Меню Рубрики

При электрофорезе на бумаге фракции сыворотки крови

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник

Для разделения белков сыворотки крови на их составляющие используют метод электрофореза, основанный на различной подвижности белков сыворотки крови в электрическом поле.

Принцип разделения белков сыворотки крови на фракции состоит в том, что в электрическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровом гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц.

Вследствие этого белки сыворотки крови разделяются обычно на пять основных фракций: альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины, гамма-глобулины, содержание которых определяется с помощью фотометрии или денситометрии.

Электрофорез в агаровом, крахмальном и особенно полиакриламидном геле дает лучшие результаты: четкое разделение и большое количество белковых фракций сыворотки. Недостатки метода: сложность процедуры приготовления геля (дороговизна готовых гелевых пластин).

Преимущества электрофореза на ацетатцеллюлозной пленке:

1. Химическая однородность пленки и одинаковый размер пор

2. Требует малый объем пробы (0,2-2 мкл) для разделения

3. Быстрота разделения и окраски белков, легкость отмывания фона

В сыворотке крови здорового человека при электрофорезе можно обнаружить шесть белковых фракций: преальбумины, альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины и гамма-глобулины.

Это исследование в диагностическом отношении более информативно чем определение только общего белка или альбумина. При многих заболеваниях изменяется процентное соотношение белковых фракций, хотя общее содержание белка в сыворотке крови остается в пределах нормы.

Анализ фореграммы белков позволяет установить, за счет какой фракции происходит увеличение или дефицит белка, а также судить о специфичности изменений, характерных для данной патологии. Исследование белковых фракций, позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Белковые фракции сыворотки крови в норме:

Фракции Содержание, %
Преальбумины 2-7
Альбумины 52-65
Альфа-1-глобулины 2,5-5,0
Альфа-2-глобулины 7,0-13,0
Бета-глобулины 8,0-14,0
Гамма-глобулины 12,0-22,0

При анализе результатов исследования сыворотки крови на белковые фракции выявляются три типа нарушений:

1. Диспротеинемия (изменение соотношения белковых фракций)

2. Генетические дефекты синтеза белков

3. Парапротеинемия (аномальные белки в крови)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9790 — | 7665 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

ПРИНЦИП МЕТОДА: Метод основан на различии величины заряда белков сыворотки крови. Если нанести каплю сыворотки на полоску хроматографической бумаги, смоченной буферным раствором, и пропустить через эту полоску постоянный электрический ток, отдельные белки будут продвигаться в электрическом поле с различной скоростью. При рН=8,6 белки сыворотки крови движутся по направлению к аноду, поскольку они обладают в этих условиях отрицательным зарядом. Наиболее быстро движутся альбумины, затем 1- и 2-глобулины, далее  — глобулины и наконец  — глобулины.

АППАРАТУРА: Прибор для определения белков в крови методом электрофореза на бумаге состоит из выпрямителя, электрофоретической кюветы и денситометра.

Кюветы заполняются вероналовым буфером рН = 8,6. Нарезают из хроматографической бумаги полоски длиной 38 см., шириной 3 см., полоски смачивают буферным раствором и помещают в кювету. Ближе к отрицательному полюсу наносится сыворотка (0,01 мл), затем прибор включается в электрическую сеть.

Электрофоретическое разделение белков сыворотки на бумаге производится обычно в течение 6- 24 часов при напряжении 150 Вт и силе тока 6-8 А. По истечении указанного срока бумажные полоски сушат в сушильном шкафу при температуре около 100 градусов в течение 5 мин., затем красят бромфеноловым синим. Остатки красителя, не связавшегося с белками, отмывают с полоски бумаги 10% уксусной кислотой.

Количественное определение белковых фракций проводится с помощью денситометра или путём экстрагирования спиртовым раствором щелочи с последующим определением концентрация краски фотоколориметрически.

Минеральный состав крови чрезвычайно разнообразен и играет большую роль в жизнедеятельности организма, например, в процессе роста и развития ребенка обмен кальция и связанных с ним фосфатов. Снижение содержания кальция может сопровождаться повышением нервно-мышечной возбудимости, судорогами (тетания новорожденных). Развитию гипокальциемии у новорожденных способствует сахарный диабет у матери, недоношенность и т.д. Чрезмерные дозы витамина «Д» вызывают гиперкальциемию с отрицательными последствиями для организма.

Основным белком, осуществляющим снабжение тканей кислородом и освобождение их от углекислоты, является гемоглобин. В связи с этим, изучение обмена гемоглобина и определение его концентрации является чрезвычайно важным, а также актуальным является клиническое значение определения содержания желчных пигментов крови, моче и кале в дифференциальной диагностике различных видов желтух (гемолитическая, желтуха новорожденных, обтурационная, паренхиматозная).

Минеральные составные части крови, значение их для организма.

Различают несколько фракций кальция: ионизированный кальций, кальций неионизированный, но способный к диализу, и недиализирующийся (недиффундирующий), связанный с белками кальций.

Кальций принимает активное участие в процессах нервно-мышечной возбудимости (как антагонист ионов К + ), мышечного сокращения, свертывания крови, образует структурную основу костного скелета, влияет на проницаемость клеточных мембран и т.д.

Отчетливое повышение уровня кальция в плазме крови наблюдается при развитии опухолей в костях, гиперплазии или аденоме паращитовидных желез. В таких случаях кальций поступает в плазму из костей, которые становятся ломкими.

Важное диагностическое значение имеет определение уровня кальция при гипокальциемии. Состояние гипокальциемии наблюдается при гипопаратиреозе. Нарушение функции паращитовидных желе приводит к резкому снижению содержания ионизированного кальция в крови, что может сопровождаться судорожными приступами (тетания). Понижение концентрации кальция в плазме отмечают также при рахите, спру, обтурационной желтухе, нефрозах и гломерулонефритах.

Механизм свертывания крови.

Система свертывания крови представляет собой каскадную цепь протеолитических реакций.

Каскадность реакций обеспечивает постепенное усиление первоначального слабого сигнала – воздействия, вызывающего активацию внутреннего и внешнего пусковых механизмов свертывания. Каждая последующая стадия приводит к образованию все больших количеств активной формы очередного фактора. Происходит лавинообразное нарастание «мощности» каждой следующей ступени каскада, в результате стадия превращения фибриногена в фибрин протекает очень быстро.

Первая стадия сокращение поврежденного сосуда.

Вторая стадия образование белого тромба. Протромбин (VII фактор) под действием тромбопластина (III) тромбоцитов и ионов кальция (IV) превращается в активную форму – тромбин. В этой стадии участвуют факторы внешнего пускового механизма свертывания: проконвертин (VII); проакцелерин (V); фактор Стюарта (Х), а также факторы внутреннего пускового механизма свертывания: фактор Кристмаса (IХ); фактор Розенталя (ХI); фактор Хагемана (ХII)

Третья стадия – образование красного тромба. Тромбин активирует фибриноген (I), превращая его в активную форму фибрин – мономер. Затем образуется фибрин – полимер (фибриновый гель), который не отличается прочностью. Его легко может разрушить механическое воздействие. Под действием фермента трансглутаминазы (ХIIIa) образуются прочные ковалентные связи между мономерами фибрина, а также между фибрином и белком фибронектином, стабилизируя гель фибрина.

Через час тромб сжимается (ретракция тромба). Затем происходит фибринолиз (четвертая стадия). Плазминоген под действием фермента урокиназы и тканевого активатора плазминогена (ТАП) превращается в активную форму – плазмин (частичный протеолиз), который расщепляет в фибрине – полимере пептидные связи.

Тромб в течение нескольких дней рассасывается.

Роль витамина К в свертывании крови.

Витамин К входит в состав ферментов, катализирующих карбоксилирование глутаминовой кислоты с образованием γ-карбоксиглутаминовой кислоты, входящей в состав факторов свертывания крови: II, VII, IХ, Х.

Ингибиторы факторов свертывания крови:

белок плазмы антитромбин III, инактивирующий большинство факторов свертывания крови;

другие белки – ингибиторы протеиназ (α- макроглобулин, антиконвертин, тромбомодулин).

гепарин, активирующий антитромбин III;

антивитамины К – дикумарин, неодикумарин и др.

