Меню Рубрики

На каком принципе основан метод электрофореза

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

источник

Электрофорез — метод разделения веществ, основанный на явлении миграции заряженных микрочастиц в жидкой среде под действием внешнего электрического поля.

Существует три различных электрофоретических метода. Под собственно электрофорезом обычно понимают зональный электрофорез (ЗЭ), два других называют методами изоэлектрофокусирования (ИЭФ)и изотахофореза (ИТФ).Электрофорез применяют главным образом для разделения веществ, молекулы которых различаются по электрофоретической подвижности, т. е. отношению скорости электрофореза (скорости перемещения заряженных частиц вещества) к напряженности электрического поля, которое зависит от свойств заряженных частиц окружающей их среды. Путем изменения внешних условий (например, рН среды, температуры, силы тока, состава и концентрации буферного раствора или носителя) создают подходящие условия для разделения. Вследствие того что при разделении на молекулы действуют только электростатические силы, электрофорез считают «мягким» методом и поэтому часто применяют для работы с лабильными веществами.

Электрофорез можно проводить в растворе, но из-за неизбежного выделения теплоты и возникающей в связи с этим тепловой конвекции процесс, как правило, проводят на носителе. Вследствие некоторых сопутствующих явлений (адсорбция, несоизмеримость размеров высокомолекулярных соединений и пор носителя) введение носителя ограничивает область применения метода. Однако свойства носителя иногда используют для повышения эффективности разделения: например, при электрофорезе в градиенте полиакриламидного геля фракционирование осуществляется не столько за счет различной электрофоретической подвижности веществ, сколько за счет различия в их молекулярных массах.

Зональный электрофорез (ЗЭ) — это метод разделения заряженных частиц в электрическом поле, основанный на том, что частицы с разными соотношениями заряд/масса мигрируют с различными скоростями. В зависимости от знака заряда молекулы вещества мигрируют в электрическом поле по направлению к аноду или катоду.

Результаты этого процесса регистрируются на электрофореграфе (по аналогии с хроматографией).

Ранее использовали один и тот же буфер в слое носителя электродных камерах, т. е. разделение вели в непрерывной буферной системе. В настоящее время этот прием еще применяют при электрофорезе на бумаге и пластинках. Приэлектрофорезе в прерывистой буферной системе (различные буферы в слое носите электродных камерах) быстро мигрирующие вещества образую более узкие зоны. Электрофорез в прерывистой буферной системе используют главным образом в гель-электрофорезе. ЗЭ обычно проводят на бумаге, пластинках и в гелях в водных буферных растворах.

При электрофорезе в электродных камерах происходит электролиз раствора и вследствие этого изменяется состав буфера. Поэтому электроды располагают так, чтобы они не касались носителя, а контакт между ними осуществлялся при помощи полосок фильтровальной бумаги. Электродная камера разделена на два отсека, которые соединяются дополнительным мостиком из фильтровальной бумаги. Подбирая соответствующий объем электродных камер или перекачивая буфер насосом от анода к катоду, поддерживают постоянными концентрацию и значение рН буфера в двухкамерной системе. Рекомендуется также проводить деполяризации электродов после каждого электрофоретического разделения.

Материалы-носители подразделяются на две группы:

первая — бумага, целлюлоза, ацетилированная целлюлоза, агароза и материалы для ТСХ(например, силикагель);

вторая — крахмал и полиакриламид.

Эффективность разделения зависит не только от суммарного заряда молекул анализируемых веществ, но и от размеров молекул. Определяющим параметром является соотношение заряд — масса.

Носители первой группы относительно инертны и слабо влияют на эффективность разделения. Материалы второй группы обладают пористой структурой, что существенно влияет на качество разделения. Поскольку размеры пор соизмеримы с размером макромолекул, то можно разделять вещества с одинаковыми суммарными зарядами, но с разными молекулярными массами (например, при ионообменной хроматографии).

Электрофорез на бумаге позволяет экстрагировать вещества из соответствующих зон или пятен и использовать для дальнейшей работы; обнаруживать вещества, используемые в бумажной хроматографии; проводить фракционирование в двух направлениях.

Для электрофореза на бумаге используют специальные сорта бумаги, характеризующиеся следующими свойствами: достаточной механической прочностью; удовлетворительным для удерживания достаточного количества электролита и образца.

Наряду с камерами погружного типа применяют камеры для электрофореза в тонком слое с охлаждаемыми пластинами, в которых лист бумаги помещают между двумя изолирующими пленками.

Электрофорез в тонком слое проводят на стеклянных пластинках, покрытых слоем носителя. По сравнению с полосками бумаги пластины более удобны в обращении. Электрофорез на бумаге и в тонком слое применяют для исследования фракций, полученных при колоночной хроматографии, ферментативных гидролизатов белков, метаболитов, а также для разделения аминов, аминокислот, пептидов и белков, нуклеотидов, фенолов, нафтолов, фенолкарбоновых кислот, красителей, неорганических соединений.

Гель- электрофорез. Вместо целлюлозы и силикагеля можно использовать мягкие гели. Ниже приведены основные рабочие стадии проведения электрофореза в слое геля: приготовление гелей и подготовка образца ® электрофоретическое разделение ® детектирование ® анализ результатов и оформление их в рабочем журнале. Из множества гелей на практике применяют только два — гели агарозы и полиакриламида. В зависимости от способа приготовления геля и типа буферной системы различают несколько вариантов метода:

· электрофорез в геле полиакриламида (ПААГ);

· диск-электрофорез (диск-ПААГ) в прерывистой буферной системе;

· электрофорез в геле полиакриламида в присутствии додецилсульфата натрия (ДСН-ПААГ);

· электрофорез в градиенте пористого полиакриламидного геля.

Гель окрашивают красителем. Поскольку молекулы красителя заряжены, гель можно обесцвечивать электрофоретически при напряжении 50 В. В местах, не содержащих исследуемое вещество, гель обесцвечивается. Количественную оценку проводят спектрофотометрически при помощи сканирующего денситометра.

