Меню Рубрики

Разделение аминокислот электрофорезом на бумаге

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник

Электрофорез

2. Электрофорез с подвижной границей.

4. Изоэлектрическая фокусировка.

Белки, нуклеиновые кислоты, полисахариды, находясь в растворе несут определенный электрический заряд благодаря наличию групп, способных к электролитический диссоциации. Общий заряд данной частицы определяется, прежде всего, концентрацией Н + -ионов в среде. Под действием электрического тока заряженные частицы перемещаются к катоду или аноду в зависимости от знака их суммарного заряда. Такое явление носит название электрофореза. Скорость движения частиц (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью.Она имеет размерность см 2 /с -1 ·в -1 .

Различия в подвижности частиц служат основой для разделения смесей веществ.

Если приложить к электропроводящему раствору равномерное электрическое поле (Е), то на частицу будет действовать сила ускорения:

где d– расстояние между электродами, q – заряд молекулы. Так как молекула перемещается не в вакууме, то на неё действует противоположно направленная сила трения, которая зависит от размеров, формы молекулы, вязкости среды и описывается уравнением Стокса:

где f– коэффициент трения, v скорость движения молекулы. Для сферических частиц коэффициент трения равен 6πηr, где r – радиус частиц и η – коэффициент вязкости растворителя. В растворе силе ускорения противодействует сила трения, поэтому:

Е/d·q = 6πηrv, преобразуя выражение, получим:

Таким образом, скорость молекулы (v) пропорциональна напряженности электрического поля Е/d и заряду молекулы и обратно пропорциональна размеру молекулы и вязкости среды. Заряд и размер являются строго индивидуальными характеристиками молекулы. Следовательно, и путь, который пройдет та или иная молекула при электрофорезе за определенный интервал времени, тоже будет характерен для данной молекулы.

Существуют три основных типа электрофоретических систем – электрофорез с подвижной границей, зональный электрофорез и стационарный электрофорез.

Элекрофорез с подвижной границей

Электрофорез макромолекул, растворенных в буфере с соответствующим значением рН, проводится в V-образной кювете с прямоугольным поперечным сечением. Раствор макромолекул в буфере заливают в нижнюю часть кюветы, доливают оба конца трубки тем же буфером и монтируют в них электроды. Если вести электрофорез в щелочном буфере, то все белки заряжаются отрицательно и начинают перемещаться к аноду: скорость перемещения данного белка зависит от его рН, и от величины суммарного заряда при данном рН буфера. Как видим, в данном методе электрическое поле прикладывается к исходно разной границе между раствором молекул и буфером. Скорость миграции заряженных частиц определяется путем наблюдения за перемещением этой границы. Если раствор содержит гетерогенную смесь ионизированных макромолекул, то можно увидеть множество движущихся границ. Способы наблюдения за пограничными изменениями концентрации вещества основаны на измерении градиента показателя преломления, который пропорционален градиенту концентрации.

Сконструирование Филпонтом и Свенссоном астигматической фотокамеры со специальной оптической системой, называемой шлирен-оптикой, позволяет непосредственно регистрировать градиент показателя преломления вдоль кюветы.

Электрофорез по методу подвижной границы нашел широкое применение при исследовании белков. Этот метод в основном используется для определения подвижностей и изоэлектрических точек белков, т.к. количественно трудно оценить подвижности. Метод электрофореза с подвижной границей используется редко.

Зональный элекрофорез

В зональном электрофорезе пятно или тонкий слой раствора, нанесенного на полутвердый или гелеобразный материал, помещают в электрическое поле, в результате чего молекулы перемещаются по или через материал носитель. В первую очередь функцией носителя является предотвращение механических воздействий и конвекции, которая происходит в результате температурных или высокой плотности концентрированных растворов.

Однако, носитель может действовать в качестве молекулярного сита, приводя тем самым к хроматографическим эффектам, что может или улучшить разделение, или ухудшать его.

а) электрофорез на бумаге.

В качестве носителя здесь используется фильтровальная бумага, которая должна содержать 96% α-целлюлозы, нерастворимой в концентрированном растворе NaOH. Приборы для электрофореза состоят из двух электродных сосудов и устройства для поддержания полосок фильтровальной бумаги. В качестве электродов обычно применяются платиновые проволоки. Можно использовать и угольные электроды. Для предотвращения чрезмерного испарения всю систему помещают в закрытую камеру, что обеспечивает создание влажной атмосферы.

Перед анализом электрофоретическую бумагу погружают в буферный раствор, слегка промокают между чистыми листами промокательной бумаги, а затем помещают на подставку.

Пробу наносят либо капиллярной пипеткой с закрученным носиком, либо с помощью различных аппликаторов, обеспечивающих быстрое и равномерное нанесение исследуемого раствора.

После нанесения проб к кювете подключают напряжение. Для наблюдения за ходом электрофореза на бумагу наносят пятно определенного стандартного вещества. По окончании процедуры бумагу высушивают при 105-110°С. Макромолекулы затем можно обнаружить при помощи соответствующего метода окрашивания.

Б) электрофорез в ПААГ.

