Меню Рубрики

Практическая работа по капиллярному электрофорезу

Электрофорез, как движение заряженных частиц под действием внешнего электрического поля в среде электролита, известен уже много лет. С конца 19 века электрофорез является предметом бурных обсуждений и дискуссий, а потому информации о данной методике огромное количество. Но методика капиллярного электрофореза появилась относительно недавно. Впервые упоминания о ней появились в семидесятых годах двадцатого века. Немного позже, около восьмидесятых годов двадцатого века, были созданы и выпущены в масштабное производство первые приборы или первая система капиллярного электрофореза.

После начала производства первых приборов ученые оценили практическую ценность капиллярного электрофореза, благодаря чему в начале девяностых годов практическое использование метода капиллярного электрофореза стало набирать обороты и пользоваться популярностью во многих аналитических лабораториях мира.

Не стоит отрицать, что методика капиллярного электрофореза появилась и стала внедряться в практику, непростительно поздно, но это можно объяснить. Лишь спустя столетие, после открытия метода электрофореза, технологические возможности стали производить и выпускать кварцевые капилляры, но их главная особенность заключалась в незначительном, точнее очень маленьком, и равномерном внутренним диаметре (приблизительно десятки микрон). Эти кварцевые капилляры с небольшим и равномерным внутренним диаметром прозрачны в ультрафиолетовой области. К тому же, к моменту создания необходимой модели кварцевых капилляров, ученые и разработчики метода уже накопили немало опыта в вопросах детектирования аналитических сигналов в потоке. Для того, чтобы методика работы капиллярного электрофореза стала более понятна и проста, необходимо детально рассмотреть ряд процессов, которые происходят в кварцевом капилляре, наполненном электролитом, а также помещенном в продольное электрическое поле.

Явление электрофореза — капиллярный электрофорез – в наше современное время представляется одним из немногих наиболее перспективных и высокоинформативных методов, которые используются исключительно для разделения и анализирования сложных смесей на их множественные составляющие компоненты. Электрофорез капель с каждым днем находит все большую популярность и многостороннее использование в различных областях медицины и производства, особенно часто капиллярный электрофорез используется в зарубежной аналитической практике по производству лекарственных средств.

Сферы использования капиллярного электрофореза:

  • Катионы металлов;
  • Неорганические и органические анионы;
  • Аминокислоты;
  • Витамины;
  • Наркотики;
  • Пигменты и красители;
  • Белки, пептиды;
  • Анализ фармпрепаратов и пищевых продуктов;
  • Контроль качества вод и питьевых напитков;
  • Технологический контроль производства;
  • Входной контроль сырья;
  • В области криминалистики, медицины, биохимии;
  • Расшифровка генетического кода живых организмов и т.д.

Характеристика капиллярного электрофореза:

  • Экспрессивность;
  • Микрообъемы вещества или смеси, подвергающихся детальному анализированию, и разделению;
  • Полное отсутствие колонки и твердого сорбента;
  • Для проведения капиллярного электрофореза абсолютно не требуются органические растворители.

Работа систем капиллярного электрофореза заключается в разделении множественных заряженных компонентов сложнокомпонентных смесей. Сама процедура выполняется в кварцевом капилляре под воздействием добавленного электрического поля, высокое напряжение подается к концам капилляра.

Методика капиллярного электрофореза классифицируется на два варианта:

  • Капиллярный зонный электрофорез, который зачастую обозначается, как КЗЭ;
  • Мицеллярная электрокинетическая хроматография, известную под аббревиатурой МЭКХ.

Капиллярный зонный электрофорез или КЗЭ – это метод разделения сложных смесей, производимый в капиллярах. Данная вариант капиллярного электрофореза основан на разнице в электрокинетических движениях заряженных частиц, либо в водных, либо в неводных электролитах.

Мицеллярная электрокинетическая хроматография или МЭКХ – один из вариантов капиллярного электрофореза. Его работа основывается на разделении составов ионного и нейтрального характера, а для проведения данного процесса используется поверхностно – активные вещества (ПАВ). За счет чего происходит разделение соединений при МЭКХ? В состав ведущего электролита соединений электронейтрального характера вводятся мицеллообразователи. Зачастую, особенно в зарубежной практике, при работе с МЭКХ внедряют анионный ПАВ, к примеру, додецилсульфат натрия – ДДСН. Добавленный анионный ПАВ необходим в концентрации, которая превышает критическую концентрацию мицеллообразования. Это и оказывает практически главную, решающую роль в эффекте МЭКХ, формируется определенные «псевдостационарные фазы», а компоненты распределяются между мицеллой и буферным электролитом, в соответствии с их гидрофобностью.

Традиционно капиллярный электрофорез сравнивают с ВЭЖХ или высокоэффективной жидкостной хроматографией. Схожесть этих двух методов в том, что в обоих случаях разделение сложных смесей на компоненты происходит в ограниченном пространстве, например, в колонке или капилляре, с использованием жидкой движущейся фазы, а также для детектирования оба метода используют идентичные принципы.

Преимущества капиллярного электрофореза над высокоэффетивной жидкостной хромотографией:

  • При выполнении ВЭЖХ процент разделение компонентов в сложной смеси небольшой, в отличие от капиллярного электрофореза, что связано с плоским профилем электроосмотического потока;
  • Электрофорез капель не требует масштабных затрат, то есть незначительный расход реактивных веществ и практически полное отсутствие потребности в использовании дорогостоящих высокочистых растворителей, например, ацетонитрил, метанол, гексан;
  • Система капиллярного электрофореза отличается отсутствием дорогостоящих хромотографических колонок, что приводит к отсутствию проблем с, так называемым, «старением» сорбента и сменой колонок при полностью выработанном ресурсе;
  • Система капиллярного электрофореза не требует пернициозных насосов, что снижает материальные затраты;
  • Аппаратура, необходимая для проведения капиллярного электрофореза, проста и неприхотлива в использовании и уходе;
  • Капиллярный электрофорез – это экспрессивный анализ.

Однако, даже такой простой и недорогостоящий метод, как капиллярный электрофорез, обладает рядом недостатков, например, данный метод в лишь в редких случаях может применяться для образцов, которые практически не растворяются или плохо растворяются в водных или водно – спиртовых растворах. Также к недостаткам капиллярного электрофореза относится незначительная чувствительность при регистрации сигнала в кварцевом капилляре, это объясняется незначительной длинной оптического пути.

Самый простой комплект системы капиллярного электрофореза включает в себя:

  • Кварцевый капилляр;
  • Источник высокого электрического напряжения;
  • Устройство ввода пробы;
  • Детектор;
  • Система вывода информации.

источник

Содержимое (Table of Contents)

Капиллярный электрофорез – это физический метод анализа, основанный на миграции внутри капилляра заряженных частиц в растворе электролита под влиянием приложенного электрического поля.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Капиллярный ОФС.1.2.1.0022.15

электрофорез Вводится впервые

Капиллярный электрофорез – это физический метод анализа, основанный на миграции внутри капилляра заряженных частиц в растворе электролита под влиянием приложенного электрического поля.