Метаболизм гемоглобина. Синтез гема, гемоглобина.

источник

Фракций сыворотки крови методом электрофореза на бумаге.

Принцип метода. Электрофорез – это движение заряженных частиц в поле постоянного электрического тока. Скорость перемещения молекул белков в электрическом поле зависит от величин заряда, молекулярной массы, pH, ионной силы раствора.

Белки сыворотки крови помещают на полоску бумаги, смоченную буферным раствором, через которую пропускают постоянный электрический ток. При pH 8,6 белки сыворотки крови заряжаются отрицательно и под воздействием электрического поля перемещаются к аноду.

Читайте также:  Ожог электрофорез первая помощь

Сыворотка крови человека содержит различные белки. С помощью электрофореза на бумаге выделяются 5 фракций — альбумины, α1-, α2-, β-, γ-глобулины.

Клинико-диагностическое значение.Многие патологические состояния сопровождаются количественными изменениями соотношения белковых фракций крови – диспротеинемиями. Уменьшение содержания фракции альбуминов характерно для заболеваний печени за счет снижения белок-синтезирующей функции гепатоцитов. Гипоальбуминемия также сопровождает заболевания почек вследствие потери белка с мочой. Увеличение содержания фракций α1— и α2-глобулинов наблюдается при стрессе, наличии воспалительных процессов за счет белков «острой фазы», при коллагенозах и метастазировании злокачественных новообразований. Фракция β-глобулинов растет при гиперлипопротеинемиях. Фракция γ-глобулинов повышается при иммунных реакциях, вызванных вирусными и бактериальными инфекциями. Снижение γ-глобулиновой фракции может иметь место при первичном и вторичном иммунодефиците.

Порядок выполнения работы

1. Устройство прибора для электрофореза. Прибор состоит из выпрямителя, подающего постоянный ток необходимого напряжения, и камеры для электрофореза. Сама камера состоит из 2-х ванн; в одной из них имеется неподвижная перегородка, куда помещается платиновый электрод (+ анод), а в другой находится электрод из нержавеющей стали (- катод). Между ваннами, заполненными соответствующим буфером, имеется соединительный мост, на который помещают полоски специальной фильтровальной бумаги.

2. Проведение электрофореза. Заполнить обе ванны камеры раствором вероналового буфера с pH 8,6. Буферного раствора в ваннах должно быть столько, чтобы он покрывал неподвижную перегородку, но был ниже подвижных перегородок.

Вставить в ванны электроды. Вырезать из фильтровальной бумаги полосы необходимого размера в зависимости от величины камеры (обычно шириной 4-6 см) и простым карандашом отметить место, на которое впоследствии будет наноситься сыворотка (старт). Смочить эти полоски в вероналовом буфере. Вставить в ванны-камеры соединительный мост. Поместить полоски бумаги на сухие пластинки щипцами, погрузив концы полосок в ванны с буфером, и на заранее отмеченные участки бумаги нанести сыворотку по 0,025-0,005 мл на расстоянии 5-6 см от края моста. Нанесение сыворотки производится со стороны катода.

Рисунок 1. Схема камеры для электрофореза белков на бумаге:

1-стабилизатор; 2-камера для электрофореза; 3-буферный раствор; 4-поддерживающий соединительный мост-электрод; 5-фильтровальная бумага для электрофореза.

После нанесения на бумажные полоски сыворотки камера герметично закрывается крышкой. На крышке камеры расположен прижим блокировки, служащий для включения камеры. Присоединенный выпрямитель подает к камере постоянный ток от 2 до 4 мА при постоянном напряжении 110-160В. Электрофорез проводят при градиенте потенциала от 3 до 8 В на 1 см полосы при комнатной температуре. Хорошее разделение происходит за 18-20 часов.

3. Выключение прибора и выявление белковых фракций. Выключают прибор. Снимают камеры и извлекают бумажные полоски из прибора. Затем каждую полоску помещают в сушильный шкаф на 20 минут при температуре 105 0 С. При этом происходит фиксация белковых фракций на бумаге. Окраску белков проводят раствором бромфенолового-синего в течение 30 минут, затем промывают электрофореграммы 2% раствором уксусной кислоты. Полученные электрофореграммы сушат на воздухе. Белковые фракции окрашиваются в сине-зеленый цвет.

4. Количественное определение белковых фракций. Окрашенные белковые пятна вырезают, краситель элюируют 0,01 н раствором щелочи. Интенсивность окраски каждой фракции определяют колориметрически на ФЭКе.

Количественное определение белковых фракций на электрофореграмме можно установить двумя способами: путем элюирования краски и фотоколориметрирования и денситометрическим методом.

Содержание белковых фракций сыворотки крови, полученное с помощью электрофореза на бумаге, в среднем составляет у взрослого человека:

Денситометрический метод. В специальном аппарате (денситометре) через электрофореграмму пропускают пучок света, поглощение которого зависит от оптической плотности окрашенных белковых пятен. Свет, прошедший через электрофореграмму, улавливается фотоэлементом и превращается в электрический ток, колебания которого фиксируют на бумажном листе в виде кривой, каждый пик кривой соответствует определенной белковой фракции.

Рисунок 2. Электрофореграмма сыворотки человека.

источник

Этот анализ является исследованием, которое позволяет определить их количественные и качественные показатели по тому, как белки распределяются в электрическом поле. Исследование основано на том, что белковые молекулы несут заряды, положительные или отрицательные в зависимости от того, какой кислотностью будет обладать среда, в которой будет проводиться непосредственно электрофорез. Молекулы, которые окажутся положительно заряженными, будут адсорбироваться лучше, нежели чем те, которые несут отрицательный заряд.

Носителями, которые будут применяться для электрофореза, могут быть хроматографическая бумага, агаровый гель, полиакриловой гель, ацетатцеллюлозная бумага или акриловый гель. Значительно реже применяется капиллярный электрофорез.

Во время анализа белки разделяют на 5 или 6 фракций, в зависимости от применяемого метода. Это будут гамма-глобулины, которые делятся на бета-1 и бета-2, альбумины — альфа-1 и альфа-2, а также бета-глобулины.

Имеются установленные нормы белковых фракций, которые должны присутствовать в крови. Отклонение их от показателей является признаком нарушения в организме, что требует проведения обследования для выявления причины.

Фракция Норма в г/л
Альбумин 35-44
Глобулин альфа-1 1-3
Глобулин альфа-2 5-8
Бета-глобулин 4-10
Гамма-глобулин 5-12

Значения показателей, в зависимости от того какие реактивы применяются в конкретной лаборатории, могут несколько изменяться. Поэтому в бланке результатов исследования в каждом медицинском учреждении обязательно указываются значения нормы, которые приняты в нем. На них будет ориентироваться врач при расшифровке анализа.

Электрофорез белков крови назначают не очень часто, так как сегодня современные лабораторные исследования позволяют провести анализ на определенный белок, что ускоряет процесс диагностики. Абсолютным показанием к электрофорезу является наличие монолокальной гаммапатии. Также иногда анализ может быть показан в таких случаях:

  • чрезмерно высокая скорость оседания эритроцитов, когда она превышает 50 мм/ч;
  • значительно повышенный уровень гамма-глобулинов;
  • скрининговое обследование для контроля эффективности лечения миеломной болезни;
  • чрезмерно высокий общий белок в крови;
  • ряд аутоиммунных заболеваний, поражающих печень и почки;
  • слабость, для которой нет выраженной причины;
  • развитие патологических переломов костей и постоянные боли в костях;
  • частые рецидивы инфекционных заболеваний;
  • нарушения, обнаруженные в прочих анализах, указывающие на то, что у человека могут развиваться анемии, лейкемии, гиперкальциемия или гипоальбуминемия.

При общей диспансеризации и получении медицинских справок для трудоустройства данное исследование крови не осуществляется. Не требуется оно и в процессе подготовки человека к хирургическому вмешательству.