После усадки гелей в водном этаноле или ацетоне их высушивают между двумя листами целлофана в вакууме при слабом нагреве.

Гель-электрофорез применяют для разделения всех классов заряженных веществ, например белков, ферментных комплексов, вирусов, олигонуклеотидов и нуклеиновых кислот; определения молекулярных масс биополимеров; анализа белков на микроуровне (антигенов при количественном иммуноэлектрофорезе).

При электрофорезе в свободном потоке электролит (буфер) перемещается в вертикальном направлении (перпендикулярно направлению электрического поля). Заряженные частицы под действием электрического поля мигрируют в горизонтальном направлении и одновременно увлекаются потоком буфера. В итоге разделенные вещества распределяются в потоке в соответствии с их электрофоретической подвижностью и элюируются из прибора в различных фракциях. Электрофорез в свободном потоке применяют для препаративного разделения заряженных частиц, в том числе коллоидных, субклеточных частиц и клеток.

Изоэлектрическое фокусирование (ИЭФ). С помощью изоэлектрического фокусирования по изоэлектрическим точкам (ИЭТ) разделяют амфотерные вещества, в частности белки. Сущность метода заключается в том, что молекулы белков мигрируют под действием электрического поля в среде с линейным и стабильным градиентом рН до достижения области рН, соответствующей их ИЭТ.

Изоэлектрическое фокусирование отличается от зонального электрофореза тем, что разделение осуществляется не в буфере с постоянным значением рН, а в среде с линейным градиентом рН. Значение рН минимально вблизи анода, максимально — вблизи катода. Главное условие эффективного разделения белков — наличие стабильного градиента рН среды. В связи с тем что белки обладают амфотерными свойствами, необходимо, чтобы амфолиты – носители — вещества, с помощью которых формируется градиент рН, обладали высокой буферной емкостью. Амфолиты — носители представляют собой многокомпонентную смесь изомеров и гомологов алифатических полиаминополикарбоновых кислот, сульфокислот и фосфоновых кислот, изоэлектрические точки которых располагаются в широкой области значений рН.

ИЭФ применяют для аналитического разделения пептидов, белков, нуклеотидов, органических кислот, ионов металлов и препаративного разделения белков; накопления следовых количеств веществ из больших объемов пробы; определения электрофоретической подвижности.

Необходимым условием проведения ИЭФ является наличие высокого напряжения при низкой ионной силе раствора. Однако именно в этих условиях усиливается электроосмос. Отрицательное воздействие на эффективность разделения веществ оказывают так же примеси солей, занесенные вместе с реактивами (гели для ИЭФ следует готовить из особо чистых реактивов). Для проведения ИЭФ более всего подходит полиакриламидный гель с низкими электроосмотическими свойствами. Продолжительность эксперимента зависит от напряженность поля и характера изменения рН- градиента.

Препаративное изоэлектрическое фокусирование проводят в вертикальных колонках (в градиенте плотности сахарозы, глицерина, этиленгликоля) или в слое инертного материала. В качестве таких материалов используют гранулированные гели (рН градиент формируют с помощью амфолитов).

источник

Для разделения белков сыворотки крови на их составляющие используют метод электрофореза, основанный на различной подвижности белков сыворотки крови в электрическом поле.

Принцип разделения белков сыворотки крови на фракции состоит в том, что в электрическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровом гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц.

Вследствие этого белки сыворотки крови разделяются обычно на пять основных фракций: альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины, гамма-глобулины, содержание которых определяется с помощью фотометрии или денситометрии.

Электрофорез в агаровом, крахмальном и особенно полиакриламидном геле дает лучшие результаты: четкое разделение и большое количество белковых фракций сыворотки. Недостатки метода: сложность процедуры приготовления геля (дороговизна готовых гелевых пластин).

Преимущества электрофореза на ацетатцеллюлозной пленке:

1. Химическая однородность пленки и одинаковый размер пор

2. Требует малый объем пробы (0,2-2 мкл) для разделения

3. Быстрота разделения и окраски белков, легкость отмывания фона

В сыворотке крови здорового человека при электрофорезе можно обнаружить шесть белковых фракций: преальбумины, альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины и гамма-глобулины.

Это исследование в диагностическом отношении более информативно чем определение только общего белка или альбумина. При многих заболеваниях изменяется процентное соотношение белковых фракций, хотя общее содержание белка в сыворотке крови остается в пределах нормы.

Анализ фореграммы белков позволяет установить, за счет какой фракции происходит увеличение или дефицит белка, а также судить о специфичности изменений, характерных для данной патологии. Исследование белковых фракций, позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Белковые фракции сыворотки крови в норме:

Фракции Содержание, %
Преальбумины 2-7
Альбумины 52-65
Альфа-1-глобулины 2,5-5,0
Альфа-2-глобулины 7,0-13,0
Бета-глобулины 8,0-14,0
Гамма-глобулины 12,0-22,0

При анализе результатов исследования сыворотки крови на белковые фракции выявляются три типа нарушений:

1. Диспротеинемия (изменение соотношения белковых фракций)

2. Генетические дефекты синтеза белков

3. Парапротеинемия (аномальные белки в крови)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9438 — | 7438 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Электрофорез в агарозном геле.

Принцип метода электрофореза.

Электрофорез – метод разделения макромолекул, различающихся по таким параметрам, как размеры (или молекулярная масса), пр о- странственная конфигурация, вторичная структура и элек трический заряд.

