборудования для визуализации и последующей цифровой обработки электрофореграмм, использование небезопасных для здоровья реагентов (бромистого этидия). Всех этих недостатков лишена последняя разработка компании Shimadzu – прибор для электрофоретического разделения нуклеиновых кислот с использованием микрочипа MCE®-202 MultiNA.

— Низкая стоимость анализа. Конструкция и материал микрочипа позволяют использовать его для нескольких тысяч анализов, при этом используется крайне незначительное количество расходных материалов. Тем самым достигается существенное снижение стоимости (в 1,5 – 3 раза) одного анализа ДНК по сравнению с агарозным гель-электрофорезом. Если сравнивать систему электрофореза на микрочипе с существующими сейчас на рынке системами капиллярного электрофореза, то снижение стоимости анализа может достигать 6 и более раз. В случае анализа РНК экономия может быть еще более существенной (рассчитано, исходя из стоимости оборудования и реагентов на японском рынке).

— Высокая скорость анализа. Высокоскоростной автоматизированный анализ до 108 образцов (96 + 12 дополнительно). С использованием одного микрочипа полный цикл анализа ДНК составляет 255 секунд. Для увеличения производительности в прибор может быть установлено до четырех микрочипов для параллельной работы. В этом случае время одного анализа сокращается до 75 секунд.

— Высокая чувствительность. Флуориметрический детектор с фотоумножителем и источником возбуждения флуоресценции на основе светодиода обеспечивает примерно 10-кратное увеличение чувствительности по сравнению с традиционным окрашиванием бромистым этидием (данные получены в ходе внутренних испытаний в лаборатории Shimadzu). К тому же используемые флуоресцентные красители, такие как SYBR green II и SYBR gold, абсолютно безвредны для здоровья в отличие от бромистого этидия.

— Высокое разрешение и прекрасная воспроизводимость анализа. Оптимальная конфигурация капилляров микрочипа и специально подобранный состав буферного раствора обеспечивают превосходные характеристики электрофоретического разделения нуклеиновых кислот. Благодаря автоматизированной системе пробоподготовки количество ручных операций сведено к минимуму. Внутренние маркеры молекулярного веса уже включены в наборы реагентов и используются при каждом анализе. Все это в комплексе существенно увеличивает надежность и воспроизводимость получаемых результатов. Прибор может комплектоваться четырьмя различными наборами реагентов для анализа ДНК разного размера и РНК

— Простота использования. Программное обеспечение с дружественным пользовательским интерфейсом и большим количеством функций максимально упрощает проведение исследования. Оператору достаточно загрузить образцы и реагенты в прибор, задать в программе желаемую последовательность анализа образцов и кликнуть по иконке «Старт» на экране компьютера. Все остальное, включая обработку электрофореграмм, прибор выполнит в автоматическом режиме.

Микрочип, изготовленный из кварца высокой чистоты, включает микроемкости для загрузки образца и реагентов и электрофоретический канал 23 × 0,09 × 0,05 мм (д ×ш × г). Напряжение подается при помощи напыленных платиновых электродов. Канал и микроемкости выполнены с высочайшей точностью при помощи уникальной фотолитографической технологии Shimadzu. Специальное покрытие обеспечивает возможность многократного использования одного и того же микрочипа (

3600 анализов). Следствием малой длины электрофоретического канала и его оптимальной формы является непревзойденная на сегодняшний день скорость электрофоретического разделения нуклеиновых кислот. Наборы реагентов для анализа ДНК и РНК. Прибор может комплектоваться тремя наборами реагентов для анализа ДНК различного размера и набором реагентов для анализа РНК.

источник

Электрофорез занимает сейчас центральное место среди методов исследования белков и нуклеиновых кислот. В современной научной литературе редко можно встретить статью, в которой бы на той или иной стадии фракционирования или характеристики этих биополимеров не был использован электрофорез. Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор, заключенный в канал из изолирующего материала, например, стеклянную трубку, начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т. е. сформируется электрическое поле. Его напряженность измеряется разностью потенциалов по концам рабочего канала (или его участка), отнесенной к его длине (В/см). Под действием поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом — сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул, мигрирующих с одной и той же скоростью. Со временем эти зоны распределяются по длине канала. В настоящее время почти исключительно используются полиакриламидные гели (ПААГ) и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость.