Для получения наиболее точных результатов рекомендуется соблюдение правил подготовки к анализу. Они включают в себя голодную диету в течение 15 часов до того как будет взята кровь, когда пациент может употреблять только чистую не газированную воду. За 90 минут до проведения исследования необходимо полностью исключить нагрузки как эмоциональные, так и физические, и курение в активной или пассивной форме. Чтобы не допустить искажение данных, забор материала не проводят сразу после того, как был осуществлен гемодиализ или проведена процедура, при которой использовались радиоконтрастные составы. Важно также, чтобы за несколько дней до исследования полностью было исключено лечение пенициллином, так как он вызывает расщепление амбулина, что исказит результат.

Фракция Повышение Понижение
Амбулин Злоупотребление алкоголем, период вынашивания ребёнка, дегидрация Холецистит в острой форме, лейкоз, миелома, саркоидоз, пневмония, остеомиелит, системная красная волчанка, лимфома
Глобулин альфа-1 Цирроз печени, стрессовые состояния, лимфогранулематоз, период вынашивания ребёнка, язва желудка, острое или хроническое воспаление Гепатит вирусной природы в острой форме
Глобулин альфа-2 Сахарный диабет, остеомиелит, гломерулонефрит в острой форме, стрессовые состояния, системная красная волчанка, узловатый полиартрит, цирроз Гипертиреоз, гепатит вирусной природы в острой форме, гемолиз интраваскулярный
Бета-глобулин Сахарный диабет, саркоидоз, ревматоидный артрит, беременность, гломерулонефрит, желтуха подпеченочная, нефротический синдром Лейкоз, цирроз, склеродермия имеющая системный характер, лимфома, системная красная волчанка
Гамма-глобулин Цирроз, склеродермия системного характера, ревматоидный артрит, лимфолейкоз в хронической форме, муковисцидоз, синдром Шегрена Лейкоз, склеродермия, гепатит вирусной природы в острой форме, лимфома, гломерулонефрит

Исказить показатели, кроме неправильной подготовки к проведению анализа, могут 2 фактора: недавно проведенная процедура гемодиализа, из-за которой произошло разрушение эритроцитов в крови, и повышенный уровень билирубина в организме. В любом из этих случаев потребуется пересдача анализа через некоторое время, которое определит врач.

источник

В плазме человеческой крови находится множество белковых компонентов. Они различны по своему составу, строению и подвижности в определенной среде, проводящей электрический ток. На этом и строится разделение общего белка, который локализуется в плазме, на различные белковые фракции. При проведении электрофореза сыворотки крови выясняют количественное отношение отдельных белковых составляющих и структур. Это необходимо для определения наличия у человека различных патологических явлений, например инфекций или онкологии. Именно электрофорез белков сыворотки крови имеет большое значение при проведении диагностики различных болезней.

Для расщепления белковых фракций применяют электрофорез сыворотки крови, принцип которого основан на разной подвижности белковых компонентов в созданном электрическом поле. Такой метод исследования является более точным и информативным, в отличие от стандартного общего анализа крови. Но при этом электрофорез показывает только количество определённой фракции белка, характер и степень патологического процесса в общей форме. Анализ проведенных исследований позволяет медицинским специалистам выяснить, какое именно соотношение белковых фракций наблюдается в организме человека, и определить специфику патологии, присущую конкретному заболеванию.

Большую часть основной биологической жидкости человека, или крови, составляют белки. В общем количестве их норма находится в пределах 60-80 г/л. Для получения точного анализа проводится электрофорез сыворотки крови на бумаге. Это исследование является самым распространенным способом анализа. Основной средой является особая фильтровальная бумага. Главная ее особенность – высокая гигроскопичность. Такая бумага может поглотить воды больше своего веса в 130-200 раз. В зависимости от применяемого оборудования электрофорез на бумаге длится 4-16 часов. Происходит подразделение белковых структур. Затем полосы бумаги обрабатывают специальными красками для получения анализа. Такая методика является самой распространенной в работе медицинских лабораторий. За счёт воздействия электрического тока белковые фракции, заряженные отрицательно, двигаются в сторону положительно заряженного электрода. Благодаря этому белковые составляющие крови подразделяются на 5 известных фракций:

Альбумины заряжены отрицательно, имеют маленькую, по сравнению с другими фракциями, молекулярную массу. За счет этого скорость их передвижения гораздо выше, чем у остальных фракций, и они дальше всех локализуются от участка старта. Первые три фракции глобулина передвигаются с более низкой скоростью из-за своей массы. Но самая маленькая скорость регистрируется у γ-глобулинов. Эти белки имеют большую массу и крупные, относительно других, размеры. Их заряд почти нейтрален, поэтому данная белковая фракция практически не сдвигается с линии старта.

В настоящее время электрофорез сыворотки крови часто проводимый анализ для постановки точного диагноза болезни. Этот анализ могут назначить как терапевты, так врачи узкого профиля. Показаниями по проведению исследований будут:

  • различные воспаления;
  • болезни хронической природы;
  • патологические процессы в соединительной ткани;
  • внутреннее кровотечение;
  • злокачественные новообразования.

Для того чтобы полученные результаты поведенных исследований были верными, не менее чем за 8 часов до сдачи крови необходимо отказаться от приёма еды. Кроме того, необходимо согласовать прием лекарственных средств, если таковые имеются, с лечащим врачом.

Для того чтобы результаты не были по ошибке завышены, необходимо снизить до минимума возможность свертывания крови для определения показателя белковых фракций и общего белка. Электрофорез сыворотки крови проводится аккуратно, поскольку существует вероятность искажения полученных результатов из-за фибриногена. Он может прятать ненормальные белки или быть спутанным с ними.

В течение суток после сдачи пробы будет готов анализ на электрофорез белков сыворотки крови. Норма полученных показателей по категориям у взрослых людей:

  1. Общий белок – 63-82 г/л.
  2. Альбумины – 40-60 % от общего количества фракций.
  3. α1-глобулины – 2-5 %.
  4. α2-глобулины – 7-13 %.
  5. β-глобулины – 8-15 %
  6. γ-глобулины – 12-22 %.

Изменение количества любой белковой фракции в большую или меньшую сторону может свидетельствовать о развитии той или иной патологии. Для получения достоверной информации об этом необходим электрофорез белков сыворотки крови. Расшифровка результатов облегчит медицинским специалистам постановку диагноза и выбор лечения.

В самом начале при анализе полученных результатов определяют количество альбумина. Увеличение этой фракции может говорить об обезвоживании. Такое может произойти, если у больного отмечается затяжная рвота или нарушения в пищеварительной системе. Также увеличение альбумина происходит при ожогах большой площади кожного покрова.

Гораздо опаснее, если в организме снижается количество альбуминов, это может говорить о следующих патологиях:

  1. Поражения почек и печени.
  2. Патологии желудочно-кишечного тракта.
  3. Инфекционные процессы.
  4. Нарушения в деятельности сердечно-сосудистой системы.
  5. Кровотечения.
  6. Злокачественные новообразования.
  7. Сепсис.
  8. Ревматизм.

Незначительное уменьшение количества альбуминов может быть также:

  1. У будущих матерей.
  2. При превышении дозы лекарственных препаратов.
  3. При длительной лихорадке.
  4. У заядлых курильщиков.

Уменьшение количества a1-глобулинов регистрируется при недостатке α1-антитрипсина. Увеличение же отмечают при обострении воспалений в организме, нарушениях в работе печени, при тканевом распаде.

Регистрируют его при сахарном диабете, воспалительных процессах в поджелудочной железе, у новорожденных детей при желтухе, при гепатитах токсического происхождения. Свидетельствует оно и о неправильном, несбалансированном питании.

Происходит при наличии следующих заболеваний:

  1. Воспаления, особенно с присутствием гнойного экссудата (воспаление легких и другие процессы с наличием гноя).
  2. Поражения соединительной ткани (например, ревматизм).
  3. Злокачественные новообразования.
  4. Периоды восстановления после ожогов.
  5. Поражение почек.

Кроме того, такое явление характерно для гемолиза крови в пробирке во время проведения исследования.

Проявляется при гиперлипопротеидемии (увеличении количества липидов в крови), патологиях печени и почек. Можно обнаружить при открытой язве желудка, а также гипотиреозе (нарушение работы щитовидной железы). Снижение фракции регистрируют при гипобеталипопротеинемии (повышение в крови компонента беталипопротеин).