Физический принцип метода заключается в следующем. Наход я- щиеся в буферном растворе макромолекулы обладают некоторым су м- марным электрическим зарядом, величина и знак которого зависит от рН среды. Если через этот раствор, зак люченный в канал из изолирующего материала начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т.е. сформируется электрическое поле. Его напряженность измеряется разностью поте н- циалов по концам канала, отнесен ной к его длине (В/с). Под действием поля макромолекулы в соответствии со своим суммарным зарядом м и- грируют в направлении катода или анода, причем их трение об окр у- жающую среду ограничивает скорость миграции. В зависимости от в е- личины заряда и размеров мол екулы приобретают различные скорости. Постепенно исходный препарат, состоящий из различных молекул, ра з- деляется на зоны одинаковых молекул, мигрирующих с одинаковой скоростью. В современных приборах рабочий канал заполняют гелем, наличие сетки которого вн осит важную дополнительную деталь в эле к- трофоретическую миграцию молекул. Фракционируемые молекулы сталкиваются с нитями полимера, образующую сетку геля, что увел и- чивает сетку геля и снижает скорость движения молекул. Препятствия для миграции становятся о собенно серьезными, если средний размер пространственных ячеек геля оказывается соизмерим с размерами ма к- ромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных макромолекул и степень разделения оказывает соотношение их линей ных размеров. Возможна даже такая ситуация, когда особенно крупные молекулы белков или нуклеиновых кислот в о- обще не могут «протиснуться» через поры геля и их миграция прекр а- титься.

Читайте также:  Принцип действия электрофореза с новокаином

В настоящее время используют ПААГ и агарозный гель. В а- рьируя концентрацию полимера, можно получать гели с очень шир оким диапазоном размеров пор. Кроме того, можно изменять электрич еские заряды макромолекул путем вариации рН буфера, а их конфигур ацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость.

В ходе электрофореза зоны макромолекул остаются невид и- мыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же зн а-

ка, что и фракционируемые молекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость м и-

грации наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают.

Разделившиеся зоны биополимеров во избежание их дифф у- зии немедленно фиксируют. Для этого гель извлекают из стеклянной формы и вымачивают в смеси, кислоты выпадают в осадок в том мес те, где закончилась их миграция в ходе электрофореза. После фиксации (или одновременно с ней) проводят окрашивание зон путем вымачив а- ния геля в растворе красителя, прочно связывающегося с белком или нуклеиновой кислотой. Излишек красителя удаляют.

Вместо цилиндрических часто используют гели в виде тонких пластин, заполимеризованные между двумя плоскими стеклами. Такие пластины имеют важное преимущество: на них можно одновременно фракционировать несколько препаратов. Обычно их вносят с одного края геля на равных расстояниях друг от друга. Каждый препарат ра з- деляется в электрическом поле независимо от своих соседей, образуя свой набор зон. Кроме того, поскольку гель заливают в форму для п о- лимеризации жидким, то его концентрация, состав буфера и содерж а- ние добавок строго одинаковы по всему сечению геля. Следовательно, плотность тока и напряжение электрического поля также одинаковы. Это обеспечивает строго идентичные условия фракционирования ра з- ных препаратов и дает возможность достоверного сопоставления их с о- става путем сравнения положения полос в параллельных треках.

Особенности агарозного геля.

Агароза – это особо чистая фракция природного линейного пол и- сахарида агара, который получают из морских красных водорослей

(Gracilaria, Gelidium, Ahnfeltia).

Агароза состоит из строго чередующихся остатков 3-О- замещенной-β-D-галактопиранозы и 4-О-замещенной 3-6-ангидро-α-L- галактопиранозы. Молекулярная масса ее составляет 10 4 -10 5 . Гелеобразование идет путем связывания в пространственную сетку пучков нитей за счет водородных связей между ними. Некоторые виды агарозы обр а- зуют прочные гели уже при концентрации 0,3%.

При температурах 84 -96 o (а у специальных типов – уже при 70 o ) раствор агарозы переходит в прозрачную жидкость – «плавится». Вязкость расплавленного 1%-ного раствора агарозы составляет 10 -15 с П, что примерно соответствует вязкости 50% -ного раствора сахарозы при комнатной температуре. Растворы агарозы характеризуются ярко выр а- женным гистерезисом: они затвердевают, образуя гель, при значител ь- но более низких температурах (36 -42 o ). У легкоплавких типов агарозы

эта температура снижается до 30 o . Такая особенность облегчает ман и- пуляции с расплавленной агарозой — можно не опасаться преждевременного ее застывания в гель. Более того, расплавленную агарозу пре д- варительно охлаждают до 50 -55 o и уже при этой температуре заливают

в формы; это удобно и не связано с возникновением значительных те п- ловых деформаций.

Гели агарозы не вполне прозрачны, что обусловлено «кристалл и- зацией» геля.

Затвердевший гель представляет собой н е вполне равновесную систему: со временем он несколько уплотняется, выдавливая из себя жи д- кость. Температура плавления и гелеобразования зависят от с одержания в агарозе метоксильных групп, которое может достигать 3 -4%. Наличие этих групп затрудняет гелеоб разование.

В агарозе неизбежно содержатся и эфиры серной кислоты. Чем меньше в агарозе заряженных сульфогрупп, тем слабее силы электр о- статического отталкивания между молекулами полимера и выше их способность к связыванию водородными связями. Их присутствие существенно влияет не только на температуры плавления и застывания гелей, но и на сам процесс электрофореза. В частности, именно эфиры серной кислоты обусловливают сильно выраженное при электрофорезе

в гелях агарозы явление эндосмоса, суть которого в след ующем: отрицательно заряженные остатки серной кислоты неподвижно связаны с полимерными нитями агарозы. Соответствующие им положительные ионы, находясь в водной фазе под действием электрического поля м и- грируют в направлении катода. Их место занимают катионы, которые увлекают за собой всю массу жидкости, находящейся внутри геля, и вместе с ней – растворенные в водной фазе геля макромолекулы. Эле к- трофорезом в агарозном геле чаще всего разделяют отрицательно зар я- женные макромолекулы, а эндосмос направлен в про тивоположную сторону и ухудшает разделение. Поэтому агарозу подвергают спец и- альной очистке, и содержание иона сульфата в продажных препаратах не превышает 0,5%.