Скорость миграции частиц определяется их электрофоретической подвижностью и электроосмотической подвижностью буферного раствора.

Электрофоретическая подвижность вещества (μэф) зависит от его характеристик (электрического заряда, размеров и формы) и от характеристик буферной среды, в которой происходит разделение (типа и ионной силы электролита, рН, вязкости и добавок):

где q – эффективный заряд частицы;

η – вязкость раствора электролита;

r – стоксовский радиус частицы.

Электрофоретическую скорость (νэф) для вещества сферической формы определяют по формуле:

где E – сила электрического поля;

V – приложенное напряжение;

Когда к капилляру, заполненному буферным раствором, приложено электрическое поле, внутри капилляра образуется поток растворителя, называемый электроосмотическим потоком. Скорость и направление электроосмотического потока зависят от электроосмотической подвижности (μэо), определяемой знаком и плотностью заряда на внутренней стенке капилляра, а также характеристиками буфера:

где ε диэлектрическая константа буфера;

ζ – дзета-потенциал поверхности капилляра.

Электроосмотическую скорость (νэо) рассчитывают по формуле:

Электрофоретическая и электроосмотическая подвижность ионов могут быть направлены в одну и ту же или в противоположные стороны в зависимости от заряда частиц; таким образом, скорость движения растворенного вещества будет определяться уравнением:

Если электроосмотическая скорость выше электрофоретической, можно одновременно разделить как положительно, так и отрицательно заряженные ионы. Время, затраченное ионом для миграции от конца, в котором вводится образец, до места детекции (l – эффективная длина капилляра), определяют по формуле:

Как правило, капилляры из плавленого кварца без покрытия при pH выше 3 несут на внутренней поверхности отрицательный заряд из-за диссоциации силанольных групп. При этом электроосмотический поток направлен от анода к катоду.

В некоторых случаях необходимо уменьшить или изменить направление электроосмотического потока. Для этого различным образом модифицируют внутреннюю стенку капилляра или изменяют рН буферного раствора.

После введения образца в капилляр каждый анализируемый ион движется внутри фонового электролита в виде отдельной зоны в соответствии со своей электрофоретической подвижностью. Степень размывания каждой зоны растворенного соединения определяется совокупностью различных причин. В идеальном случае единственной причиной размывания зон является продольная молекулярная диффузия растворенного вещества вдоль капилляра. В этом, идеальном, случае эффективность разделения полосы, характеризуемая числом теоретических тарелок (N), выражается формулой:

где D – молекулярный коэффициент диффузии растворенного вещества в буферном растворе.

На практике на размывание полос значительное влияние оказывают тепловое рассеяние, адсорбция образца на стенке капилляра, различная проводимость между образцом и буфером, длительность ввода пробы, размеры детектирующей ячейки и различия уровней жидкости в емкостях с буферными растворами.

Разделение между двумя полосами, называемое разрешением (Rs), определяют по формуле (8):

где μэфб и μэфа – электрофоретические подвижности каждого из двух разделенных ионов;

– их средняя электрофоретическая подвижность.

Среднюю электрофоретическую подвижность определяют по формуле:

Система для капиллярного электрофореза состоит из высоковольтного источника напряжения; двух флаконов с буферными растворами и погруженными в них электродами; капилляра, заполненного соответствующим раствором и погруженного обоими концами во флаконы с буферными растворами; системы ввода образца; детектора, способного в режиме реального времени регистрировать вещества, проходящие мимо оптического окна капилляра; системы термостатирования; регистрирующего прибора или подключенного компьютера.

Для введения пробы могут использоваться три способа: гидростатический – за счет разного уровня буферных растворов, гидродинамический – с помощью прилагаемого давления или вакуума и электрокинетический – благодаря прилагаемому напряжению. В последнем случае степень ввода в капилляр каждого компонента пробы зависит от соответствующей электрофоретической подвижности. Электрокинетическая система ввода для многокомпонентной смеси с разной электрофоретической подвижностью ведет к изменению соотношения концентраций ее составляющих и в данном случае может адекватно применяться лишь для качественного анализа. При условии определения в многокомпонентной смеси одного или двух соединений этот метод может использоваться и для количественного анализа. Кроме того, такой способ введения может позволить увеличить чувствительность анализа.

Детектирование осуществляется с помощью абсорбционной спектрофотометрии в ультрафиолетовой и видимой областях, флуориметрии, кондуктометрии, амперометрии или масс-спектрометрии.

Для обнаружения не поглощающих в ультрафиолетовой области и не флуоресцирующих соединений используется непрямое детектирование. В этом случае в ведущий электролит вводится вещество, поглощающее ультрафиолетовое излучение и образующее выраженное фоновое поглощение. При этом зона определяемого вещества визуализируется в виде обратного пика. С использованием специального программного обеспечения электрофореграмме придают стандартный вид.

Применяемый раствор электролита фильтруют для того, чтобы удалить крупные частицы (размером более 0,45 мкм), и дегазируют для предотвращения образования пузырьков воздуха, которые могут быть помехой для детектирующей системы или могут нарушить электропроводность в капилляре во время проведения анализа. Для хорошей воспроизводимости времени миграции анализируемых компонентов проб для каждого определения должна быть разработана определенная процедура промывки капилляра.

Основными формами проведения капиллярного электрофореза являются: капиллярный зонный электрофорез, мицеллярная электрокинетическая хроматография, капиллярный гель-электрофорез, капиллярное изоэлектрическое фокусирование и капиллярный изотахофорез.

Аналиты разделяются в капилляре, содержащем только буферный раствор. Разделение происходит за счет того, что различные компоненты образца движутся с разными скоростями, образуя так называемые зоны. Скорость движения каждой зоны зависит от электрофоретической подвижности растворенного вещества и от электроосмотического потока в капилляре. Для уменьшения адсорбции веществ на поверхности плавленого кварца могут использоваться капилляры с модифицированной внутренней поверхностью.

Использование капиллярного зонного электрофореза позволяет выполнить разделение как малых (молекулярная масса Мицеллярная электрокинетическая хроматография

В мицеллярной электрокинетической хроматографии разделение осуществляется в растворе электролита, содержащего поверхностно-активное вещество в концентрации выше критической концентрации мицеллообразования. Молекулы растворенного вещества распределяются между буферным раствором и псевдостационарной фазой, состоящей из мицелл. Этот метод может использоваться для разделения как заряженных, так и нейтральных молекул. В качестве анионного поверхностно-активного вещества наиболее часто используется додецилсульфат натрия, в качестве катионного – соли цетилтриметиламмония.