В ходе электрофореза зоны растворенных макромолекул остаются невидимыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же знака, что и фракционируемые макромолекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость миграции наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают.

Разделившиеся зоны биополимеров во избежание их диффузии немедленно фиксируют. Для этого гель извлекают из стеклянной формы и вымачивают в смеси кислоты со спиртом так, что белки или нуклеиновые кислоты выпадают в осадок в том самом месте, где закончилась их миграция в ходе электрофореза. После фиксации (или одновременно с ней) проводят окрашивание зон путем вымачивания геля в растворе красителя, прочно связывающегося с белком или нуклеиновой кислотой. Излишек красителя удаляют.

Вместо цилиндрических часто используют гели в виде тонких пластин, заполимеризованные между двумя плоскими стеклами. Такие пластины имеют важное преимущество: на них можно одновременно фракционировать несколько препаратов. Обычно их вносят с одного края геля на равных расстояниях друг от друга. Каждый препарат разделяется в электрическом поле независимо от своих соседей, образуя свой набор зон. Вместо окрашивания или наряду с ним часто используют методы обнаружения разделенных зон по их радиоактивности. К ним относятся приемы регистрации полос на фотопленке посредством авторадиографии или флюорографии и различные способы счета радиоактивности в геле с помощью жидкостных сцинтилляционных счетчиков.

Фракционированием в ПААГ и агарозе не исчерпываются современные методы электрофореза. В качестве «носителей» жидкой фазы широко используют также пленки из ацетата целлюлозы, фильтровальную бумагу, тонкие слои силикагеля, целлюлозы, сефадекса и др. В некоторых случаях, например для разделения низкомолекулярных веществ, эти системы имеют свои преимущества, однако для фракционирования белков, нуклеиновых кислот и их фрагментов в настоящее время используют почти исключительно гель-электрофорез

Важное место в биохимических исследованиях занимает выделение индивидуальных белков из органов и тканей. Очищенные индивидуальные белки нужны для изучения их первичной структуры, получения кристаллов белков с целью исследования их пространственной структуры методом рентгеноструктурного анализа, установления взаимосвязи между первичной, пространственной структурой белка и его функцией.

Некоторые очищенные индивидуальные белки используют в медицине как лекарственные препараты, например гормон инсулин применяют для лечения сахарного диабета, а пищеварительные ферменты поджелудочной железы назначают при нарушении её функций в качестве заместительной терапии. Кроме того, очищенные ферменты часто используют в биохимических исследованиях в качестве химических реактивов для определения веществ в биологических жидкостях.

Большинство методов, используемых для очистки индивидуальных белков, основано на различиях их физико-химических свойств, а также возможности специфично связываться с лигандом.

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

· дробление биологического материала и разрушение клеточных мембран;

· фракционирование органелл, содержащих те или иные белки;

· экстракцию белков (перевод их в растворённое состояние);

· разделение смеси белков на индивидуальные белки.

Для разрушения биологического материала используют методы: гомогенизации ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает и растирает ткань о притёртые стенки сосуда.

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протомерами в олигомерных белках.

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их Особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

Наиболее трудоёмкий этап получения индивидуальных белков — их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

источник

Электрофорез — метод разделения веществ, основанный на явлении миграции заряженных микрочастиц в жидкой среде под действием внешнего электрического поля.

Существует три различных электрофоретических метода. Под собственно электрофорезом обычно понимают зональный электрофорез (ЗЭ), два других называют методами изоэлектрофокусирования (ИЭФ)и изотахофореза (ИТФ).Электрофорез применяют главным образом для разделения веществ, молекулы которых различаются по электрофоретической подвижности, т. е. отношению скорости электрофореза (скорости перемещения заряженных частиц вещества) к напряженности электрического поля, которое зависит от свойств заряженных частиц окружающей их среды. Путем изменения внешних условий (например, рН среды, температуры, силы тока, состава и концентрации буферного раствора или носителя) создают подходящие условия для разделения. Вследствие того что при разделении на молекулы действуют только электростатические силы, электрофорез считают «мягким» методом и поэтому часто применяют для работы с лабильными веществами.