Рис. 1. Влияние эндосмоса в агарозном геле на характер фракционирования двунитевых ДНК одина кового разме-

1 — сверхскрученная ДНК; 2 — линейная; 3 — кольцевая; степень эндосмоса увеличивается слева направо

Типы агарозы, отличающиеся слабо выраженным эндосмосом, с о- держат менее 0,3% сульфата. В случае необходимости мо жно провести дополнительную очистку агарозы от сульфата обработкой 1М NаОН в 0,05%-ном боргидриде натрия и переосаждением 50% -ным этанолом. Наличие заряженных сульфогрупп иногда обусловливает еще и не специфическую сорбцию белков на агарозе, в результате чег о полосы расплываются с образованием «хвостов». Степень эндосмоса колич е- ственно оценивают с помощью коэффициента относительной миграции

(-m r ) – представляющего собой отношение скоростей миграции незаряженного полимера (за счет только эндосмоса) и сходного с ним по структуре полианиона при электрофорезе в агарозе данного типа.

Некоторые типы агарозы по номенклатуре фирмы « Miles»: тип LE – малая степень эндосмоса -m r =0,1-0,15;

тип HE – сильно выраженный эндосмос -m r =0,23-0,26.

Агароза с повышенными темпера турами плавления и гелеобразования (тип HGT) имеет -m r r >0,3) , но не за счет увеличения сульфатов, б лагодаря чему неспецифической сорбции белков на агарозе этого типа почти не происходит.

Агароза для электрофореза выпускается обычно в виде лиофилизированного порошка. Для приготовления геля выбранной концентр а- ции навеску порошка растворяют в соответствую щем буфере и нагре-

вают до 90-95 o . Перед заливкой в форму раствор агарозы охлаждают до 50 o .

Выбор концентрации агарозы, т.е. пористости ее геля, диктуется размерами фракционируемых макромолекул. Средний размер пор 2% — ного геля агарозы приблизительно соот ветствует диаметру сферически упакованной молекулы биополимера с массой 50 млн. дальтон. Гели с более высоким содержанием агарозы используют для гель -фильтрации. При электрофорезе поры геля должны быть легко проницаемы для м о- лекул биополимеров, чтобы лишь тормозить их миграцию в электрич е- ском поле за счет трения, поэтому для электрофореза применяют аг а-

розные гели с концентрацией 0,4 -2%. Ниже представлены примерные концентрации гелей агарозы (в %) для некоторых распространенных объектов фракционирования:

Высокомолекулярная ДНК вирусов и пла з-

Рестрикты ДНК (5-20 тыс. пар оснований)

Реовирусная двунитевая РНК (500 -5000 пар

Нативные мРНК; рестрикты ДНК (100 -1000

Разновидности электрофореза в агарозном геле.

Современные варианты электрофореза используют пластинки или колонки с агарозным гелем.

В зависимости от цели исследований эоектрофорез в агарозном геле может быть аналитическим и/или препаративным.

Аналитический электрофорез в агарозном геле имеет целью электрофоретическое разделение макромолекул с последующей визуализ а- цией и анализом полученных результатов.

Агарозный электрофорез применяют в препаративных целях. Для извлечения из геля разделенных компо нентов используют несколько способов: агарозный гель подвергают элюции буферными растворами, центрифугированию, замораживанию и оттаиванию.и др.

Вертикально расположенные трубки

Вертикальное расположение гелей и меет то преимущество, что препарат, наносимый на гель сверху, при любом его объеме равномерно покрывает всю рабочую поверхность геля. Затруднение при вертикал ь-

ном расположении могут возникать при недостаточной сцепле нности геля со стеклом, он будет сползат ь вниз.

Все приборы для с вертикальным расположением гелей ко н- структивно сложнее, чем аппараты с горизонтальным расположением, т.к. верхний электродный резервуар должен быть поднят над гелем.

Необходимо уплотнение в местах сочленения его с трубками или пл а- стинами.

Трубки (12-18штук) с уже заполимеризованным в них гелем вставляют снизу в резиновые прокладки так, чтобы их верхние концы выступали над дном резервуара. Если используют не все трубки, то на их место ставят заглушки. Собранный вместе с трубками в ерхний электродный резервуар устанавливают на нижний так, чтобы концы трубок оказались на некотором расстоянии от дна последнего и заполняют нижний резервуар электродным буфером до такого уровня, что трубки оказываются почти полностью погруженными в буфер. Это делается для улучшения теплоотвода в процессе электрофореза. С этой же целью нижний буфер перемешивают магнитной мешалкой или вводят допо л-

нительную охлаждающую систему. Оба резервуара цилиндрической или прямоугольной формы изготавливают из плексигласа , что позволяет следить за продвижением фронта красителя. В резервуарах должны быть закреплены электроды из платиновой проволоки. Нижний эле к- трод при этом должен располагаться так, чтобы поднимающиеся от н е- го пузырьки газа не попадали на нижние торцы трубо к, что создавало бы помехи протекания через них тока. Объемы электродных резерву а- ров достаточно велики, чтобы рН находящегося в них буфера не изм е- нялся под влиянием продуктов электролиза.

Для заливки и полимеризации геля нижние торцы трубок з а- клеивают парафильмом и устанавливают строго вертикально в штатив. Заливают гель. Собрав прибор, заливают буфер в верхний электродный резервуар. При полимеризации геля часть трубки с верхнего ее конца оставляют свободной, и туда при заливке попадает буфер. Затем под него, на поверхность геля, пипеткой наслаивают препарат, в который добавляют предварительно 5 -10% сахарозы. При любом варианте эле к- трофореза надо быть уверенным в том, что исходный препарат своб о- ден от взвешенных частиц (пыли или осадков), которые будут соб и- раться на торце геля и однородность тока по его сечению, что повлечет за собой деформацию разделяющихся зон. В этом случае препарат сл е- дует отфильтровать или очистить центрифугированием.