При нейтральных и щелочных значениях рН возникает сильный электроосмотический поток, который движет ионы разделяющего буфера в сторону катода. При использовании в качестве поверхностно-активного вещества додецилсульфата натрия электрофоретическое движение анионных мицелл направлено в противоположную сторону – к аноду. В результате суммарная скорость движения мицелл снижена по сравнению с основным потоком раствора электролита. В случае нейтральных веществ скорость движения компонента, не имеющего электрофоретической подвижности, зависит только от его коэффициента распределения между мицеллой и водной средой. На электрофореграмме сначала появляется пик маркера электроосмотического потока, затем пики аналитов, и в конце – пик маркера мицелл. Время между первым и последним пиком называется окном разделения. На движение заряженных веществ влияют как их коэффициенты распределения между мицеллой и водным буферным раствором, так и их собственная электрофоретическая подвижность.

Читайте также:  Из чего делают электроды для электрофореза

Движение аналитов и разрешение может быть описано термином «фактор удерживания (k)», представляющим собой отношение молярных долей аналита в мицелле и в подвижной фазе. Для нейтрального вещества k вычисляют по формуле:

где tR – время миграции аналита;

t – время миграции неудерживаемого вещества;

tmc – время миграции мицеллы;

K – коэффициент распределения аналита;

VS – объем мицеллярной фазы;

Разрешение для двух близко движущихся аналитов (RS) рассчитывают по формуле:

где N – число теоретических тарелок для одного из аналитов;

α – селективность разделения;

Время разделения обратно пропорционально приложенному напряжению, однако следует учитывать, что увеличение напряжения может вызвать избыточное выделение тепла, приводящее к возникновению градиентов температуры и вязкости буферного раствора. Этот эффект вызывает уширение полос и уменьшение разрешения.

Как и в капиллярном зонном электрофорезе, при мицеллярной электрокинетической хроматографии длина и внутренний диаметр капилляра влияют на время анализа и эффективность разделения. Увеличение длины капилляра уменьшает электрическое поле, увеличивает время миграции и повышает эффективность разделения. Уменьшение внутреннего диаметра повышает рассеяние тепла и увеличивает разрешение.

Величина рН среды влияет на электроосмотический поток в немодифицированных капиллярах. Уменьшение рН снижает электроосмотический поток и вследствие этого увеличивает разрешение нейтральных веществ в мицеллярной электрокинетической хроматографии за счет увеличения времени анализа.

Для улучшения разделения гидрофобных веществ в мицеллярной электрокинетической хроматографии используют органические модификаторы (метанол, пропанол, ацетонитрил и др.). При этом необходимо учитывать, что добавление органического модификатора влияет на критическую концентрацию мицеллообразования.

Для разделения с помощью мицеллярной электрокинетической хроматографии энантиомеров в мицеллярную систему включают хиральные селекторы: ковалентно связанные с поверхностно-активным веществом (соли N-додеканоил-L-аминокислот, соли желчных кислот и др.) или вводимые в состав электролита (циклодекстрины).

Для улучшения селективности разделения в мицеллярной электрокинетической хроматографии применяют также вещества, способные изменить взаимодействие аналита с мицеллой путем адсорбции на последней. Этими добавками могут быть второе поверхностно-активное вещество (ионное или неионное), ведущее к образованию смешанных мицелл, катионы металлов, которые распределяются в мицелле и образуют координационные комплексы с аналитом, а также ион-парные соединения, которые взаимодействуют с заряженными компонентами пробы и задерживают их, например, тетрабутиламмония бромид.

В капиллярном гель-электрофорезе разделение происходит внутри капилляра, заполненного гелем, действующим в качестве молекулярного сита. При равном отношении заряда к массе более мелкие компоненты движутся в капилляре быстрее, чем более крупные. Капиллярный гель-электрофорез может быть использован для разделения биологических макромолекул по их молекулярной массе. Электроосмотический поток при этом полностью устраняется путем модификации внутренней стенки капилляра.

В капиллярном гель-электрофорезе используются два типа гелей: химически модифицированные и динамически модифицированные. Химически модифицированные гели, как, например, поперечно-сшитый полиакриламид, поливинилпирролидон, готовятся внутри капилляра посредством полимеризации мономеров. Они обычно связаны с кварцевой стенкой капилляра и не могут быть удалены без его разрушения. При использовании таких гелей для анализа белков в редуцирующих условиях буферный раствор содержит обычно додецилсульфат натрия и образцы перед вводом денатурируют нагреванием в смеси додецилсульфата натрия с 2-меркаптоэтанолом или дитиотрейтолом. При анализе в нередуцирующих условиях 2-меркаптоэтанол и дитиотрейтол не используют. Разделение в поперечно сшитых гелях оптимизируют модификацией буферного раствора (как указано в разделе «Капиллярный зонный электрофорез») и контролем пористости геля во время его приготовления. Пористость этих гелей регулируют изменением концентрации акриламида, а также его соотношения со сшивающим реагентом. Уменьшение пористости геля ведет к уменьшению подвижности аналитов. Из-за неподвижности таких гелей допустимо только электрокинетическое введение пробы.

Динамически модифицированные гели являются гидрофильными полимерами, как, например, линейный полиакриламид, производные целлюлозы, декстран и т. п., которые могут быть растворены в водных разделительных буферных растворах с образованием разделяющей среды, действующей как молекулярное сито. После приготовления они могут быть введены в капилляр под давлением. Замена геля перед каждой инжекцией улучшает воспроизводимость разделения. Пористость гелей увеличивается при использовании полимеров с большей молекулярной массой или уменьшении концентрации полимера. Для выбранного буферного раствора уменьшение пористости геля ведет к уменьшению подвижности компонентов раствора. Так как растворение этих полимеров в буферном растворе дает растворы с низкой вязкостью, может быть использован гидродинамический или электрокинетический ввод пробы.

В изоэлектрическом фокусировании заряженные молекулы движутся под воздействием электрического поля в рН-градиенте, созданном амфолитами с широким диапазоном значений рI, растворенными в буфере разделения.

Тремя основными этапами изоэлектрического фокусирования являются введение пробы, фокусирование и мобилизация.

Этап введения пробы осуществляют в один прием, когда образец смешивается с амфолитами и вводится в капилляр под давлением или под вакуумом, или в несколько приемов, когда в капилляр последовательно вводится ведущий буферный раствор, амфолиты, образец, смешанный с амфолитами, снова амфолиты и, наконец, заключающий буферный раствор. Объем образца должен быть достаточно малым, чтобы не изменять рН-градиент.

На этапе фокусирования амфолиты движутся после приложения напряжения к катоду или аноду согласно их суммарному заряду, создавая, таким образом, рН-градиент от более низкого рН (у анода) к более высокому рН (у катода). Движение каждого аналита продолжается до тех пор, пока он не достигнет рН, соответствующего его изоэлектрической точке (pI).

На этапе мобилизации полосы разделенных компонентов приводятся в движение в сторону детектора благодаря электроосмотическому потоку путем приложения давления после стадии фокусирования или с помощью добавления солей к флакону у катода или анода.