Электрофорез можно проводить в растворе, но из-за неизбежного выделения теплоты и возникающей в связи с этим тепловой конвекции процесс, как правило, проводят на носителе. Вследствие некоторых сопутствующих явлений (адсорбция, несоизмеримость размеров высокомолекулярных соединений и пор носителя) введение носителя ограничивает область применения метода. Однако свойства носителя иногда используют для повышения эффективности разделения: например, при электрофорезе в градиенте полиакриламидного геля фракционирование осуществляется не столько за счет различной электрофоретической подвижности веществ, сколько за счет различия в их молекулярных массах.

Зональный электрофорез (ЗЭ) — это метод разделения заряженных частиц в электрическом поле, основанный на том, что частицы с разными соотношениями заряд/масса мигрируют с различными скоростями. В зависимости от знака заряда молекулы вещества мигрируют в электрическом поле по направлению к аноду или катоду.

Результаты этого процесса регистрируются на электрофореграфе (по аналогии с хроматографией).

Ранее использовали один и тот же буфер в слое носителя электродных камерах, т. е. разделение вели в непрерывной буферной системе. В настоящее время этот прием еще применяют при электрофорезе на бумаге и пластинках. Приэлектрофорезе в прерывистой буферной системе (различные буферы в слое носите электродных камерах) быстро мигрирующие вещества образую более узкие зоны. Электрофорез в прерывистой буферной системе используют главным образом в гель-электрофорезе. ЗЭ обычно проводят на бумаге, пластинках и в гелях в водных буферных растворах.

При электрофорезе в электродных камерах происходит электролиз раствора и вследствие этого изменяется состав буфера. Поэтому электроды располагают так, чтобы они не касались носителя, а контакт между ними осуществлялся при помощи полосок фильтровальной бумаги. Электродная камера разделена на два отсека, которые соединяются дополнительным мостиком из фильтровальной бумаги. Подбирая соответствующий объем электродных камер или перекачивая буфер насосом от анода к катоду, поддерживают постоянными концентрацию и значение рН буфера в двухкамерной системе. Рекомендуется также проводить деполяризации электродов после каждого электрофоретического разделения.

Материалы-носители подразделяются на две группы:

первая — бумага, целлюлоза, ацетилированная целлюлоза, агароза и материалы для ТСХ(например, силикагель);

вторая — крахмал и полиакриламид.

Эффективность разделения зависит не только от суммарного заряда молекул анализируемых веществ, но и от размеров молекул. Определяющим параметром является соотношение заряд — масса.

Носители первой группы относительно инертны и слабо влияют на эффективность разделения. Материалы второй группы обладают пористой структурой, что существенно влияет на качество разделения. Поскольку размеры пор соизмеримы с размером макромолекул, то можно разделять вещества с одинаковыми суммарными зарядами, но с разными молекулярными массами (например, при ионообменной хроматографии).

Электрофорез на бумаге позволяет экстрагировать вещества из соответствующих зон или пятен и использовать для дальнейшей работы; обнаруживать вещества, используемые в бумажной хроматографии; проводить фракционирование в двух направлениях.

Для электрофореза на бумаге используют специальные сорта бумаги, характеризующиеся следующими свойствами: достаточной механической прочностью; удовлетворительным для удерживания достаточного количества электролита и образца.

Наряду с камерами погружного типа применяют камеры для электрофореза в тонком слое с охлаждаемыми пластинами, в которых лист бумаги помещают между двумя изолирующими пленками.

Электрофорез в тонком слое проводят на стеклянных пластинках, покрытых слоем носителя. По сравнению с полосками бумаги пластины более удобны в обращении. Электрофорез на бумаге и в тонком слое применяют для исследования фракций, полученных при колоночной хроматографии, ферментативных гидролизатов белков, метаболитов, а также для разделения аминов, аминокислот, пептидов и белков, нуклеотидов, фенолов, нафтолов, фенолкарбоновых кислот, красителей, неорганических соединений.

Гель- электрофорез. Вместо целлюлозы и силикагеля можно использовать мягкие гели. Ниже приведены основные рабочие стадии проведения электрофореза в слое геля: приготовление гелей и подготовка образца ® электрофоретическое разделение ® детектирование ® анализ результатов и оформление их в рабочем журнале. Из множества гелей на практике применяют только два — гели агарозы и полиакриламида. В зависимости от способа приготовления геля и типа буферной системы различают несколько вариантов метода:

· электрофорез в геле полиакриламида (ПААГ);

· диск-электрофорез (диск-ПААГ) в прерывистой буферной системе;

· электрофорез в геле полиакриламида в присутствии додецилсульфата натрия (ДСН-ПААГ);

· электрофорез в градиенте пористого полиакриламидного геля.