По окончанию электрофореза гель из трубки извлекают. В большинстве случаев это легко сделать с помощью длинной и зату п- ленной иглы шприца, которую вводят с одного из концов трубки, кр у- говыми движениями отслаивая гель от ее стенок. Если необходимо т а- кую операцию проводят и с другого конца. Через иглу при этом пост у- пает вода из закрепленного выше резервуара. Если гель отслаивается с трудом, в воду можно добавить 0,5 -1% раствор детергента. Во избеж а-

ния поломки следует дать гелю возможность выскользнуть из трубки в сосуд с водой, над которым проделывают эти манипуляции. Иногда д ля удаления геля из очень длинных трубок по его периферии с концов впрыскивают глицерин, а сам гель выталкивают водой из присоединя е- мого к трубке шприца. Если гель высокой концентрации вынуть не уд а- ется, его приходится замораживать, а трубку разбивать моло тком. Иногда можно решить проблему путем вымачивания трубки с гелем в мет а- ноле: гель постепенно съеживается и отстает от стенки.

Основным недостатком электрофореза в трубках является з а- трудненный отвод тепла даже при диаметре 5мм. На оси геля темпер а- тура оказывается выше, чем у его прилегающей к стеклу поверхности.

Это приводит к изгибу зон и соответственно окрашенных полос, п о- скольку электрофоретическая подвижность зависит от температуры. В условиях хорошего теплоотвода можно вести микроэлектрофорез в к а- пиллярах диаметром 0,7 -1,5мм.

Вертикально расположенные пластины

Для электрофореза белков обычно используют пластины ш и- риной 8-14 см и длиной (в направлении электрофореза) 8 -28 см.

Полимеризацию акриламида или застывание агарозы, а затем и электрофорез ведут в форме, образованной двумя пластинами зе р- кального стекла толщиной 5 -6мм. Расстояние между пластинами зад а- ется толщиной прокладок из тефлона или плексигласа («спейсеров») и определяет толщину геля. Прокладки шириной 10 -15мм устанавливают вдоль боковых краев стекол. Эти же прокладки можно использовать и для уплотнения формы во время нахождения в ней еще не затвердевш е- го геля. Для этого устанавливают еще одну прокладку точно такой же толщины по нижнему краю стекол и плотно прижимают ее к фрезер о- ванным торцам боковых прокладок.

При заливке агарозы уплотнение формы можно осуществить проще — заклеить торцы стекол липкой лентой. Нижнюю прокладку при этом можно не устанавливать. Уплотнение не будет совершенным, но агароза в контакте с прокладками и лент ой быстро застынет и заметного ее вытекания не будет. Для надежности можно сначала залить н е- большой слой агарозы и дать ей застыть в нижней части формы, а п о- том залить остальной ее объем.

Читайте также:  Электрофорез новокаина и анальгина

Собранную и уплотненную форму устанавливают вертикал ь- но и заливают в нее раствор мономеров ПААГ или расплавленную аг а- розу.

В аналитических опытах на каждой пластине обычно ведут электрофорез нескольких препаратов, состав которых можно затем с о- поставить при идентичных условиях разделения. Сопоставляемые пр е- параты фракционируют в параллельных друг другу «треках». В ходе полимеризации на верхнем крае геля формируют ряд одинаковых углублений прямоугольной формы — «карманов», в которые затем вн о-

сят исследуемые препараты. Для этого в еще незаполимеризовавшийся

гель или горячую агарозу вставляют гребенку из тефлона или плекс и- гласа. Прямоугольные зубцы гребенки и формируют карманы.

Гель или агарозу заливают между пластинами с таким расч е- том, что при опускании гребенки до упора жидкий гель заполнил пр о- межутки между ее зубцами. Гре бенку начинают вставлять с некоторым перекосом, чтобы под ее зубцами не задерживались пузырьки воздуха. Когда гель готов, вынимают нижнюю прокладку или снимают липкую ленту и осторожно вытаскивают гребенку. При работе с концентрир о- ванным ПААГ гель может прилипать к зубцам гребенки и нижние плоскости карманов могут оказаться неровными. Это ухудшает условия формирования исходных полос в геле. В таком случае имеет смысл вв е- сти еще один слой геля пониженной концентрации, и гребенку устана в- ливают в него.

Для проведения электрофореза чаще всего используются приборы конструкции, предложенной Стадиером. Верхний и нижний резервуары прямоугольной формы соединены вертикальной стенкой, в которой имеется вырез, ведущий в полость верхнего резе рвуара. Такой

же вырез имеет и одна из двух стеклянных пластин, меду которыми п о- лимеризуется гель. Пластины прижимаются пружинными зажимами к вертикальной стенке так, чтобы оба выреза совпадали. Буфер в верхний резервуар заливают до такого уровня, чтобы он через в ырез покрывал верхний торец геля. При этом вторая, не вырезанная, стеклянная пл а- стинка выступает в роли передней стенки резервуара. В месте совм е- щения двух вырезов, между стеклянной пластиной и стенкой, должно быть осуществлено уплотнение, препятствующее вытеканию верхне го буфера. В оба резервуара вмонтированы электроды из платиновой пр о- волоки. При установке в прибор форму с гелем частично погр ужают в буфер нижнего резервуара, так что она опирается на разнесенные по сторонам выступы и ее нижний торец оказывается приподнят ым над дном резервуара. После погружения необходимо удалить пузырьки воздуха.

По окончании электрофореза пластины разнимают, отслаивая одну из них от геля с помощью шпателя. Его всовывают между пласт и- нами со стороны карманов и слегка поворачивают. Со вто рой пластины гель снимают руками и переносят в ванночку для фиксации или окр аски. Необходимо проводить манипуляции в перчатках, т.к. случайное прикосновение кожи рук к рабочей поверхности геля при современных чувствительных методах окрашивания может остави ть на геле артефактное белковое пятно.

Горизонтально расположенные пластины

Преимущество-отсутствие проблемы уплотнения. Оба эле к- тродных буфера находятся в резервуарах, расположенных ниже уровня горизонтального столика, на который кладут гель.

Гель, полимеризованный на тонкой стеклянной пластинке или плашке из плексигласа, помещают на столик открытой поверхн о- стью кверху, поскольку препарат вносят не с торца, а в ряд специал ь- ных «колодцев», расположенных на некотором расстоянии от края. Электрофорез проводят в форезных камерах. Препараты вносят в «к о- лодцы» вместе с красителем — бромфеноловым синим, содержащим также глицерин, который «прижимает» краситель и препарат, не позв о- ляя им диффундировать в геле или в буфере.