Достигнутое разделение, выражаемое как , зависит от градиента , количества амфолитов, имеющих различные значения pI, молекулярного коэффициента диффузии (D), интенсивности электрического поля (E) и вариации электрофоретической подвижности аналита в зависимости от :

Основными параметрами, которые следует учитывать при разработке разделения, являются:

– Напряжение. В капиллярном изоэлектрическом фокусировании используется очень высокое электрическое поле – от 300 до 1000 В/см на этапе фокусирования.

– Капилляр. Электроосмотический поток должен быть уменьшен или полностью подавлен. Для уменьшения электроосмотического потока используют капилляры с модифицированной внутренней поверхностью.

– Растворы. Анодный флакон заполняется буферным раствором с рН ниже, чем pI наиболее кислого амфолита, а катодный флакон заполняется раствором с рН выше, чем pI наиболее щелочного амфолита. Обычно для анода используется фосфорная кислота, а для катода – натрия гидроксид.

Добавление в раствор амфолита полимера, такого как метилцеллюлоза, ведет к подавлению конвекции и электроосмотического потока при увеличении вязкости. Широкие диапазоны рН используются для оценки изоэлектрической точки, в то время как более узкие диапазоны применяются для улучшения точности.

Осаждение белков в их изоэлектрической точке во время этапа фокусирования предотвращают в случае необходимости с помощью таких буферных добавок, как глицерин, поверхностно-активные вещества, мочевина или цвиттерионные буферные соли.

Изотахофорез – это метод разделения, который проводится в режиме поддержания постоянства тока (все разделенные зоны движутся с одной скоростью). При этом должно обеспечиваться постоянное отношение между концентрацией и подвижностью ионов в каждой зоне.

В капиллярном изотахофорезе применяются два буферных раствора, между которыми находятся зоны аналита. Например, для анализа анионов буфер должен быть выбран таким образом, чтобы ведущий электролит содержал анион с фактической подвижностью, превышающей характерную для разделяемых веществ. Аналогично ион завершающего электролита должен иметь меньшую подвижность, чем подвижность разделяемых веществ. В результате разделения ведущий анион движется первым, за ним движется анион с очередной высокой подвижностью и т. д. В капиллярном изотахофорезе индивидуальные анионы мигрируют в дискретных зонах, но все движутся с той же скоростью, что и ведущий анион. Концентрации анализируемых веществ одинаковы в каждой зоне; таким образом, длина каждой зоны пропорциональна количеству отдельного компонента. Зоны менее сконцентрированные, чем ведущий электролит, сужаются, зоны более сконцентрированные – расширяются. Принцип изотахофореза используется для предварительного концентрирования образца перед разделением его компонентов с помощью других методик капиллярного электрофореза.

Качественный анализ. К качественным результатам относится определение идентичности компонента пробы внутреннему или внешнему стандартному веществу по времени появления соответствующего пика.

Полуколичественный анализ. Полуколичественным результатом считается определение концентрации компонента пробы по площади или высоте пика при соотношении сигнал/фон от 2:1 до 3:1.

Отношение сигнал/шум (S/N) рассчитывают по формуле:

где: H – высота пика целевого компонента на электрофореграмме раствора сравнения, измеренная от максимума пика до базовой линии сигнала;

h – уровень шума на электрофореграмме, полученной после ввода холостой пробы.

Количественный анализ. Количественным результатом является определение концентрации искомого компонента пробы по площади пика при соотношении сигнал/шум больше, чем 3:1.

При количественном анализе образца для компенсации различий во временах миграции от анализа к анализу и для устранения различий в сигналах компонентов образца, обладающих различными временами миграции, площади пиков должны быть нормированы на соответствующие времена миграции. При использовании внутреннего стандарта необходимо убедиться, что ни один пик исследуемого вещества не маскируется пиком внутреннего стандарта.

Абсолютное содержание компонентов рассчитывают по отношению площадей анализируемого пика и пика стандарта. Процентное содержание одного или более компонентов анализируемого образца рассчитывают путем определения процентной доли скорректированных площадей пиков от общей площади всех пиков, за исключением пиков, вызванных растворителями или другими добавленными реактивами (процедура нормализации).

В качестве параметров пригодности системы используются: кажущееся число теоретических тарелок (N), разрешение (Rs), фактор емкости (k’) (только для мицеллярной электрокинетической хроматографии) и фактор симметричности (As).

Кажущееся число теоретических тарелок (N) может быть рассчитано эмпирически по формуле:

где tr – время миграции или расстояние вдоль базовой линии от точки ввода пробы до перпендикуляра, опущенного из максимума пика соответствующего компонента;

w0,5 – ширина пика на половине высоты.

Разрешение (Rs) между пиками схожей величины двух компонентов вычисляют по формуле:

где tr,b и tr,a – времена миграции или расстояния вдоль базовой линии от точки ввода пробы до перпендикуляров, опущенных из максимумов двух соседних пиков;

Фактор симметричности пика рассчитывают по формуле:

где w0,05 – ширина пика на 1/20 от его высоты;

d – расстояние между перпендикуляром, опущенным из максимума пика, и передним краем пика на 1/20 от высоты пика.

В качестве параметров пригодности используются также испытания на воспроизводимость площади (стандартное отклонение площади или отношения площади к времени миграции) и воспроизводимость времени миграции (стандартное отклонение времени миграции).

В фармакопейной статье указывают использование определенного капилляра, буферного раствора, метода предварительной подготовки капилляра, пробоподготовки и условий миграции.

источник

Цель работы:Определение электрофоретической подвижности наночастиц дисперсных систем методом электрофореза. (Работа рассчитана на 3 часа)

Краткое теоретическое введение

Все электрические свойства межфазных поверхностей и явления, протекающие на них, обусловлены наличием двойного электрического слоя на границе раздела фаз. Количественные связи между параметрами двойного электрического слоя определяются его строением. На границе соприкасающихся фаз заряды располагаются в виде двух разноименных ионов: ряд потенциалопределяющих ионов на расстоянии, равном их радиусу в несольватированном состоянии, и прилегающий к нему ряд противоионов. Слой противоионов состоит из двух частей. Одна часть примыкает непосредственно в межфазной поверхности и образует адсорбционный слой (слой Гельмгольца) толщиной δ, которая равна радиусу гидратированных ионов его составляющих.

Другая часть противоионов находится в диффузной части – диффузном слое (слой Гуи) толщиной λ, которая может быть значительной и зависит от свойств и состава системы.

Сказанное иллюстрируется на рис. 1, на котором схематически изображено строение мицеллы золя с отрицательно заряженными коллоидными частицами (потенциалопределяющие ионы обозначены знаком «-», противоионные – знаком «+»).

Рис. 1 – строение мицеллы (а) и двойного электрического слоя (б).