Эта фракция включает в свой состав иммуноглобулины. Поэтому увеличение γ-глобулинов регистрируется при сбоях в иммунитете. Обычно это происходит при различных инфекциях, развитии воспалительного процесса, изменениях ткани и ожоговых поражениях. Рост γ-глобулинов отмечают у больных хронической формой гепатита. Практически такая же картина характерна для цирроза печени. При запущенных случаях данного заболевания количество белковой фракции γ-глобулинов значительно выше показателя альбуминов. При определенных болезнях могут возникать сбои в образовании γ-глобулинов, и происходит развитие измененных протеинов в крови – парапротеинов. Для выяснения характера такого развития производится дополнительное исследование – иммуноэлектрофорез. Такая картина характерна для миеломного заболевания и патологии Вальденстрема.

Увеличение количества γ-глобулинов также присуще следующим патологиям:

  • красной волчанке;
  • эндотелиоме;
  • ревматоидной форме артрита;
  • остеосаркоме;
  • хронической форме лимфолейкоза;
  • кандидомикозу.

Снижение показателя γ-глобулинов подразделяют на 3 вида:

  1. Физиологический (характерен для детей в возрасте от трех до пяти месяцев).
  2. Врожденный (развивается с момента рождения).
  3. Идиопатический (когда причину развития установить не удается).

Вторичное снижение регистрируется при развитии заболеваний, которые вызывают истощение иммунной системы. В последнее время в медицинской практике все чаще проводится анализ на определение количества преальбуминов. Обычно такое исследование проводят больным, находящимся в реанимации.

Уменьшение количества преальбуминов очень важный и точный тест на определение недостаточности белковых структур в организме пациента. При проведении анализа на преальбумины выполняют коррекцию белкового метаболизма у таких пациентов.

Принцип проведения подобного анализа схож с технологией выполнения электрофореза сыворотки крови. Проводят его для более точной постановки диагноза или обнаружения других патологий. Кроме того такой анализ поможет выявить у больного наличие протеинурии.

Электрофорез сыворотки крови и мочи – важные методы в диагностике различных инфекционных заболеваний. Благодаря методике исследования и высокой точности они помогают определить вид патологии. Точный диагноз – верный путь к правильному лечению и полному выздоровлению.

источник

Электрофорез сывороточных белков: современные возможности анализа

Гильманов А.Ж., д.м.н., профессор
Саляхова Р.М., к.м.н., доцент
Кафедра лабораторной диагностики ИПО Башкирского медуниверситета, г. Уфа

Информативность и экономичность – важнейшие требования к лабораторным исследованиям, которые приходится учитывать как в отечественной, так и в зарубежной практике. Одним из достаточно информативных лабораторных тестов, используемых в настоящее время, является электрофорез белков биологических жидкостей (сыворотка крови, моча, спинномозговая жидкость и др.), который позволяет получить значительную диагностическую информацию. К сожалению, в большинстве лабораторий нет необходимых приборов. В то же время часть лабораторий, имеющих оборудование для электрофореза, им зачастую не пользуется из-за поломок, отсутствия расходных материалов или, как нередко бывает, невостребованности этого типа анализов лечащими врачами вследствие их недостаточной осведомленности о современных возможностях и клинической значимости этого метода. Исследование белкового и липопротеинового спектра сыворотки крови особенно значимо для диагностики патологических состояний, сопровождающихся нарушениями обмена белков и дислипопротеидемиями. При многих заболеваниях в сыворотке крови изменяется соотношение отдельных белков (диспротеинемия), хотя общее содержание белка может остаться нормальным.

Читайте также:  Ожог после электрофореза первая помощь

В настоящее время известно более 150 индивидуальных сывороточных белков; значительную часть из них можно количественно определить современными иммуноферментными, иммунохемилюминесцентными и иммунотурбидиметрическими методами. Но при всей информативности и доказательности таких анализов пока они в основном малодоступны из-за сравнительной дороговизны: себестоимость одного количественного определения апопротеинов, антитрипсина или иммуноглобулинов составляет от 2 до 8 долларов США. Вместе с тем типовые сдвиги белкового состава сыворотки крови можно определить гораздо более доступным электрофоретическим методом, который к тому же позволяет «одним взглядом» оценить общую картину белкового спектра и получить значимую диагностическую информацию.

Принцип электрофоретического разделения молекул состоит в их движении с раз-личной скоростью в постоянном электрическом поле. Наиболее часто в клинической практике используется электрофорез на поддерживающих средах-носителях – хроматографической бумаге, ацетатцеллюлозных мембранах, различных гелях, а также на комбинированных средах. Электрофорез на бумаге до недавнего времени широко применялся во многих лабораториях, однако он имеет много недостатков. Основной из них – в том, что результаты фракционирования белков этим методом могут быть получены лишь на 2-3 день исследования. Электрофорез в агарозном, крахмальном и особенно в полиакриламидном геле дает существенно лучшие результаты, позволяя идентифицировать большее количество белковых фракций сыворотки (до 30), но и ему присущи недостатки – сложность приготовления геля или дороговизна готовых гелевых пластин. Использование мембран из ацетата целлюлозы позволяет достигнуть компромисса и использовать их главные особенности — однородность материала, очень малую емкость слоя, требующую микроколичеств пробы (0,4–2,0 мкл), быстроту разделения и окраски белков (20-80 мин), легкость отмывания фона, а также относительно низкую стоимость пленок и их доступ-ность. В целом применение ацетатцеллюлозных мембран позволяет повысить четкость фракционирования и значительно сократить время, требуемое для разделения, окраски и анализа.

Знак и величина электрического заряда молекул белков сыворотки крови, а значит, направление и скорость их движения при электрофоретическом разделении, зависят от значения рН и ионной силы среды. Кроме того, скорость движения белковых молекул оп-ределяется их молекулярной массой, ионным окружением (составом и концентрацией бу-фера), приложенным напряжением и другими факторами. В связи с этим для получения сопоставимых данных электрофорез должен осуществляться при строго определенных значениях указанных параметров. В буферном растворе с рН=8,6 или 8,9 и ионной силой 0,08–0,15 моль/л все белки сыворотки крови приобретают отрицательный заряд и движутся от катода к аноду, причем дальше всего уходят альбумины, имеющие меньшую молекулярную массу, затем располагаются a 1-, a 2-, b — и g -глобулины. Иногда каждая из этих основных фракций может разделиться на несколько подфракций.

Следует указать, что результаты электрофореза сильно зависят от подготовки про-бы и мастерства лабораторного персонала. Сыворотку крови для исследования лучше брать свежей, хранившейся не более нескольких часов. В пробе не должно быть следов гемолиза; в противном случае свободный гемоглобин и его комплекс с гаптоглобином мо-гут образовать дополнительные полосы в области a 2— и b -глобулинов. В присутствии ионов кальция и под влиянием некоторых лекарственных веществ возможно расслоение b -фракции на две подфракции, что объясняется нарушением подвижности С3-компонента комплемента. Наконец, в целом качество «картинки» зависит от навыков нанесения пробы (это тоже определенное искусство, формирующееся практикой) и используемых инструментов-аппликаторов.

Необходим постоянный контроль рН буфера, применяемого для электродных камер и для смачивания пленок, т.к. от его значения зависит качество разделения фракций. Дело в том, что в ходе электрофореза на аноде и катоде протекают различные электрохимические процессы, приводящие к изменениям характеристик буферных растворов (в ча-стности, рН). В связи с этим для восстановления его значения некоторые специалисты рекомендуют по окончании рабочего дня смешивать буферные растворы из разных элек-тродных камер путем сливания в один сосуд, что позволяет существенно продлить срок службы буфера (в зависимости от интенсивности работы — до нескольких недель и более, но с условием периодического контроля рН; при выходе этого показателя за пределы ±0,1 0,2 от требуемых величин буферный раствор подлежит замене на свежеприготовленный). Срок работы электродных буферных растворов уточняется опытным путем; обычный признак потери их годности – сокращение длины разгонной дорожки, «наложение» белковых фракций друг на друга и «обрезанный» задний край гамма-глобулиновой фракции при обычных значениях тока (напряжения) и времени электрофореза. Замачивание пленок необходимо всегда осуществлять в свежем буферном растворе, не применявшемся в качестве электродного буфера.