Пластины для горизонтального элект рофореза в агарозе можно приготовить чрезвычайно просто. На горизонтально установленную (по уровню) плоскость кладут тонкое стекло определенного размера и на него выливают расплавленный раствор агарозы в буфере. Его объем надо рассчитать или подобрать так, чтобы получить пластину нужной толщины. Колодцы для препаратов в этом случае можно и не делать. Фирма LKB рекомендует наносить препараты прямо на поверхность

агарозы через прорези наложенного на пластину специального шаблона со щелями. Препарат объемом 2 — 4 мкл вносят в щель шаблона, откуда он полностью впитывается в агарозу. Впрочем, сравнительно пр о- стое приспособление, смонтированное на столике для заливки, позволяет установить над пластиной (перпендикулярно к ее плоскости) гребенку и с ее помощью при з аливке агарозы образовать колодцы для препаратов. Перед использованием пластину агарозы тоже следует выдержать во влажной атмосфере в течение суток.

Итак, электофорез в агарозном геле позволяет идентифицировать большое количество белковых фракций. Пример – электрофоретическое разделение белков сыворотки крови.

Электрофорез проводят в 1% -ном агарозном геле в мединал — вероналовом буфере рН=8,6 с ионной силой 0,05. Все белки сыворотки крови при рН=8,6 заряжаются отрицательно заряд и движутся от катода к аноду, причем дальше всего уходят альбумины, имеющие меньшую молекулярную массу, затем располагаются 1 -, 2 -, — и -глобулины. Иногда каждая из этих основных фракций может разделиться на н е- сколько подфракций. Первоначальная оценка результатов электрофор е- тического разделения сывороточных белков (выявление нормы или п а- тологии) должна проводиться визуально, путем сравнения с картиной нормальной сыворотки, а количественные данные предназначены тол ь- ко для документирования результатов и динамического наблюдения.

Для электрофореза белков используются различные аппараты, как ручные, так и полуавтоматические. Современные комплексы оснащены микропроцессорными блоками питания и управляются компьютером; в большинстве систем на последней стадии исследования окрашенных мембран или гелевых пластинок (определения относительного колич е- ства белков в каждой фракции) используется электронный цветной ск а-

нер или миниатюрная фотокамера, что существенно повышает точность

и воспроизводимость результатов. Программное обеспечение дает во з- можность усредненного расчета оптической плотности отдельных фракций путем автоматического определения границ «дорожек» и мн о- гократного сканирования каждой из них в нескольких «разрезах», что позволяет исключить ошибки из -за локальных микродефектов и неро в- ного положения носителя, а также до определенной степени нивелир о- вать искривление дорожки и влияние окрашенного фона при неполной отмывке. На экран дисплея и на принтер выводится график — денситограмма с рассчитанным содержанием отдельных белковых фракций. При необходимости маркеры границ фракций на графике можно ско р- ректировать, при этом будет произведен автоматический пересчет их показателей. В компьютере, как правило, создается архив электрофор е- грамм; их можно в любое время извлечь и просмотреть. Электрофорез белков, позволяющий определить их количественные сдвиги и физико — химические характеристики, помогает выявить заб олевания печени и почек, иммунной системы, некоторые злокачественные новообразов а- ния (лейкозы), острые и хронические инфекции, генетически е поломки

Методика электрофореза в агарозном геле.

Для приготовления агарозного геля в СВЧ-печи или на водяной бане расплавляют смесь агарозы, буфера и воды. Охлажденную до 50-60 о С смесь тонким слоем заливают в форму и с помощью специальных гребенок делают в геле лунки для нанесения образца. Исследуемый препарат (раствор белка, ДНК или РНК) вносят в лунку, расположенную у края геля — полужидкой среды с сетчатой пространственной структурой (обычно для электрофореза используют тонкие пластины геля). Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, и когда через гель пропускают электрический ток, они перемещаются в электрическом поле. Молекулы одинакового размера (и одинакового заряда) движутся единым фронтом, образуя в геле дискретные невидимые полосы. Чем меньше размер молекул, тем быстрее они движутся. Постепенно исходный препарат, состоящий из разных макромолекул, разделяется на зоны, распределенные по длине пластинки. За ходом электрофореза следят по перемещению в геле красителя — заряженного низкомолекулярного вещества, которое вносят в каждую лунку перед началом электрофореза. Когда краситель достигает конца пластины, электрофорез останавливают, а гель окрашивают красителем, прочно связывающимся с белками или нуклеиновыми кислотами. Если образец представляет собой дискретный набор макромолекул разного размера, то после электрофореза получается набор четких полос, расположенных одна под другой. Если же распределение молекул по размеру более или менее непрерывно, то получается смазанная картина. По интенсивности окраски полос можно судить о концентрации макромолекул в образце. Чтобы определить относительную молекулярную массу разделенных фрагментов, одновременно проводят электрофорез маркерных макромолекул с известными молекулярными массами. Набор маркеров

источник

Электрофорез занимает сейчас центральное место среди методов исследования белков и нуклеиновых кислот. В современной научной литературе редко можно встретить статью, в которой бы на той или иной стадии фракционирования или характеристики этих биополимеров не был использован электрофорез. Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор, заключенный в канал из изолирующего материала, например, стеклянную трубку, начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т. е. сформируется электрическое поле. Его напряженность измеряется разностью потенциалов по концам рабочего канала (или его участка), отнесенной к его длине (В/см). Под действием поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом — сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул, мигрирующих с одной и той же скоростью. Со временем эти зоны распределяются по длине канала. В настоящее время почти исключительно используются полиакриламидные гели (ПААГ) и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость.

В ходе электрофореза зоны растворенных макромолекул остаются невидимыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же знака, что и фракционируемые макромолекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость миграции наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают.