Рассмотрим строение мицеллы золя. В центре мицеллы находится кристаллическое тело, названное по предложению Пескова, агрегатом. На нем, согласно правилу Панета – Фаянса, адсорбируются ионы, способные достраивать его кристаллическую решетку. Эти ионы сообщают агрегату электрический заряд и называются потенциалопределяющими. В результате образуется ядро мицеллы, несущее электрический заряд, равный сумме электрических зарядов, адсорбировавшихся на агрегате потенциалопределяющих ионов. Ядро создает вокруг себя электрическое поле, под действием которого к нему из раствора притягиваются противоионы. Часть этих противоионов прочно связана с ядром мицеллы за счет адсорбционных и электростатических сил и образует слой противоионов адсорбционного слоя.

Другая часть противоионов образует диффузный слой противоионов, удерживаемых около ядра только электростатическими силами. Ядро мицеллы вместе с адсорбционным слоем противоионов называется коллоидной частицей (гранулой).

Читайте также:  Сколько раз можно делать электрофорез с карипазимом

Частица (гранула) вместе с диффузным слоем противоионов образует мицеллу. В целом мицелла электронейтральна.

На границе между ядром и всеми противоионами возникает термодинамический потенциал, а на границе между частицей (гранулой) и диффузным слоем (плоскостью скольжения) возникает электрокинетический потенциал – дзета – потенциал.

При наложении на дисперсную систему внешней разности потенциалов происходит разрыв двойного электрического слоя по плоскости скольжения, в результате чего частица получает определенный заряд и перемещается к соответствующему электроду, а противоионы диффузного слоя – к другому.

Направленное движение частиц дисперсной фазы под действием приложенной разности потенциалов называется электрофорезом.

Скорость электрофореза зависит от дзета — потенциала (электрокинетического потенциала), величина которого определяется по уравнению Гельмгольца – Смолуховского (если радиус частиц много больше толщины двойного электрического слоя):

, (1)

где — вязкость; — относительная диэлектрическая проницаемость среды;

= 8.85419 ∙10 -12 Ф/м — диэлектрическая проницаемость вакуума; u — электрофоретическая подвижность частиц.

, (2)

где u — скорость движения дисперсной среды, Е – градиент потенциала электрического поля.

, (3)

где U – внешний потенциал на электродах; L – расстояние между электродами.

Для определения скорости электрофореза используют следующие методы:

1) микроскопический – заключается в непосредственном определении скорости движения частицы под ультрамикроскопом.

2) макроскопический или метод передвигающейся границы.

В последние два десятилетия в мире отмечен активный интерес к новому интенсивно развивающемуся методу – капиллярному электрофорезу, позволяющему анализировать ионные и нейтральные компоненты различной природы с высокой экспрессностью и эффективностью.

В основе капиллярного электрофореза лежат электрокинетические явления – электромиграция ионов и других заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле высокого напряжения.

Рис. 2 Устройство системы капиллярного электрофореза.

Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляров, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого вида частиц. В тоже время такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные в капилляре существенно ослаблены, благодаря чему достигаются высокие эффективности разделения смеси. Минимальный состав системы, реализующей метод капиллярного электрофореза, должен включать следующие узлы: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор, систему сбора, обработки и вывода информации (рис.2).

Приборы и методы измерений

Для выполнения работы требуется: система капиллярного электрофореза «КАПЕЛЬ – 103Р» с положительной полярностью высокого напряжения, весы лабораторные типа ВЛР – 200, мерные колбы, пипетки, дозаторы пипеточные, рН — метр лабораторный, стаканы химические, баня водяная.

Реактивы: Нитрат серебра х.ч., боргидрид натрия х.ч., желатина марки «фото А», гидроксид натрия, дистиллированная вода.

Метод капиллярного электрофореза основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора вводят в кварцевый капилляр, предварительно заполненный подходящим буфером-электролитом. После подачи высокого напряжения (до 30кВ) к концам капилляра компоненты смеси начинают двигаться по капилляру с разной скоростью, зависящей от их структуры, заряда и молекулярной массы и, соответственно, в разное время достигают зоны детектирования.

Идентификацию и количественное определение анализируемых компонентов проводят косвенным методом, регистрируя поглощение в ультрафиолетовой области спектра.

Полученная последовательность пиков называется электрофореграммой (рис.3), качественной характеристикой вещества является время миграции, а количественной – высота или площадь пика, пропорциональная концентрация вещества.

Схема экспериментальной установки

Используемая в данной работе система капиллярного электрофореза «КАПЕЛЬ-103Р» (рис. 4) оснащена фотометрическим детектором и микролинзовой фокусирующей системой. Источник света – ртутная лампа низкого давления с ВЧ- возбуждением, обеспечивающая высокую степень светового потока. В качестве приемника применяется карбид кремневый фотодиод, чувствительный спектра 200-310 нм, в которой присутствует единственная линия ртути 253.7 нм. Этими свойствами обусловлены высокая чувствительность системы, монохроматические условия регистрации и широкий линейный диапазон определяемых концентраций.

Рис. 4 Система капиллярного электрофореза «КАПЕЛЬ – 103Р».

Последовательность выполнения работы

1. Получение золя частиц серебра.

Золь частиц серебра получают реакцией восстановления. К 50 мл раствора AgNO3 с концентрацией 2·10 -4 моль/л добавляем при перешивании раствор NaBH4 с концентрацией 2·10 -4 моль/л с объемной скоростью 5 мл/мин. Исходные растворы солей содержат 0,1% желатины (кислотной).

2. Подготовка капилляра к работе.

3. Приготовление вспомогательных и градуировочных растворов.

4. Градуировка системы капиллярного электрофореза «КАПЕЛЬ».

Градуировку системы осуществляют путем измерения сигналов градуировочных растворов. Контроль стабильности градировочной характеристики проводится непосредственно перед измерениями анализируемых образцов путем записи электрофореграмм одной из градуировочных смесей.

Обработка результатов измерений

На основании полученных с помощью программного продукта «МУЛЬТИХРОМ для WINDOWS» данных проводят расчет электрофоретической подвижности по формуле:

, (4)

где Lобщ – общая длина капилляра, Lэфф – эффективная длина капилляра, U – приложенная разность потенциалов, tм – время миграции (время, необходимое компоненту для прохождения им эффективной длины капилляра от зоны ввода пробы до зоны детектирования).

Непосредственно из электрофореграммы нельзя определить электрофоретическую подвижность поскольку время миграции частицы tм в этом случае равно сумме времен миграции самой частицы и маркера. Из эксперимента можно найти так называемою общую подвижность, которая выражается по формуле uобщ = uмарк + uэф. Зная из эксперимента uобщи uмарк можно легко рассчитать uэф.

1. Каково строение двойного электрического слоя?

2. Что такое электрокинетический потенциал и как его можно определить?

3. Что такое электрофорез? Как количественно можно охарактеризовать это

4. Капиллярный электрофорез. Основы метода и его практическое

1. Зимон А.Д., Лещенко Н.Ф. Коллоидная химия. Поверхностные явления и дисперсные системы. М: Химия, 1995 (и более поздние издания).