Гель окрашивают красителем. Поскольку молекулы красителя заряжены, гель можно обесцвечивать электрофоретически при напряжении 50 В. В местах, не содержащих исследуемое вещество, гель обесцвечивается. Количественную оценку проводят спектрофотометрически при помощи сканирующего денситометра.

После усадки гелей в водном этаноле или ацетоне их высушивают между двумя листами целлофана в вакууме при слабом нагреве.

Гель-электрофорез применяют для разделения всех классов заряженных веществ, например белков, ферментных комплексов, вирусов, олигонуклеотидов и нуклеиновых кислот; определения молекулярных масс биополимеров; анализа белков на микроуровне (антигенов при количественном иммуноэлектрофорезе).

При электрофорезе в свободном потоке электролит (буфер) перемещается в вертикальном направлении (перпендикулярно направлению электрического поля). Заряженные частицы под действием электрического поля мигрируют в горизонтальном направлении и одновременно увлекаются потоком буфера. В итоге разделенные вещества распределяются в потоке в соответствии с их электрофоретической подвижностью и элюируются из прибора в различных фракциях. Электрофорез в свободном потоке применяют для препаративного разделения заряженных частиц, в том числе коллоидных, субклеточных частиц и клеток.

Изоэлектрическое фокусирование (ИЭФ). С помощью изоэлектрического фокусирования по изоэлектрическим точкам (ИЭТ) разделяют амфотерные вещества, в частности белки. Сущность метода заключается в том, что молекулы белков мигрируют под действием электрического поля в среде с линейным и стабильным градиентом рН до достижения области рН, соответствующей их ИЭТ.

Изоэлектрическое фокусирование отличается от зонального электрофореза тем, что разделение осуществляется не в буфере с постоянным значением рН, а в среде с линейным градиентом рН. Значение рН минимально вблизи анода, максимально — вблизи катода. Главное условие эффективного разделения белков — наличие стабильного градиента рН среды. В связи с тем что белки обладают амфотерными свойствами, необходимо, чтобы амфолиты – носители — вещества, с помощью которых формируется градиент рН, обладали высокой буферной емкостью. Амфолиты — носители представляют собой многокомпонентную смесь изомеров и гомологов алифатических полиаминополикарбоновых кислот, сульфокислот и фосфоновых кислот, изоэлектрические точки которых располагаются в широкой области значений рН.

ИЭФ применяют для аналитического разделения пептидов, белков, нуклеотидов, органических кислот, ионов металлов и препаративного разделения белков; накопления следовых количеств веществ из больших объемов пробы; определения электрофоретической подвижности.

Необходимым условием проведения ИЭФ является наличие высокого напряжения при низкой ионной силе раствора. Однако именно в этих условиях усиливается электроосмос. Отрицательное воздействие на эффективность разделения веществ оказывают так же примеси солей, занесенные вместе с реактивами (гели для ИЭФ следует готовить из особо чистых реактивов). Для проведения ИЭФ более всего подходит полиакриламидный гель с низкими электроосмотическими свойствами. Продолжительность эксперимента зависит от напряженность поля и характера изменения рН- градиента.

Препаративное изоэлектрическое фокусирование проводят в вертикальных колонках (в градиенте плотности сахарозы, глицерина, этиленгликоля) или в слое инертного материала. В качестве таких материалов используют гранулированные гели (рН градиент формируют с помощью амфолитов).

источник

56.Электрофоретические методы разделения биоматериалов. Примеры применения в клинической практике. Значение электрофореза в протеомном анализе.

Электрофорез – метод разделения веществ, основанный на явлении миграции заряженных микрочастиц в жидкой среде под действием электрического поля. Электрофорез широко используется для полуколичественного определения белков сыворотки крови и для выявления парапротеинов. Электрофорез проводится с сывороткой, а не с плазмой, так как присутствие фибриногена в плазме приводит к образованию выраженной β2-полосы, что может быть расценено как парапротеинемия

1. зональный (полуколичественный метод, позволяющий разделить смесь белков в зависимости от их молекулярной массы и электрического заряда). С помощью зонального электрофореза можно исследовать не только сыворотку, но и другие биологические жидкости, например спинномозговую жидкость и мочу. Этот метод позволяет оценить белковый состав исследуемой пробы и выявить моноклональные антитела.