Разделившиеся зоны биополимеров во избежание их диффузии немедленно фиксируют. Для этого гель извлекают из стеклянной формы и вымачивают в смеси кислоты со спиртом так, что белки или нуклеиновые кислоты выпадают в осадок в том самом месте, где закончилась их миграция в ходе электрофореза. После фиксации (или одновременно с ней) проводят окрашивание зон путем вымачивания геля в растворе красителя, прочно связывающегося с белком или нуклеиновой кислотой. Излишек красителя удаляют.

Вместо цилиндрических часто используют гели в виде тонких пластин, заполимеризованные между двумя плоскими стеклами. Такие пластины имеют важное преимущество: на них можно одновременно фракционировать несколько препаратов. Обычно их вносят с одного края геля на равных расстояниях друг от друга. Каждый препарат разделяется в электрическом поле независимо от своих соседей, образуя свой набор зон. Вместо окрашивания или наряду с ним часто используют методы обнаружения разделенных зон по их радиоактивности. К ним относятся приемы регистрации полос на фотопленке посредством авторадиографии или флюорографии и различные способы счета радиоактивности в геле с помощью жидкостных сцинтилляционных счетчиков.

Фракционированием в ПААГ и агарозе не исчерпываются современные методы электрофореза. В качестве «носителей» жидкой фазы широко используют также пленки из ацетата целлюлозы, фильтровальную бумагу, тонкие слои силикагеля, целлюлозы, сефадекса и др. В некоторых случаях, например для разделения низкомолекулярных веществ, эти системы имеют свои преимущества, однако для фракционирования белков, нуклеиновых кислот и их фрагментов в настоящее время используют почти исключительно гель-электрофорез

Важное место в биохимических исследованиях занимает выделение индивидуальных белков из органов и тканей. Очищенные индивидуальные белки нужны для изучения их первичной структуры, получения кристаллов белков с целью исследования их пространственной структуры методом рентгеноструктурного анализа, установления взаимосвязи между первичной, пространственной структурой белка и его функцией.

Некоторые очищенные индивидуальные белки используют в медицине как лекарственные препараты, например гормон инсулин применяют для лечения сахарного диабета, а пищеварительные ферменты поджелудочной железы назначают при нарушении её функций в качестве заместительной терапии. Кроме того, очищенные ферменты часто используют в биохимических исследованиях в качестве химических реактивов для определения веществ в биологических жидкостях.

Большинство методов, используемых для очистки индивидуальных белков, основано на различиях их физико-химических свойств, а также возможности специфично связываться с лигандом.

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

  • дробление биологического материала и разрушение клеточных мембран;
  • фракционирование органелл, содержащих те или иные белки;
  • экстракцию белков (перевод их в растворённое состояние);
  • разделение смеси белков на индивидуальные белки.

Для разрушения биологического материала используют методы: гомогенизации ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает и растирает ткань о притёртые стенки сосуда.

Читайте также:  Электрофорез раствора хлористый кальций

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протомерами в олигомерных белках.

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их Особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

Наиболее трудоёмкий этап получения индивидуальных белков — их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.

На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка.

Большинство белков денатурирует и выпадает в осадок уже при кратковременном нагревании раствора до 50-70°С или подкислении раствора до рН 5. Если выделяемый белок выдерживает эти условия, то с помощью избирательной денатурации можно удалить большую часть посторонних белков, отфильтровав выпавшие в осадок-белки, или осадить их центрифугированием.

Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.

Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония — (NH4)2SO4. Чем выше растворимость белка, тем большая концентрация соли необходима для его высаливания.

Для разделения белков часто используют хроматографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хроматографическая колонка заполняется гранулами пористого вещества (сефадекс, агароза и др.). В структуре полисахарида образуются поперечные связи и формируются гранулы с «порами», через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной «пор».

Неподвижная фаза — жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесённую на хроматографическую колонку, вымывают (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутрь гранул сефадекса и на некоторое время попадают в неподвижную фазу, в результате чего их движение задерживается. Величина пор определяет размер молекул, способных проникать внутрь гранул .

Так как гелевая структура сефадекса легко деформируется под давлением, гели стали заменять более жёсткими матрицами (сефактил, той-оперл), представляющими сферические гранулы с разными размерами пор. Выбор размеров пор в гранулах зависит от целей хроматографии (о других хроматографических методах будет сказано ниже).

Метод разделения также основан на различии в молекулярных массах белков. Скорость седиментации веществ в процессе вращения в ультрацентрифуге, где центробежное ускорение достигает 100 000-500 000 g, пропорционально их молекулярной массе. На поверхность буферного раствора, помещённого в кювету, наносят тонкий слой смеси белков. Кювету помещают в ротор ультрацентрифуги. При вращении ротора в течение 10-12 ч более крупные молекулы (с большей молекулярной массой) оседают в буферном растворе с большей скоростью. В результате в кювете происходит расслоение смеси белков на отдельные фракции с разной молекулярной массой .После расслоения белковых фракций дно кюветы прокаливают иглой и по каплям собирают содержимое небольшими порциями в пробирки.

Разделение смеси белков методом гель-фильтрации.

Кювета, заполненная буферным раствором с разделёнными белковыми фракциями.

Метод основан на том, что при определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки — к катоду (-).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, α1 глобулины, α2-глобулины, β-глобулины и γ-глобулины (рис. 1-57). Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной фазы используют ионообменники — полимерные органические вещества, содержащие заряженные функциональные группы.

Различают положительно заряженные анионообменники, среди которых наиболее часто используют диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлозу), содержащую катионные группы, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу (КМ-цел-люлозу), содержащую анионные группы.

Выбор ионообменника определяется зарядом выделяемого белка. Так, для выделения отрицательно

Электрофорез белков сыворотки крови здорового человека на бумаге.