2. Воюцкий С.С. Курс коллоидной химии. М: Высшая школа, 1975.

3. Фролов Ю.Г., Гродский А.С. Лабораторные работы и задачи по коллоидной химии. М: Химия, 1986.

4. Панич Р.М., Воюцкий С.С. Практикум по коллоидной химии и электронной микроскопии. М: Химия, 1974.

5. Комарова Н.В., Каменцев Я.С. Практическое руководство по использованию систем капиллярного электрофореза «КАПЕЛЬ». С-ПЕТЕРБУРГ: ВЕДА, 2006.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8771 — | 7143 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Опыт современной науки показывает, что сочетание казалось-бы противоположных свойств приводит к получению новых, неожиданных результатов. Именно такое сочетание свойств воды (водных растворов электролитов) и «камня» (диоксида кремния, кварца, из которого изготовлен капилляр), позволили создать новый метод анализа, который носит название капиллярного электрофореза (КЭФ). Собственно и электрофорез и капиллярность были известны достаточно давно, но только несколько десятилетий назад удалось разработать новый метод анализа, в котором эти явления используются для разделения проб сложного состава на составляющие компоненты.

На сегодняшний день капиллярный электрофорез является одним из наиболее перспективных методов анализа, он динамично развивается и получает всё более широкое применение в различных областях химии. Простота и доступность этого метода, а также неоспоримые преимущества, которые он даёт при выполнении измерений, позволяют надеяться на динамичное развитие методического обеспечения и скорейшее включение капиллярного электрофореза в перечень физико-химических методов анализа, наиболее часто применяемых в повседневной лабораторной практике. [6, 17]

Теоретические основы капиллярного электрофореза достаточно сложны, что обусловлено использованием в этом методе свойств поверхности раздела двух фаз — жидкости и твердого тела, свойств вязкости жидкости и свойств ионной электропроводности жидкости, потому, не претендуя на академическую строгость изложения, постараемся продемонстрировать основные моменты метода капиллярного электрофореза.

Рис. 2. Схема процессов, происходящих на поверхности кварца

  • а) ювенильная (свежесозданная) поверхность кварца
  • б) образование силанольных групп на поверхности кварца
  • в) диссоциация силанольных групп в водном электролите
  • г) гидратация образовавшихся ионов
  • д) связывание части катионов с поверхностью, формирование двойного электрического слоя

Обратимся к процессам, происходящим на границе раздела двух фаз: внутренней поверхности кварцевого капилляра и водного раствора электролита, заполняющего капилляр. На свежеобразованной (ювенильной) поверхности плавленого кварца (SiO2) находятся главным образом силоксановые группы (рис. 2а). При контакте с парами воды или водными растворами силоксановые группы, обладающие двойными связями, оказываются неустойчивыми и, присоединяя молекулу воды, образуют силанольные группы (рис. 1б). При контакте поверхности кварца с водными растворами, силанольные группы диссоциируют с отщеплением ионов Н+ (рис. 2в). Степень диссоциации зависит от температуры и состава водного раствора, в частности от величины рН. При рН> 2,5 на поверхности кварца образуются диссоциированные силанольные группы, которые создают отрицательный поверхностный заряд.

Диссоциированные ионы, находящиеся как на кварцевой поверхности, так и в объёме электролита, гидратируются (рис. 2г). За счёт сил кулоновского взаимодействия, противоположно заряженные гидратированные ионы, находящиеся на поверхности и в объёме жидкости, взаимно притягиваются. Действующие при этом силы настолько велики, что ионы (часть катионов и остатки силанольных групп) частично теряют гидратирующую воду. В результате этого, первый слой катионов, непосредственно прилегающий к поверхности, теряет подвижность, связывается (рис. 2д). Поскольку «пушистые» гидратированные катионы не могут все разместиться в виде монослоя и полностью компенсировать отрицательный заряд поверхности, некоторая часть катионов, нейтрализующих отрицательный заряд, отходит в толщу раствора и образует заряд, распределённый в объеме жидкости, прилегающем к границе раздела и, в силу меньшей энергии связи с поверхностью, обладающий способностью к перемещению (рис. 3а).

Рис. 3. Формирование двойного электрического слоя (а) и ход потенциала на границе раздела кварц-электролит (б)

Несмотря на сильное кулоновское взаимодействие рекомбинации зарядов не происходит. В результате взаимодействующие системы зарядов образуют двойной электрический слой, состоящий как бы из двух изолированных друг от друга обкладок конденсатора, имеющих заряды противоположного знака. Одну из обкладок составляют отрицательно заряженные остатки силанольных групп, другая состоит из двух частей — неподвижного слоя катионов, непосредственно примыкающих к поверхности кварца, и диффузного слоя, образованного катионами, находящимися в объеме жидкости. Распределение катионов между неподвижным и диффузным слоями, а, следовательно, и толщина двойного электрического слоя зависит в первую очередь от общей концентрации электролита в растворе. Чем она выше, тем бoльшая часть положительного заряда диффузного слоя перемещается в неподвижный слой и тем меньше становится толщина диффузного слоя (рис. 3б). При концентрации бинарного однозарядного электролита 10-3. 10-4 М толщина двойного электрического слоя составляет в среднем 30-50 мкм.

Свернём (мысленно) рассматриваемую поверхность в виде трубы с внутренним диаметром 50-100 мкм, тогда окажется, что практически вся жидкость, заполняющая её, будет представлять собой диффузную часть двойного электрического слоя. Трубу столь малого диаметра принято называть капилляром. Если в такой системе вдоль оси капилляра приложить электрическое поле, то в капилляре возникнет продольное движение свободных носителей электрических зарядов (разнополярных ионов) во взаимно противоположных направлениях, а поскольку в диффузной части двойного электрического слоя присутствует избыточная концентрация катионов, то число ионов, перемещающихся к катоду будет значительно больше, при этом их движение будет увлекать за собой всю остальную массу жидкости в капилляре (вследствие молекулярного сцепления и внутреннего трения). Возникает так называемый электроосмотический поток (ЭОП), направленный к катоду, который будет осуществлять пассивный перенос раствора внутри капилляра (рис. 3). [7, 12, 19]

Рис. 4. Схема процессов в кварцевом капилляре. Стрелкой показано направление электроосмотического потока.

Вследствие этого процесса в электролите, заполняющем капилляр, возникает направленное перемещение массы жидкости, которое вызвано приложенной разностью потенциалов, при этом вся масса жидкости (за малым исключением приповерхностного слоя) перемещается с одинаковой скоростью, т.е. формируется плоский профиль скоростей. Это очень важное обстоятельство, которое позволяет получить чрезвычайно высокую разрешающую способность метода, поэтому на него надо обратить особое внимание.