Надо помнить, что электрофорез относится к полуколичественным исследованиям. Это определяется самой «технологией» его этапов, в частности, окраски проб и денситометрии. По принятым международным правилам, первоначальная оценка результатов электрофоретического разделения сывороточных белков (выявление нормы или патологии) должна проводиться визуально, путем сравнения с картиной нормальной сыворотки, а количественные данные предназначены только для документирования результатов и динамического наблюдения. При оценке фракций только по процентному их содержанию возможны ошибки трактовки анализа. Например, при гипергаммаглобулинемии относительное количество альбумина (в %) автоматически окажется сниженным, хотя его абсолютная концентрация (в г/л) реально не изменялась. Для исключения недоразумений желательно количественно определять белковые фракции — в г/л, что легко осуществить умножением процентного содержания отдельных фракций на концентрацию общего белка в сыворотке крови. Можно дополнительно провести определение уровня сывороточного альбумина колориметрическим методом и результат сравнить со значением, полученным при электрофорезе; эта процедура одновременно поможет оценить качество анализа.

С учетом приведенного выше, при интерпретации результатов клиницистам нет смысла придавать диагностическое значение, например, снижению содержания альбумина у пациента на 2-3% от справочных данных. Само понятие нормы в лабораторной практике весьма условно; нормальные значения параметров зависят от местных факторов и должны формироваться в первую очередь «на местной базе», т.е. в конкретной лаборатории при обследовании здорового контингента. Вместе с тем для общего контроля качества разделения белков выпускаются специальные контрольные сыворотки, которые желательно иметь в каждой лаборатории, работающей этим методом.

Приведенные положения о количественной оценке фракций в полной мере относятся и к электрофоретическому разделению липопротеинов сыворотки крови, применяе-мому для оценки типа и тяжести гиперлипопротеинемии (ГЛП) с учетом количества триглицеридов, холестерина общего и холестерина в составе ЛПВП. Наибольшее значение электрофоретический метод имеет для дифференциальной диагностики атерогенной ГЛП III типа и умеренно атерогенной ГЛП V типа: ГЛП-III характеризуется наличием патоло-гически измененных (аномальных) ЛП, отличающихся значительным содержанием ТГ, ХС и одновременно высокой электрофоретической подвижностью; на графике будет видно слияние фракций ЛПНП и ЛПОНП ( b -ЛП и пре- b -ЛП). Но надо помнить, что методом электрофореза выявляется только относительное распределение фракций, количественная оценка отдельных ЛП не рекомендуется, поскольку для этого метода не существует стандартных калибровочных и контрольных материалов.

Для электрофореза белков используются различные аппараты, как ручные, так и полуавтоматические. Современные комплексы оснащены микропроцессорными блоками питания и управляются компьютером; в большинстве систем на последней стадии исследования окрашенных мембран или гелевых пластинок (определения относительного количества белков в каждой фракции) используется электронный цветной сканер или миниатюрная фотокамера, что существенно повышает точность и воспроизводимость результатов. Программное обеспечение дает возможность усредненного расчета оптической плотности отдельных фракций путем автоматического определения границ «дорожек» и многократного сканирования каждой из них в нескольких «разрезах», что позволяет исключить ошибки из-за локальных микродефектов и неровного положения носителя, а также до определенной степени нивелировать искривление дорожки и влияние окрашенного фона при неполной отмывке. На экран дисплея и на принтер выводится график-денситограмма с рассчитанным содержанием отдельных белковых фракций. При необходимости маркеры границ фракций на графике можно скорректировать, при этом будет произведен автоматический пересчет их показателей. В компьютере, как правило, создается архив электрофореграмм; их можно в любое время извлечь и просмотреть.

Электрофорез белков, позволяющий определить их количественные сдвиги и физико-химические характеристики, помогает выявить заболевания печени и почек, иммунной системы, некоторые злокачественные новообразования (лейкозы), острые и хронические инфекции, генетические поломки и др. Известен ряд своеобразных электрофоретических «синдромов» – типичных картин электрофореграмм, характерных для некоторых патологических состояний. Среди них можно отметить:

1.Острое воспаление с активацией системы комплемента и увеличением синтеза острофазных белков ( a 1-антитрипсина, гаптоглобина, фибриногена и др.). Оно проявляется увеличением доли a 1— и a 2-глобулинов и может быть подтверждено измерением СОЭ, исследованием концентрации С-реактивного белка, фибриногена (в динамике) и других острофазных белков.

2.Хроническое воспаление с усилением синтеза ряда острофазных белков, а также имму-ноглобулинов; проявляется умеренным возрастанием a 2— и b -глобулинов, повышением g -глобулинов и некоторым снижением альбумина. Подобные отклонения могут наблюдаться при хронических инфекциях, коллагенозах, аллергии, аутоиммунных процессах и при малигнизации.

3.Тяжелые заболевания печени сопровождаются снижением синтеза альбумина и a -глобулинов, что и отражается на электрофореграммах. Как указывалось выше, нужно помнить, что процентная концентрация альбумина может оказаться сниженной лишь относительно, из-за накопления других белков, поэтому оценивать нарушения белково-синтезирующей функции печени следует по абсолютному содержанию альбумина (в г/л). При хронических гепатитах и циррозах печени возрастает как относительное, так и абсолютное количество g -глобулинов ( b — и g -фракции могут сливаться из-за накопления IgA), причем превышение g -глобулинов над альбуминами является весьма неблагоприятным прогностическим признаком.

4.Нефротический синдром сопровождается увеличением фильтрации белков в почках и селективной протеинурией – потерей с мочой большого количества альбумина и части низкомолекулярных глобулинов ( a 1-антитрипсина, трансферрина). При этом в печени усиливается синтез более крупных протеинов семейства a 2-глобулинов (макроглобулин, апо-В), которые накапливаются в крови и формируют картину со значительным снижением альбумина и повышением a 2-глобулинов.

5.Нарушение всасывания или значительная потеря белков возможна как при нефротическом синдроме, так и при массивных ожогах, синдроме Лаэлла, патологии желудочно-кишечного тракта и т.д. В последнем случае снижается абсолютное содержание общего белка и особенно альбумина, а на протеинограмме оказывается уменьшенной доля альбумина при относительно равномерном возрастании всех глобулинов. Введение белковых препаратов (иммуноглобулины, альбумин или плазма крови) в ходе лечения больных немедленно отражается на электрофоретической картине, что позволяет следить за динамикой потерь или выведения поступивших белков.

6.Тяжелый иммунодефицит врожденного или приобретенного генеза обычно сопровождается выраженным снижением g -глобулиновой фракции. При этом желательно провести дополнительное количественное определение IgG, IgA и IgM.

7.Парапротеинемия при злокачественных и доброкачественных процессах – симптом, для выявления которого именно электрофорез является методом выбора. При накоплении в крови моноклональных иммуноглобулинов или фрагментов их цепей, как бывает, в частности, при миеломной болезни и некоторых лейкозах, на протеинограмме появляется более или менее острый пик в области от a 2— до g -глобулинов (так называемый М градиент), хорошо заметный визуально. Электрофорез белков мочи, проведенный параллельно, в этом случае выявит пик, находящийся в той же области. Для дифференцировки парапротеинов и идентификации белковых цепей можно использовать современнейшую модификацию электрофореза – иммунофиксацию, для которой выпускаются специальные гелевые пластины с антисыворотками.

Ниже представлены примеры интерпретации данных исследования сыворотки крови нескольких пациентов, проведенного с помощью устройства электрофореза с анализатором электрофореграмм УЭФ-01-«Астра» производства НПЦ «Астра» (г. Уфа).

Рис. 1. На протеинограммах хорошо виден М-градиент в области g — глобулинов, что свидетельствует о гаммапатии (скорее всего моноклональной), сопровождающейся резким повышением g -глобулиновой фракции, снижением b -глобулинов и альбуминов. Это может быть характерно для g -плазмоцитом, макроглобулинемии Вальденстрема, амилоидоза, лимфомы, а также возможно при введении некоторых антикоагулянтов. Для уточнения диагноза необходимо определение содержания общего белка в сыворотке крови и белка Бенс-Джонса в моче, проведение электрофореза с иммунофиксацией и др.