3. изотахофорез (метод разделения различных типов ионов по их подвижности в электрическом поле). Применение: аналитическое разделение (мкг) пептидов,белков,нуклеотидов,органических кислот,ионовметаллов(частичноизотопов) с высоким разрешением; препаративное разделениебелков(г), накопление в виде узкой зоны следовых количеств веществ (мкг) из больших объемов пробы вследствие эффекта концентрирования, определение электрофоретической подвижности.

Свободный (фронтальный) электрофорез:

В этом случае электрофорез проводят в приборах, существенной частью которых является U-образная трубка. Нижнюю часть трубки заполняют испытуемым объектом, например раствором белка, на который наслаивают растворитель. В растворитель погружают электроды, соединенные с источником постоянного тока. При этом электрически заряженные частицы белка перемещаются к одному из электродов, вследствие чего граница раздела между раствором и растворителем в одном колене поднимается (восходящая граница), а в другом опускается (нисходящая граница). Приборы для свободного электрофореза, снабженные устройством автоматической регистрации перемещения каждого компонента в исследуемом объекте, применяют при анализе дисперсных систем, выделении из них отдельных компонентов, а также при клиническом исследовании сыворотки крови.

Свободный (фронтальный) электрофорез получил широкое распространение для исследования нормальных и патологических сывороток, установления состава белковых смесей, определения чистоты белков.

Электрофорез на носителях (зональный электрофорез):

В качестве носителей используют бумагу, гели крахмала, агара, полиуретанов и др. В клинических лабораториях особо широкое распространение для исследования сыворотки крови получил электрофорез на бумаге, который проводится следующим образом: на полоску специального сорта бумаги, пропитанной соответствующим буферным раствором (см.), наносят капельку сыворотки крови. Концы полоски опускают в чашечки, заполненные данным буферным раствором и снабженные электродами. При пропускания постоянного электрического тока отдельные белки сыворотки перемещаются вдоль полоски с разными скоростями, а иногда и в разных направлениях. По истечении определенного времени пропускание тока прекращают, полоску бумаги подсушивают и обрабатывают реактивом на белок. При этом на бумажной электрофореграмме выявляются окрашенные пятна. По числу пятен судят о количестве белковых фракций, а по интенсивности окраски пятен — о количественном содержании каждой белковой фракции в исследуемой сыворотке.

В последнее время широкое применение в исследовательской работе и в клинической диагностике находит электрофорез в тонких слоях гелей, нанесенных на стеклянные пластинки (дисковый электрофорез), а также помещенных в стеклянные трубочки.

Особенно широкое распространение получил электрофорез на бумаге (бумажный электрофорез) при исследовании и разделении белков, нуклеиновых кислот, стеринов, аминокислот, жирных кислот и других биологически активных веществ.

источник

1. Зональный электрофорез — полуколичественный метод, позволяющий разделить смесь белков в зависимости от их молекулярной массы и электрического заряда. Суть метода заключается в следующем: исследуемую смесь белков на носителе (например, пластине с гелем) помещают в камеру для электрофореза, заполненную буферным раствором и подключенную к источнику постоянного тока. При электрофорезе белков сыворотки обычно получается 5 основных полос, которые соответствуют фракциям альбумина, альфа1-, альфа2-, бета- и гамма-глобулинов (см. рис. 20.1). Иммуноглобулины мигрируют преимущественно во фракцию гамма-глобулинов, хотя также присутствуют во фракциях бета- и альфа2-глобулинов. Относительное содержание каждой фракции сывороточных белков можно оценить с помощью денситометра. С помощью зонального электрофореза можно исследовать не только сыворотку, но и другие биологические жидкости, например СМЖ и мочу. Этот метод позволяет оценить белковый состав исследуемой пробы и выявить моноклональные антитела, хотя он недостаточно чувствителен для определения моноклональных антител в низкой концентрации на ранних стадиях миеломной болезни.