Минимальный состав системы, реализующей метод капиллярного электрофореза, должен иметь в своём составе следующие компоненты: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и устройство вывода информации. Дополнительные устройства позволяют автоматизировать подачу образцов, термостатировать капилляр и сделать более удобной обработку получаемой информации.

Читайте также:  Электрофорез с йодистым калием для чего

На рис. 5 представлена схема системы капиллярного электрофореза в простейшем случае. Капилляр заполняется раствором электролита, своими концами капилляр опущен в два сосуда, содержащих тот же электролит. Электролит обязательно должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой — стабилизировать состояние компонентов пробы в процессе анализа. В сосуды введены электроды, к которым прикладывается разность потенциалов. Под действием разности потенциалов в капилляре быстро устанавливается стационарное состояние: через него протекает электроосмотический поток (ЭОП), на который будет накладываться электромиграция катионов и анионов во взаимно противоположных направлениях.

Рис. 5. Схема системы капиллярного электрофореза

Как правило, в приборах капиллярного электрофореза ЭОП направлен от входного конца капилляра к детектору поэтому, при использовании кварцевого капилляра, разность потенциалов устанавливают таким образом, что входной конец капилляра имеет положительную полярность (анод), а детектор устанавливается вблизи катода. Если теперь в капилляр со стороны анода ввести небольшой объем раствора пробы, то ЭОП будет переносить зону пробы к катоду, и она некоторое время будет находиться в капилляре под воздействием электрического поля высокой напряженности. В течение этого времени компоненты пробы, имеющие заряды и отличающиеся от компонентов рабочего буфера, будут перемещаться в соответствии с присущими им электрическими подвижностями, специфичными для каждого компонента. Катионные компоненты пробы, двигаясь к катоду, будут обгонять электроосмотический поток. Скорость их движения будет складываться из скорости ЭОП и скорости электромиграции, поэтому на выходе капилляра катионные компоненты будут появляться первыми и тем раньше, чем больше электрическая подвижность данного иона. Нейтральные компоненты пробы будут перемещаться только под действием ЭОП, и появятся на выходе, когда его достигнет зона пробы. Анионные компоненты перемещаются к аноду с различными скоростями. Некоторые из них, медленно мигрирующие, будут появляться вблизи детектора после выхода ЭОП, а те, чья скорость миграции по абсолютной величине превышает скорость ЭОП, рано или поздно выйдут из капилляра в прианодное пространство.

Если время нахождения пробы в капилляре (которое можно регулировать длиной капилляра, скоростью ЭОП или приложенной разностью потенциалов) достаточно, то на выходе капилляра вблизи катода формируются зоны раствора, в которых находятся индивидуальные компоненты пробы. Происходит, таким образом, разделение исходной смеси. Если теперь с помощью детектора зарегистрировать появление компонентов на выходе из капилляра, то полученная запись будет называться электрофореграммой и может служить основой для качественного и количественного анализа смеси. Описанный вариант анализа носит название капиллярного зонного электрофореза (КЗЭ). В этом варианте могут определяться катионные компоненты проб и некоторые медленно мигрирующие анионы. Однако главные анионы, определяющие минеральный состав воды, зарегистрировать таким способом невозможно. [8, 12]

Анализ анионов методом капиллярного электрофореза

Для того чтобы методом КЗЭ можно было определять анионные компоненты проб, необходимо изменить полярность прикладываемого напряжения. Однако в этом случае изменится не только направление миграции анионов, но также направление ЭОП и он будет препятствовать перемещению в сторону детектора медленно мигрирующих анионов. Для изменения направления ЭОП необходимо модифицировать поверхность кварцевого капилляра таким образом, чтобы знаки зарядов двойного электрического слоя поменялись на обратные, и направление ЭОП совпадало с направлением перемещения анионов. Это достигается введением в рабочий буферный раствор катионного поверхностно-активного вещества, например, бромида цетилтриметиламмония (ЦТАБ). Катион ЦТАБ активно сорбируется на кварцевой поверхности, занимая при достаточной его концентрации, все вакансии в ближайшем к поверхности слое. Поверхность как бы «ощетинивается» длинными цетильными (С16Н33-) цепочками. при дальнейшей промывке рабочим буферным раствором поверхность сорбирует еще один слой поверхностно-активного катиона, ориентированного аммонийным концом наружу (сорбция «щетка в щетку»). В результате первая обкладка двойного электрического слоя становится положительно заряженнной, а вторая (в том числе и диффузная её часть) приобретает отрицательный заряд, и теперь ЭОП снова перемещается в направлении от входного конца капилляра к детектору.

Аналогичными свойствами по модификации поверхности капилляра обладают и другие буферные растворы, например, приготовленный на основе 2-[N-Циклогексиламино] этан-сульфоновой кислоты с модификатором электроосмотического потока в гидроксильной форме (тетрадецетилтриметил аммония гидроксид) и т.п.

В системах капиллярного электрофореза наиболее часто применяется фотометрическое детектирование, в котором используется одна ила несколько длин волн, обычно лежащих в ультрафиолетовой области спектра. Соответственно отклик детектора будет наблюдаться только в том случае, когда определяемый компонент имеет заметное поглощение на длине волны детектирования. Это — прямое детектирование. Электрофореграмма будет представлять собой набор положительных пиков, возвышающихся над базовой линией.

Однако, анионы, растворенные в воде, зарегистрировать таким простым способом не удается, т.к. они не обладают собственным поглощением в указанном спектральном диапазоне. В этом случае применяется косвенное детектирование, суть которого состоит в том, что ведущий электролит готовится с добавкой вещества, поглощающего свет на длине волны детектирования. В случае определения анионов добавка также должна быть анионом, например, это может быть хромат-ион. Вследствие того, что ионная сила ведущего электролита в процессе разделения остается постоянной, в зоне, где находится непоглощающий ион, эквивалентно уменьшается концентрация поглощающего иона. В этом случае на электрофореграмме будут наблюдаться обратные (отрицательные) пики, площади которых пропорциональны концентрациям определяемых ионов. В дальнейшем, при компьютерной обработке результатов измерений, график «переворачивается» и приобретает вид, удобный для рассмотрения, с положительно расположенными пиками.

Таким образом, вариант зонного капиллярного электрофореза с модификацией поверхности капилляра и непрямым детектированием позволяет анализировать компоненты, которые в условиях проведения анализа находятся в форме анионов. [13]

Метод анализа — капиллярный электрофорез — на сегодняшний день является одним из наиболее перспективных и высокоэффективных методов разделения и анализа сложных смесей на составляющие компоненты и находит всё более широкое применение — особенно в зарубежной практике, в том числе и лекарственных средств. Метод характеризуется экспрессностью, микрообъемами анализируемого раствора, отсутствием колонки и твёрдого сорбента, проблем с его «старением» (в отличие от ВЭЖХ), физической и химической деструкции и любого неспецифического связывания с ним компонентов пробы, а также практически не требуется органических растворителей.