Рис. 2. Изменения на представленных электрофореграммах также характерны для моноклональной гаммапатии. Резко повышена g -глобулиновая фракция (хорошо заметен М-градиент).

Рис. 3. На протеинограмме — значительное снижение альбуминов, резкое повышение a 2-глобулинов и некоторое возрастание b -глобулинов. Значительное уменьшение уровня как альбуминов, так и общего белка в сыворотке крови характерно для нефротического синдрома; косвенным свидетельством гипопротеинемии может быть низкая интенсивность окраски белковых фракций данной дорожки по сравнению с соседними. Другие, более редкие состояния со сходным изменением фракций: a 2-плазмоцитома, опухоли, термические ожоги, ряд острых и подострых заболеваний, а также анальбуминемия. Для уточнения диагноза необходимо определение общего белка в сыворотке крови, электрофорез с иммунофиксацией, электрофорез белков мочи и т.д.

Рис. 4. Отмечается небольшое избирательное снижение фракции g -глобулинов, что возможно при иммунодефиците, иммуносупрессии на фоне лечения кортикостероидами, иммунодепрессантами, химиотерапии, а также при некоторых лимфопролиферативных заболеваниях.

Рис.5. На данной электрофореграмме представлены результаты разделения липопротеидов сыворотки крови, выполненного параллельно с сывороточными белками. Отмечается увеличение фракции пре- b -липопротеинов, что в сочетании с повышением уровня общего холестерина и триглицеридов и равномерно-мутным видом сыворотки харак-терно для ГЛП IV типа. Для окончательного фенотипирования необходимы данные о клинических проявлениях заболевания, наследственной отягощенности и индексе атерогенности.

Рис. 6. Данная фореграмма отражает увеличение фракции b -липопротеинов на фоне повышения содержания общего холестерина (6,8 ммоль/л) и нормального уровня триглицеридов (1,1 ммоль/л), что при прозрачной сыворотке характерно для ГЛП IIа типа.

Рис. 7. Данная фореграмма также свидетельствует о ГЛП IIа типа (увеличение фракции b -липипротеинов, повышение содержания холестерина (7,2 ммоль/л), нормальный уровень триглицеридов (1,5 ммоль/л). Сыворотка у таких больных прозрачная.

Электрофоретические методы в клинической лабораторной диагностике имеют хорошую перспективу. Так, среди новинок можно отметить автоматические системы капиллярного электрофореза, которые выполняют быстрое разделение биомолекул внутри капилляра под действием высокого напряжения; для таких приборов требуются уже не микролитры, а нанолитры образца. В целом использование современных электрофоретических анализаторов позволяет с высокой точностью и минимальными затратами исследовать широчайший спектр биохимических параметров с целью уточнения диагноза, мониторинга патологического процесса и обоснования методов терапии заболеваний.

1. Сергеева Н.А. // Клин. лаб. диагн. – 1999. — № 2. — С. 25-32.
2. Титов В.Н., Амелюшкина В.А. Электрофорез белков сыворотки крови. –М., 1994.
3. Камышников В.С. Справочник по клинико-биохимической лабораторной диагностике (в 2-х томах). Минск, 2000. -463 С.

источник

Основные требования к технологическим системам и процедуре осуществления зонального электрофореза (на хроматографической бумаге, ацетатцеллюлозной пленке, гелях) белков плазмы (сыворотки) крови

Принцип фракционирования ( электрофореза) основан на том, что в электростатическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровому гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц. Вследствие этого белки сыворотки крови разделяются обычно на 5 основных фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины, содержание которых определяется с помощью фотометрии или денситометрии. При обработке красителями белки связываются с ними пропорционально своей концентрации. Определив интенсивность окрашивания, можно вычислить концентрацию белковых фракций.

Основные требования к приборам, реагентной базе и процессу осуществления электрофореза

Система для электрофореза. Блок питания должен давать стабилизированный ток силой 50—100 мА при напряжении 180— 600 В.

Электрофоретическая камера . Для предохранения полосы носителя от высыхания в камере должна поддерживаться определенная влажность воздуха. При нагревании бумаги уси­ ленно испаряется буферный раствор в середине полосы и с краев ленты, что обусловливает его движение (реофорез) и вследствие этого изменение формы пятен фракций белков в процессе их электрофоретического разделения; поэтому отдельные конструк­ ции электрофоретических камер располагают системой охлажде­ ния полосок носителя.

В разных отделах камеры буферный раствор должен иметь одинаковый уровень, чтобы избежать его перелива через ленту в результате сифонного действия. Концы полосок носителя не сле­дует погружать в буферный раствор, в котором находятся элек­троды. Электрическую связь между лентами и электродами уста­навливают посредством фитильков из бумажных полосок (ваты, марли), смоченных буферным раствором; этим устраняется пере­дача изменений рН буфера в то пространство, в которое погруже­ ны ленты.

Поскольку полоса ацетатцеллюлозной пленки (бумаги) может быть расположена как горизонтально, так и под углом к горизон­тали (вертикально), соответственно различают горизонтальный и вертикальный электрофорез. Первый из них позволяет получить более точные результаты. Важно, чтобы полоска носителя (хроматографической бумаги, ацетатцеллюлозной пленки) была хо­рошо натянута. Желательно, чтобы она располагалась как бы в «подвешенном» состоянии, поддерживаемая вертикально распо­ложенной перегородкой, системой натянутых капроновых нитей, а связывающий обе ванны мостик имел шипы для укладывания на них полосок. Это предотвращает образование тонкого капил­лярного слоя буферного раствора между полоской ацетатцеллю­лозной пленки, хроматографической бумаги и пластиной; капил­лярный слой буферного раствора в значительной мере ухудшает качество электрофоретического разделения.

Читайте также:  Лекарственный электрофорез воротниковой зоны

Большое значение имеют свойства носителя , исполь­ зуемого для электрофореза. Ацетатцеллюлозная пленка, как и хроматографическая бумага, должна быть однородной и плотной. Поскольку в отдельных лабораториях все еще используют хроматографическую бумагу, в отношении ее как носителя необходимо отметить следующее.

Избранный сорт бумаги: «хроматографическая быстрая» или «хроматографическая медленная» — нельзя менять, так как от этого в определенной мере зависят получаемые результаты. Если хроматографическая бумага подлежит денситометрии, то реко­ мендуется быстро впитывающий сорт, в остальных случаях пред­ почтительнее пользоваться бумагой для медленного впитывания (марки «М»). Бумага марки «М» имеет гладкую лицевую и рубча­ тую обратную стороны. При внимательном рассмотрении обрат­ной стороны можно заметить грубые и крупные штрихи, идущие параллельно более длинной стороне листа. Эти штрихи отражают ход волокон целлюлозы. Применяемые для электрофореза бу­мажные полоски, размером 3,5 х 40 см (или другого формата, со­ответствующего габаритам электрофоретической камеры), наре зают таким образом, чтобы волокна целлюлозы шли вдоль поло­сок. Благодаря этому каждая полоска бумаги представляет собой систему продольно идущих капилляров, что способствует прод­вижению белков (и других веществ) и препятствует их растека­нию к краям полоски. Кроме того, полученная лента, в отличие от аналогичной с поперечным ходом волокон целлюлозы, мень­ше деформируется при увлажнении и высыхании. На одном из концов каждой полоски простым карандашом отмечают номер анализа и дату взятия крови для исследования.

Направление хода волокон целлюлозы в бумаге можно опре­ делить и по растеканию на ней капли воды, принимающей форму эллипса, длинник которого и соответствует распространению во­локон целлюлозы.

Подготовка к электрофорезу и процедура его проведения. Пе ред электрофорезом камеру устанавливают строго горизонталь­но. Кюветы заполняют буферным раствором таким образом, что­ бы уровень жидкости в них был одинаков. Оба отделения каждой кюветы соединяют друг с другом полоской фильтровальной бу­маги. Полоски ацетатцеллюлозной пленки (хроматографической бумаги) равномерно натягивают между кюветными отделениями. Необходимо, чтобы концы увлажненных буфером полос (мем­бран) были погружены в буферный раствор внутренних отделе­ний (если таковые имеются) электродных кювет. Затем на зара­ нее отмеченные у катода участки полосы носителя наносят сыво­ ротку (иногда на расстоянии 2 см от середины полоски в сторону катода).