2. Иммуноэлектрофорез. Суть метода заключается в следующем: 1) проводят электрофоретическое разделение белков в геле; 2) по окончании электрофореза в геле параллельно направлению электрофореза вырезают бороздки; 3) в бороздки вносят антитела (антисыворотку), например к тяжелым (альфа, дельта, эпсилон, гамма, мю) или легким (лямбда, каппа) цепям иммуноглобулинов. Эти антитела и разделенные при электрофорезе белки диффундируют навстречу друг другу. В тех местах, где антитела связываются с белками, образуются дуги преципитации (см. рис. 20.2). Иммуноэлектрофорез позволяет оценить лишь качественный состав исследуемой смеси белков. Оценка результатов исследования требует высокой квалификации. Чаще всего этот метод применяется для выявления и характеристики моноклональных антител.

3. Электрофорез с иммунофиксацией. Этот метод основан на электрофоретическом разделении белков сыворотки в геле с последующей инкубацией геля в присутствии антител к тяжелым и легким цепям иммуноглобулинов. При связывании белков с антителами образуются иммунные комплексы, которые можно увидеть после окрашивания (см. рис. 20.3). Иммунные комплексы, содержащие нормальные иммуноглобулины, откладываются в виде широкой, размытой полосы, моноклональные — в виде более узкой и четко очерченной. Этот метод также является качественным, однако более чувствителен и прост, чем иммуноэлектрофорез. Электрофорез с иммунофиксацией часто применяется в сочетании с иммуноэлектрофорезом для определения моноклональных или олигоклональных иммуноглобулинов.

Б. Двойная радиальная иммунодиффузия — полуколичественный метод, с помощью которого можно не только выявить антигены, но и оценить степень сходства между ними. Суть метода заключается в следующем: 1) в лунки, вырезанные в агаре, вносят исследуемую смесь антигенов и антитела с известной специфичностью (обычно в центральную лунку вносят антитела, а в расположенные вокруг нее — антигены); 2) антигены и антитела диффундируют по направлению друг к другу; 3) в том месте, где произошло связывание антител и антигенов, образуются полосы преципитации. По взаимному расположению и форме полос преципитации можно оценить степень сходства между антигенами, находящимися в соседних лунках. В настоящее время этот метод применяется в диагностике аутоиммунных заболеваний для выявления аутоантител к экстрагируемым ядерным антигенам (см. гл. 15, п. II.Д.2). Хотя по чувствительности метод двойной радиальной иммунодиффузии уступает многим количественным методам, технически он прост, не требует высокоочищенных антител, специфичен и может использоваться при проведении массовых исследований.

В. Простая радиальная иммунодиффузия позволяет количественно определить содержание антигена в исследуемой пробе. Суть метода заключается в следующем. В слое агара, содержащего антитела, вырезают лунки, в одни из которых вносят исследуемый антиген, в другие — стандартный. Антигены диффундируют из лунок в агар, образуя радиальные зоны преципитации. Диаметр зоны преципитации пропорционален концентрации антигена. Это простой и надежный метод количественной оценки иммуноглобулинов (включая подклассы IgG), компонентов комплемента (например, C3, C4, фактора B) и других белков сыворотки. Существуют готовые наборы, позволяющие определить антиген в низкой концентрации — не более 3 мкг/мл. Определяя содержание иммуноглобулинов, необходимо учитывать, что изменение их свойств может искажать результаты исследования. Так, если в сыворотке содержатся мономерные IgM (например, при макроглобулинемии Вальденстрема, атаксии-телеангиэктазии), уровень IgM будет искусственно завышен, поскольку мономерный IgM диффундирует быстрее, чем пентамерный. Присутствие ревматоидного фактора в исследуемой пробе, напротив, искусственно снижает уровень IgG, поскольку иммунные комплексы, состоящие из IgG и ревматоидного фактора, диффундируют медленнее, чем несвязанный IgG. Сыворотка многих больных с дефицитом IgA содержит антитела к белкам животного происхождения, например к козьим иммуноглобулинам, поэтому при использовании козьих антител для определения уровня IgA в этом случае получаются завышенные результаты.