Метод капиллярного электрофореза (КЭФ) основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля за счёт подачи высокого напряжения к концам капилляра.

Наиболее распространёнными вариантами метода КЭФ являются: капиллярный зонный электрофорез (КЗЭ) и мицеллярная электрокинетическая хроматография (МЭКХ).

КЗЭ — метод разделения, реализуемый в капиллярах и основанный на различии в электрокинетических подвижностях заряженных частиц как в водных, так и в неводных электролитах.

МЭКХ — вариант капиллярного электрофореза, который позволяет проводить разделение соединений ионного и нейтрального характера при использовании поверхностно-активных веществ (ПАВ). Разделение электронейтральных соединений осуществляется благодаря введению в состав ведущего электролита поверхностно-активных веществ мицеллообразователей. Чаще всего используют анионный ПАВ (например, додецилсульфат натрия — ДДСН) в концентрациях, превышающих критическую концентрацию мицелообразования, что приводит к формированию так называемой «псевдостационарной фазы», и аналиты распределяются между мицеллой и буферным электролитом согласно их гидрофобности.Метод капиллярного электрофореза характеризуется высокой эффективностью (более сотни тысяч теоретических тарелок). Это объясняется прежде всего уникальным свойством ЭОП в кварцевом капилляре, который заключается в формировании плоского профиля потока (в отличие от параболического в ВЭЖХ), не вызывающий при движении зон компонентов практически их уширения. Очень высокая эффективность разделения позволяет широко применять метод для выявления не только близких по строению веществ (белков, пептидов, аминокислот, наркотиков, витаминов, красителей и др.), но и для контроля качества, технологического контроля, идентификации лекарственных препаратов, исследования фармакокинетики.

Эффективность, выраженная числом теоретических тарелок, может быть определена непосредственно из электрофореграммы.

К снижению эффективности могут привести ряд факторов: увеличение зоны вводимой пробы (определяемая длительность ввода); образование температурного градиента (за счёт разницы температуры в центре капилляра и на внутренней стенке капилляра). Возникающий вследствие этого градиент вязкости приводит к тому, что вещество у стенки перемещается медленнее, чем в центре, что вызывает уширение полос и снижение эффективности; адсорбция на стенках капилляра, приводящая к искажению формы пиков (появление хвостов), и другие факторы. Все эти параметры управляются путём создания оптимальной схемы разделения.

Основным способом детектирования в системах капиллярного электрофореза («Капель — 103 Р», «Капель — 104 Т», «Капель — 103 РТ», «Капель — 104 М», «Капель — 105», «Капель — 105 М») отечественного производителя — фирмы «Люмекс», является фотометрический .

Особенностью фотометрического детектирования разделённых аналитов в условиях кварцевого капилляра является малая толщина слоя (что обусловлено внутренним диаметром капилляра), а также — введением очень малых объёмов проб (

Чувствительность метода КЭФ с УФ-детектированием может быть существенно повышена за счёт концентрирования образца непосредственно в капилляре. Одним из наиболее общих подходов к увеличени концентрационной чувствительности в КЭФ является приём стекинга. Концентрирование образца происходит, когда ионы аналитов пересекают границу, которая отделяет зону низкой проводимости раствора и высокой — ведущего электролита. В случае если проба образца имеет значительно более низкую проводимость (за счёт разбавления водой или буфером), чем ведущий электролит, в зоне образца возникает относительно высокое электрическое поле. Аналиты внутри зоны образца движутся с более высокой скоростью, и, замедляясь на границе с зоной ведущего электролита, концентрируются. Стекинг образца применяется только к заряженным аналитам.

Чувствительность метода КЭФ с УФ-детектированием может быть также повышена за счет увеличения длины оптического пути при использовании капилляров с расширенным световым путем. Существует несколько способов: зону детектирования выполняют в форме пузырька, возрастание чувствительности в 3-5 раз; используют капилляры Z-формы, увеличение чувствительности в 20-40 раз.

Важной задачей любого сепарационного метода является селективность разделения компонентов пробы. Повышение селективности разделения в КЭФ может быть обеспечено за счёт изменения рН ведущего электролита, изменения напряжения, температурного режима в системе, введения в состав буферного раствора макроциклов, органических растворителей и др.

Применение метода капиллярного электрофореза при аналитических исследованиях.

Капиллярный электрофорез как новый и быстро развивающийся метод широко применяется в фармацевтической практике лекарственных средств, в том числе и в биологических средах с целью идентификации и количественного анализа. Используются преимущественно кварцевые капилляры и УФ-детекторы. Однако находят применение в зарубежной практике и электрохимическое детектирование, амперометрические детекторы типа «отражающая стенка» с электродами из углеродного волокна, меди, вольт-амперометрические детекторы, а также масс-спектроскопия, лазерная флюоресценция.

Капиллярный электрофорез применяется и при определении нелетучих примесей в лекарственных веществах и составляет конкуренцию методу ВЭЖХ, отличаясь очень высокой эффективностью и сводя к минимуму размытие пиков. Как правило, метод используется для анализа водных растворов (буферные растворы), с добавлением ПАВ, либо не содержащих ПАВ. В отдельных работах показаны возможности использования неводного капиллярного электрофореза.

Использование сепарационного метода анализа позволяет эффективно решать вопросы стандартизации лекарственных препаратов сложного состава. Была изучена возможность применения капиллярного электрофореза для качественного обнаружения и количественного определения бутоконазола нитрата в лекарственном препарате и биологических жидкостях. Проведена сравнительная оценка фармакокинетических параметров, противогрибковой активности и мукоадгезивных свойств бутоконазола нитрата. Методика использована для изучения накопления бутоконазола в сыворотке крови.

Проведено изучение возможности анализа доксициклина в моче капиллярным электрофорезом с использованием отечественного прибора «Нанофор-1». Методика характеризуется высокой воспроизводимостью и достаточной чувствительностью (граница обнаружения — 5 мкг/мл мочи).

Фоминым А.Н. с соавторами показана возможность идентификации ряда азотсодержащих соединений основного характера в присутствии соэкстрактивных веществ мочи и крови методом капиллярного электрофореза «Капель-105» по электрофоретическим спектрам. Установлено, что на количественные характеристики исследуемых соединений не оказывают существенного влияния компоненты мочи и крови. [6, 7, 15]

Таким образом, в практической части курсовой был рассмотрен метод электрофореза — капиллярный электрофорез, который основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля за счет подачи высокого напряжения к концам капилляра. Данным методом был проведен анализ анионов. Также данный метод используется для анализа водных растворов.

В ходе проведенной работы над курсовой работой были рассмотрены поставленные задачи:

  • — ознакомились с методом электрофореза;
  • — рассмотрели подробно фронтальный, зональный и капиллярный методы электрофореза;
  • — изучили последовательность анализа лекарственных средств методом электрофореза;
  • — изучили область применения метода.

источник