Наилучшие результаты дает метод пропитывания хроматогра­фической бумаги буферным раствором. Однако на практике в це­лях экономии времени ленты обычно смачивают в буфере и слег­ ка высушивают, отжимая между листами фильтровальной бумаги.

Нанесение на полоску носителя биологического матери­ала осуществляется с помощью аппликатора (специального или импровизированного) либо микропипетки (автоматической, обычной). При первом способе на узкий край шлифованного стекла (покровного, предметного) или полоски отмытой рентге­новской пленки наносят 0,1-миллилитровой микропипеткой 10 мкл (0,01 мл) свежеполученной (негемолизированной) сыворот­ ки.

Этот импровизированный аппликатор приставляют нижним ребром к увлажненной бумаге и после впитывания сыворотки сразу же отнимают (нужно следить за тем, чтобы между боковыми гранями аппликатора и краями полос оставался промежуток ши­ риной 5—6 мм). Наносить сыворотку на бумагу можно и непос­ редственно из пипетки — таким образом, чтобы след сыворотки составил поперечную (по отношению к длиннику бумаги) полоску.

В том и другом случаях нужно соблюдать следующие правила: если используют микропипетку на 0,1 мл, в нее насасывают сы­воротку до метки 0,085. Пипетку зажимают между пальцами в вертикальном положении, причем верхнее ее отверстие не следу­ ет закрывать пальцем. Небольшое количество сыворотки, нахо­ дящееся в пипетке, не вытекает из нее, так как жидкость удержи­ вается капиллярными силами. Слегка касаясь бумаги (материала ацетатцеллюлозной пленки) нижним краем пипетки, ее переме­щают по полосе в поперечном направлении (не доводя пипетку на 2 мм до каждого края), пока мениск сыворотки не опустится до метки 0,095. Удобно пользоваться и автоматической микропи­ петкой.

Допустимо окрашивание сыворотки перед ее нанесением на полосу хроматографической бумаги. Для этого к 0,5 мл сыворот­ки добавляют несколько крупинок (проще всего на кончике стек­ лянной иглы) порошка бромфенолового синего. По перемеще­нию пятна красителя, связывающегося, прежде всего с альбуми­ном, можно визуально следить за миграцией пятен.

Затем крышку камеры плотно закрывают и включают прибор.

Электрофоретическое разделение белков сыворотки крови осуществляют при комнатной температуре и градиенте потенциала от 3 до 8 В на 1 см длины полоски носите­ля. Сила тока, зависящая от величины подаваемого напряжения, разновидности, особенностей состава и рН буферного раствора, толщины полоски носителя (хроматографической бумаги или ацетатцеллюлозной пленки), температуры, при которой происхо­дит разделение, не должна превышать 0,1—0,3 мА на 1 см попе­речного сечения хроматографической бумаги или ацетатцеллю­лозной пленки . Оптимальное время электрофореза подбирают опытным путем. Обычно оно составляет 20—40 мин при электрофорезе на ацетатцеллюлозной пленке и 7—12 ч при электрофорезе на хроматографической бу­маге. По окончании электрофореза отключают источник посто­янного тока, из камеры извлекают бумажные полоски и прикрепляют их на деревянные рамки или развешивают на стеклянных палочках, затем бумажные полоски помещают в горячий сушиль­ ный шкаф так, чтобы они не касались ни друг друга, ни металли­ческих стенок и деталей шкафа (это предохраняет электрофореграммы от смазывания фракций).

Бумажные ленты высушивают в шкафу при 95—105 0 С в тече­ ние 10—15 мин, но не более 20—30 мин. Поскольку связывание индикатора (красителя) белками при последующей обработке за­ висит от условий фиксации (температуры, времени прогрева­ния), необходимо строго соблюдать их постоянство.

Полоски ацетатцеллюлозной пленки (мембраны) не высушивают и далее обрабатывают влажными.

Для окраски электрофореграмм сухие бумажные ленты или увлажненные буферным раствором ацетатцеллюлозные пленки кладут в развернутом виде на дно плоских эмалиро­ванных кювет и осторожно, медленно приливают красящий рас­твор. В процессе обработки реагентами электрофореграммы нельзя накладывать друг на друга и сворачивать.

1. Буферные растворы. На электрофоретическое фракционирование белков большое влияние оказывает рН бу­ ферных растворов, состав и концентрация составляющих их реа­гентов, так как от кислотности (щелочности) среды, ионной силы буферной смеси и некоторых других факторов во многом зависят знак и величина электрического заряда молекул белков.

В качестве электролита чаще всего применяют веронал-мединаловый, веронал-ацетатный, мединаловый, трис-буфер. Реже используют боратный и фосфатный буфер.

Наиболее хорошо зарекомендовали себя следующие буфер­ные растворы:

ü Вероналовый (веронал-мединаловый) буфер с рН 8,6.

ü Веронал-ацетатный буфер с рН 8,6.

ü Мединаловый буфер с рН 7,6.

ü Трис-буфер с рН 8,9 (о чень хорошо разделяются белки сыворотки крови (с выделе нием до 9 фракций) при использовании трис-буфера с рН 8,9).

2. Окрашивающие реагенты. Основным их компонентом явля­ ются индикаторы (бромфеноловый синий, кислотный сине-чер­ ный, амидо черный 10 В и некоторые другие), представляющие собой красители, характерно связывающиеся с белком.

Сухие бумажные ленты выдерживают в этих красителях в те­ чение 30 мин. Входящие в состав красящих растворов сулема, сульфат цинка и уксусная кислота выступают в роли фиксаторов, способствующих улучшению связывания красителя с белком.

3. Отмывающие растворы. Для удаления не связавшегося с б елком красителя электрофореграммы обрабатывают в несколь­ких (обычно 3—5) сменах отмывающего раствора — до тех пор, пока фон лент не сделается светлым (белым), а промывная жид­ кость не перестанет окрашиваться в желтый цвет. Состав отмыва­ ющего раствора во многом зависит от природы применявшегося для окрашивания белков индикатора. Так, при окраске бромфе­ ноловым синим используют раствор уксусной кислоты, получае­мый добавлением к 20 мл ледяной уксусной кислоты 980 мл дис­ тиллированной (или водопроводной) воды; в случае применения амидо черного 10 В или кислотного сине-черного не связавшиеся с белком красители отмывают смесью следующего состава: уксус­ ной кислоты (ледяной) — 100 мл, фенола (расплавленного) — 40 мл, воды водопроводной — 860 мл.

Подготовка электрофореграмм к учету результатов способами денситометрии и фотометрии. Бумажные ленты, отмытые от избытка красителя, высушивают на воздухе при комнатной температуре, притом в затемненном месте, если в качестве красителя использовался бромфеноловый синий. Сухие и окрашенные электрофореграммы хранятся в темноте.

Дальнейшая количественная обработка электрофореграмм состоит либо в элюции (извлечении) красителя из участков бумаги с располагающимися на них окрашенными белковыми фракциями с последующим фотометрическим измерением оптической плотности растворов, либо непосредственной записи электрофореграмм с помощью денситометра – прибора, позволяющего регистрировать (сканировать) картину разделения фракций анализируемых веществ в отраженном или проходящем монохроматическом световом потоке.

При денситометрии в проходящем свете предварительно обесцвечивают фон ацетатцеллюлозных пленок и бумажных лент (последние для этого пропитывают просветляющей жидкостью либо обесцвечивают материал носителя другим способом). Полосу располагают в перемещающем ее устройстве таким образом, чтобы против щели освещения находился неокрашенный участок. Записанная прибором кривая позволяют судить о числе фракций и о содержании в них белка. С помощью интегрального устройства осуществляется количественная обработка картины разделения фракций белков, осуществляемая в автоматическом режиме.

Количественную обработку денситограмм можно выполнить и ручным способом. Для этого кривую делят на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству красителя, соединившегося с белком данной фракции. Соотношение между этими площадями вычисляют, например, по массе вырезанных участков бумаги, определенной на торсионных весах. Общую массу всех участков принимают за 100% (1,0) или же за содержание общего белка в плазме (в г/л) и вычисляют, какой процент по отношению к нему составляет масса каждого участка (фракции).