заряженного белка используют анионообменник. При пропускании раствора белка через колонку прочность связывания белка с анионообменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированные на анионообменнике, можно смыть (элюировать) буферными растворами с различной концентрацией соли, чаще всего NaCI, и разными значениями рН. Ионы хлора связываются с положительно заряженными функциональными группами анионообменника и вытесняют карбоксильные группы белков. При низких концентрациях соли элюируются белки, слабо связанные с анионообменником. Постепенное увеличение концентрации соли или изменение рН, что меняет заряд белковой молекулы, приводит к выделению белковых фракций, в одной из которых находится искомый белок.

Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом. Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

Аффинная хроматография.

Для удаления низкомолекулярных соединений, в частности сульфата аммония после высаливания, применяют диализ. Метод основан на том, что через полупроницаемую мембрану, пропускающую низкомолекулярные вещества, не проходят белки, имеющие более высокую молекулярную массу. В стакан большой ёмкости (около 1 л) с буферным раствором помещают полупроницаемый мешочек, заполненный раствором белка с солью.

Скорость выхода соли из мешочка в буферный раствор пропорциональна градиенту его концентраций по обе стороны от мембраны. По мере выхода соли из мешочка буферный раствор в стакане меняют.

Для очистки белков от низкомолекулярных примесей используют также метод гель-фильтрации.

Для определения частоты (гомогенности) выделенного белка применяют методы с высокой разрешающей способностью, например электрофорез в полиакриламидном геле, высокоэффективная хроматография высокого давления. От чистоты лекарственного белкового препарата зависят его биологическая эффективность и аллергенность (т.е. способность вызывать аллергические реакции). Чем качественнее очищен препарат, тем меньше вероятность осложнений при его применении.

Нуклеиновые кислоты — это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев — нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида — структурного звена нуклеиновых кислот — входят три составные части:

· азотистое основание — пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два — к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

· моносахарид — рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот — рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

· остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. Нуклеотид — фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

Сочетание технологии электрофореза на микрочипе, автоматизированной пробоподготовки и чувствительного флуориметрического детектирования предлагает высокоэффективную замену традиционному агарозному гель-электрофорезу. Качественный и количественный анализ нуклеиновых кислот становится теперь как никогда быстрым, недорогим и высокоточным. В настоящее время при проведении исследований нуклеиновых кислот основным методом изучения распределения фрагментов ДНК и РНК по молекулярной массе (размеру) остается агарозный гель-электрофорез. К основным недостаткам этого метода следует отнести достаточно высокую стоимость анализа при использовании готовых пластин геля, высокую трудоемкость, связанную с большим количеством ручных операций, длительность анализа, необходимость использования дополнительного весьма дорогостоящего оборудования для визуализации и последующей цифровой обработки электрофореграмм, использование небезопасных для здоровья реагентов (бромистого этидия). Всех этих недостатков лишена последняя разработка компании Shimadzu – прибор для электрофоретического разделения нуклеиновых кислот с использованием микрочипа MCE®-202 MultiNA.

  • Низкая стоимость анализа. Конструкция и материал микрочипа позволяют использовать его для нескольких тысяч анализов, при этом используется крайне незначительное количество расходных материалов. Тем самым достигается существенное снижение стоимости (в 1,5 – 3 раза) одного анализа ДНК по сравнению с агарозным гель-электрофорезом. Если сравнивать систему электрофореза на микрочипе с существующими сейчас на рынке системами капиллярного электрофореза, то снижение стоимости анализа может достигать 6 и более раз. В случае анализа РНК экономия может быть еще более существенной (рассчитано, исходя из стоимости оборудования и реагентов на японском рынке).
  • Высокая скорость анализа. Высокоскоростной автоматизированный анализ до 108 образцов (96 + 12 дополнительно). С использованием одного микрочипа полный цикл анализа ДНК составляет 255 секунд. Для увеличения производительности в прибор может быть установлено до четырех микрочипов для параллельной работы. В этом случае время одного анализа сокращается до 75 секунд.
  • Высокая чувствительность. Флуориметрический детектор с фотоумножителем и источником возбуждения флуоресценции на основе светодиода обеспечивает примерно 10-кратное увеличение чувствительности по сравнению с традиционным окрашиванием бромистым этидием (данные получены в ходе внутренних испытаний в лаборатории Shimadzu). К тому же используемые флуоресцентные красители, такие как SYBR green II и SYBR gold, абсолютно безвредны для здоровья в отличие от бромистого этидия.
  • Высокое разрешение и прекрасная воспроизводимость анализа. Оптимальная конфигурация капилляров микрочипа и специально подобранный состав буферного раствора обеспечивают превосходные характеристики электрофоретического разделения нуклеиновых кислот. Благодаря автоматизированной системе пробоподготовки количество ручных операций сведено к минимуму. Внутренние маркеры молекулярного веса уже включены в наборы реагентов и используются при каждом анализе. Все это в комплексе существенно увеличивает надежность и воспроизводимость получаемых результатов. Прибор может комплектоваться четырьмя различными наборами реагентов для анализа ДНК разного размера и РНК
  • Простота использования. Программное обеспечение с дружественным пользовательским интерфейсом и большим количеством функций максимально упрощает проведение исследования. Оператору достаточно загрузить образцы и реагенты в прибор, задать в программе желаемую последовательность анализа образцов и кликнуть по иконке «Старт» на экране компьютера. Все остальное, включая обработку электрофореграмм, прибор выполнит в автоматическом режиме.

Микрочип, изготовленный из кварца высокой чистоты, включает микроемкости для загрузки образца и реагентов и электрофоретический канал 23 × 0,09 × 0,05 мм (д ×ш × г). Напряжение подается при помощи напыленных платиновых электродов. Канал и микроемкости выполнены с высочайшей точностью при помощи уникальной фотолитографической технологии Shimadzu. Специальное покрытие обеспечивает возможность многократного использования одного и того же микрочипа (

3600 анализов). Следствием малой длины электрофоретического канала и его оптимальной формы является непревзойденная на сегодняшний день скорость электрофоретического разделения нуклеиновых кислот. Наборы реагентов для анализа ДНК и РНК. Прибор может комплектоваться тремя наборами реагентов для анализа ДНК различного размера и набором реагентов для анализа РНК.

источник