Г. Нефелометрия — определение концентрации взвешенных частиц и высокомолекулярных веществ в растворе, основанное на оценке интенсивности рассеяния света, проходящего через этот раствор. Нефелометрия может быть использована для определения концентрации антигенов, поскольку при добавлении к ним антител образуются иммунные комплексы, рассеивающие проходящий свет. Нефелометрия позволяет с высокой точностью определить концентрацию IgG, IgA, IgM, подклассов IgG, C3, C4, фактора B, C-реактивного белка и некоторых других сывороточных белков. Этот метод подходит для определения белков в низкой концентрации, например IgE, уровень которого в сыворотке не превышает 1 мкг/мл. В настоящее время многие лаборатории используют нефелометрию в качестве стандартного метода количественного определения иммуноглобулинов.

Д. РИА. Этот высокочувствительный метод разработан более 30 лет назад и сначала использовался для определения концентрации инсулина и других гормонов. Сейчас он используется и для определения антигенов и антител. Существует несколько модификаций метода. Одна из них основана на конкурентном связывании меченного радиоактивным изотопом и немеченого антигена с антителами. Суть метода заключается в следующем: 1) известное количество антител смешивают с известным количеством меченого антигена и исследуемой пробой (содержащей неизвестное количество антигена); 2) антиген, содержащийся в пробе, и стандартный меченый антиген связываются с антителами, 3) чем выше содержание немеченого антигена, тем меньше меченого антигена свяжется с антителами (см. рис. 20.4). Концентрацию антигена в исследуемой пробе оценивают по уровню радиоактивности иммунных комплексов. Тот же подход может быть использован для определения концентрации антител в пробе. В этом случае известное количество антигена смешивают с известным количеством стандартных меченых антител и исследуемой пробой (содержащей неизвестное количество антител). Другая модификация метода основана на иммобилизации антигена или антитела на твердой подложке (см. гл. 20, п. I.Е). Основные недостатки метода — необходимость дорогостоящего оборудования и реактивов, а также условий для работы с радиоактивными изотопами.

Е. Твердофазный ИФА. В качестве твердой фазы чаще всего используются полистироловые планшеты с сорбированными на них антигенами или антителами. Определение антител к какому-либо антигену проводят следующим образом: 1) исследуемую жидкость вносят в лунки планшета с сорбированным на них антигеном; 2) во время инкубации антитела связываются с антигеном; 3) планшет отмывают от несвязавшихся антител и добавляют антитела к иммуноглобулинам (вторые антитела), меченные ферментом; 4) планшет вновь отмывают, добавляют субстрат фермента и хромоген (вещество, меняющее окраску в процессе химической реакции); 5) под действием продукта ферментативной реакции хромоген меняет окраску. Чем больше меченных ферментом вторых антител связывается с комплексами антиген—антитело, тем выше активность фермента и интенсивность окраски раствора (см. рис. 20.5). Концентрацию антител в пробе определяют спектрофотометрически — по оптической плотности окрашенного раствора. Такой же подход применяется для определения антигена в пробе. В этом случае используются планшеты с сорбированными антителами к исследуемому антигену, меченные ферментом вторые антитела также направлены к этому антигену (см. рис. 20.5). Твердофазный ИФА применяют для количественной оценки антител и антигенов. По чувствительности он сопоставим с РИА, но более прост, дешев и не требует применения радиоактивных изотопов. Многие лаборатории используют твердофазный ИФА в качестве стандартного метода определения противовирусных антител, включая антитела к ВИЧ, цитокинов и иммуноглобулинов (IgE и подклассов IgG).

Ж. Иммуноблоттинг — качественный метод, позволяющий выявлять антигены и антитела в исследуемой пробе. Антитела с помощью этого метода выявляют следующим образом: 1) смесь известных антигенов разделяют с помощью электрофореза в полиакриламидном геле и переносят на нитроцеллюлозную мембрану; 2) мембрану инкубируют с исследуемой пробой, например сывороткой, а затем — с мечеными антителами к иммуноглобулинам. Для выявления антигенов электрофоретическому разделению подвергаются белки исследуемой пробы, которые затем переносятся на мембрану с последующим добавлением меченых антител к известным антигенам. В настоящее время выпускаются готовые наборы для проведения иммуноблоттинга. Этот метод широко применяется для подтверждения результатов твердофазного ИФА при диагностике ВИЧ-инфекции.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Название: Электрофорез 2
Раздел: Рефераты по медицине
Тип: реферат Добавлен 05:29:33 15 июля 2011 Похожие работы
Просмотров: 2668 Комментариев: 12 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно Скачать
Читайте также:  Электрофорез по бургиньону ношпы