Для просветления электрофореграмм (перед «сканированием» в проходящем свете на денситометре) применяют: вазелиновое масло и раствор альфа-бромнафталина в вазелиновом масле – для обесцвечивания фона бумажных лент, а также смеси: ледяная уксусная кислота – ацетон (1:1); пропиловый (изопропиловый) спирт – ледяная кислота – глицерин (85:12:3) – используют для просветления материала ацетатных полос.

Метод элюирования состоит в том, что сначала электрофореграммы разрезают по числу фракций, ориентируясь на самый светлый участок между ними. Каждую фракцию помещают в отдельную пробирку и заливают, например, 3 мл элюирующего раствора. К альбуминовой фракции добавляют двойной (или тройной) его объем, на основании чего величину оптической плотности для альбуминовой фракции умножают на 2 (или на 3). Контролем служит участок фореграмм, не содержащий белка. Пробирки осторожно встряхивают и оставляют в затемненном месте на 30 минут (лучше на 40 минут – 1 час). Плотность испытываемых растворов определяют на фотоэлектроколориметре любого типа с зеленым (красным) светофильтром. В качестве контрольного используют элюирующий раствор, по которому устанавливают «электрический нуль» прибора.

При использовании способа элюирования находят величину абсорбции каждой фракции и общую сумму значений оптической плотности, которую принимают за 100% (либо 1,0) или величину содержания общего белка в плазме (сыворотке) крови, представленную в размерности г/л. В первом случае результаты выражают в относительных, во втором – в абсолютных единицах.

Состав элюирующих растворов, применяемых для извлечения красителя из окрашенных фракций электрофореграмм (эстрагирующие реагенты), во многом зависит от природы используемого индикатора. Так, для извлечения бромфенолового синего применяют 0,01Н раствор едкого натра. Для извлечения кислотного сине-черного красителя используют 0,1Н раствор едкого натра.

Приняв сумму показателей оптической плотности отдельных элюатов за 100% (1,0), по простому тройному правилу рассчитывают относительное содержание альбумина и фракций глобулинов.

Пример . Абсорбция фракции альбумина – 0,52, α1-глобулины – 0,02, α2-глобулины -0,05, β-глобулины-0,10, γ-глобулины-0,15. В сумме оптическая плотность отдельных растворов равна 0,84; это значение принимается за 100% (или 1,0).

Тогда содержание альбумина, выраженное в относительных единицах, составит: (0,52 • 1,0)/0,84 = 0,62. Подобным же образом рассчи­тывают относительное содержание всех остальных белковых фракций, выражая его в долях от единицы или процентах. Следу­ ет стремиться к представлению результатов не в относительных, а в абсолютных единицах. Для этого сумму показателей абсорбции всех фракций достаточно отнести к концентрации об­ щего белка сыворотки крови. Тогда, пользуясь аналогичным рас­ четом, легко найти действительную концентрацию альбумина и всех глобулинов.

Пример . Общее количество белка в сыворотке крови — 82 г/л. Сумма абсорбции всех фракций — 0,84. На долю абсорбции фракции альбумина приходится 0,52 ед. Если показатель А, рав­ ный 0,84 ед, соответствует 82 г/л, то 0,52 (А) — х. Отсюда: концен­ трация альбумина в сыворотке крови равна (82 • 0,52)/0,84 = 50,7 (г/л).

Зная содержание общего белка сыворотки (плазмы) крови, легко перевести относительные единицы в абсолютные: 100% со­ответствует 82 г/л, 62,0% — х. Тогда х = (62,0 • 82)/100 = 50,8 (г/л).

Для лучшего запоминания отмечаемых в норме показателей процентного (долевого от единицы) содержания альфа-1 -, альфа- 2-, бета- и гамма-глобулинов сыворотки крови можно ориенти­роваться на следующие средние величины и варианты отклоне­ний: 1 (0,04 + 0,01), 8± 1 (0,08 ±0,01), 10 ± 2 (0,10 ± 0,02), 16 + 4 (0,16 + 0,04) — соответственно. Относительное содержание аль­ бумина составляет, по данным А.А.Покровского (1969), 56—66% (0,56—0,66), многих других авторов: 50—61% (0,50—0,61). У прак­ тически здоровых взрослых людей концентрация альбумина, аль­ фа-1-, альфа-2-, бета- и гамма-глобулинов, выраженная в абсо­лютных единицах, составляет соответственно: 42,0—51,0, 2,0— 5,0, 4,0-7,0, 5,0-9,0, 8,0-17,0 г/л.

Краткая характеристика других носителей.

В последние годы электрофорез на бумаге практически полностью вытеснен предложенным Коном (1958) электрофорезом на ацетатцеллюлозе. Ацетатцеллюлозная пленка в отличие от бумаги лишена эндоосмоса, способности к поглощению отдельных белковых фракций поверхностью волоконец. В результате получается четкое фрак­ ционирование со светлыми промежутками между «пятнами» бел­ ков, а время электрофореза сокращается обычно до 30 мин.

Для разделения фракций белков и липопротеинов широко ис­пользуется метод электрофореза на агаре (агарозе), предложен­ный Гордоном и др. в 1949 г.

Способ электрофореза в крахмальном геле (Смитис, 1955) позволяет получить до 20 фракций вместо пяти, обычно выделя­емых методом электрофоретического фракционирования на бу­маге.

Введенный Грабаром и Вильямсом в 1953 г. иммуноэлектро форез представляет собой комбинацию электрофоретического и иммунологического фракционирования белков. После передви­ жения белковых фракций в геле агара в узкий желобок помешают перпендикулярно к фракционным линиям сыворотку лошади, иммунизированной белковыми компонентами сыворотки чело­века (антисыворотка). Антисыворотке дают возможность диф­ фундировать в геле агара. В месте контакта содержащихся в них антител с электрофоретически разделенными белковыми фрак­циями образуются преципитационные дуги, характерные для со­ ответствующих фракций. При помощи этого метода обнаружива­ ется не менее 25 различных белков.

Структура агарового и крахмального геля такова, что размеры пор в этих носителях, как и в материале бумаги, ацетатцеллюлозной пленки, значительно превосходят размеры макромолекул: белков, липопротеинов и др. Лишь в полиакриламидном геле, формируемом из золя с концентрацией около 7,5%, размеры пор примерно соответствуют размерам молекул белков. Благодаря этому создается молекулярно-фильтрующий эффект, в значительной мере улучшающий качество электрофоретического разделения, с помощью которого выделяется обычно около 30 фрак­ций белков. К тому же перед началом электрофоретического Фракционирования белков все они стартуют с весьма узкой линии, будучи как бы сконцентрированы на ней. Формирование многослойного полиакриламидного геля, отдельные зоны в кото ром отличаются размерами пор, дает возможность эффективно разделять липопротеины разных классов (по Е.Я. Маграчевой, 1979). К тому же полиакриламидный гель отличается большой прозрачностью, термостабильностью. Широкое применение в клинической практике метода электрофореза в полиакриламид­ном геле сдерживается трудностью идентификации и количественного учета отдельных выявляемых фракций.

Определение белковых фракций сыворотки крови методом электрофореза на пленках из ацетата целлюлозы.

Принцип метода: белки сыворотки крови разделяют методом электрофореза с использованием в качестве носителя пленки из ацетата целлюлозы.

Реактивы: 1) барбитал-натриевый буферный раствор (рН 8,6) (иногда применяются другие буферные смеси); 2) бромфеноловый синий (при приготовлении раствора добавляют сульфат цинка и уксусную кислоту для фиксации белков); 3) отмывающий раствор – уксусная кислота, 50 г/л; 4) просветляющий раствор: вазелиновое масло, смесь ледяной уксусной кислоты с ацетоном (1:1).

Ход определения : смачивают пленки буферным раствором (помещают в буферный раствор на 5 минут). Удаляют избыток влаги фильтровальной бумагой. Закрепляют пленку в камере матовой стороной кверху (пленки должны располагаться параллельно друг к другу и строго параллельно стенкам прибора, не должны свисать). Закрывают камеру крышкой и пропускают ток напряжением 150В в течение 5 минут, после чего выключают ток.

источник