В качестве среды для электрофоретического разделения макромолекул наиболее широкое распространение получил ПААГ, обладающий рядом преимуществ. Среди них можно отметить химическую стабильность, инертность, прозрачность в широком диапазоне длин волн, возможность получения пор с заданной величиной, отсутствием адсорбции. С помощью ПААГ можно разделить вещества с молекулярной массой от 2500 до 2000000 дальтон.

Системы электрофореза в ПААГ можно разделить на две группы по применяемым буферным системам. К первой относятся системы вертикального и горизонтального электрофореза, в которых применяется один тип буфера в электродных камерах и геле. Ко второй группе относятся системы вертикального «диск-электрофореза»: в них используются разные виды буферов (2-3) и гели разной концентрации. Название данного метода происходит от английского слова discontinuty (прерывистый), обозначающего в данном контексте неоднородность электрофоретической среды. Для диск-электрофореза характерны скачкообразные изменения рН, концентрации геля и градиента напряжения.

Прибор для диск-электрофореза состоит из верхнего и нижнего резервуара для электродного буфера и вертикальной стеклянной трубки. Нижняя часть трубки заполняется разделяющим гелем с мелкими порами, которые действуют как молекулярное сито по отношению к изучаемым макромолекулам. Над разделяющим гелем находится концентрирующий гель, имеющий крупные поры и поэтому не обладающий свойствами молекулярного сита, а еще выше расположен стартовый гель, содержащий пробу и краситель, используемый в качестве свидетеля.

Принцип диск-электрофореза основан на эффекте подвижной границы Кольрауша, суть которого состоит в использовании двух разных буферов: в электродных камерах трис-глициновый буфер (рН 8,3) , а в концентрирующих(рН 6,7) и разделяющем гелях(рН 8.9) – трис-НСl. В электродном буфере рН на 1,5-2 единицы выше, чем в концентрирующем. Образец растворяется в том же буфере, который используется в концентрирующем геле. При рН 8,3 глицин находится в виде цвиттериона:

После включения тока все ионы (в том числе белки и краситель) начинают двигаться к аноду в следующей последовательности: Сl — > бромфеноловый синий > белки > глицинат.

Читайте также:  Система электрофореза capillarys sebia

Рис. 1. Прибор для диск-электрофореза.

Между ионами хлора и глицината образуется граница раздела. Так как оба эти иона принадлежат к одной и той же электрической системе, то в области глицинатных ионов напряжение, а следовательно, и их скорость, возрастают, а в области ионов хлора напряжение и скорость уменьшаются. Следовательно, замыкающие глицинатные ионы будут стремиться догнать ведущие ионы хлора, а зона белков и красителя, находящаяся между ними, будет сужаться (концентрироваться). Этот процесс происходит в концентрирующем (крупнопористом) геле.

Когда подвижная граница доходит до мелкопористого геля (рН 8,9), то, с одной стороны, подвижность глицинатных ионов возрастает, а с другой – на белки начинает действовать эффект молекулярного сита, и они отстают от подвижной границы. Таким образом, белки попадают в более щелочной трис-глициновый буфер, их отрицательный заряд возрастает, и они разделяются согласно своим индивидуальным характеристикам (заряду, форме молекул, молекулярному весу).

При проведении электрофореза гель полимеризуется непосредственно в стеклянной трубке, которую потом соединяют с сосудами с буфером. Образец суспендируют в концентрированном растворе сахарозы и наносят на поверхность геля в виде тонкого слоя с помощью пипетки. Электрофорез прекращают, когда зона красителя (подвижная граница) проходит 0,8-0,9 длины геля. Затем гель извлекают из трубки и окрашивают специальными красителями обнаружения зон. Каждую зону можно характеризовать по значениям их Rf или по площади пика после денсатометрирования. Диск-электрофоретический метод особенно часто используется для разделения белков.

источник

Разделение аминокислот методом хроматографии на бумаге проводится с целью идентификации аминокислот, находящихся в растворе.

Определение свободных аминокислот важно для изучения обмена белков в организме. В норме в плазме крови и в моче содержится определенное количество аминокислот. При нарушении функции отдельных органов или физиологических систем (недостаточная функция печени, усиленный распад белков, ослабление выделительной функции почек и т.д.) в сыворотке, а иногда и в моче наблюдаются изменения в содержании аминокислот и в аминокислотном составе.

Метод основан на различной растворимости отдельных аминокислот в двух частично смешивающихся жидкостях, одной из которой является вода, другой – водонасыщенный органический растворитель (смесь бутилового спирта с уксусной кислотой). Водная фаза неподвижна, так как в данном случае вода сорбирована на инертном носителе – целлюлозе, которая в насыщенной влагой атмосфере (хроматографической камере) удерживает до 20% воды, оставаясь внешне сухой; подвижной фазой является насыщенный водой органический растворитель. Чем больше растворимость аминокислоты в водной фазе и меньше – в органическом растворителе, тем медленнее движется аминокислота по бумаге с органическим растворителем. По ходу передвижения растворителя смесь аминокислот будет разделяться, причем те из них, которые растворяются в органическом растворителе лучше, продвигаются вдоль бумаги дальше, те же, которые растворяются в нем хуже, делают более короткий путь. Поэтому местоположение вещества на хроматограмме зависит от его коэффициента распределения — ά:

В распределительной хроматографии важен подбор такого органического растворителя (подвижная фаза), при котором различны значения » ά » для отдельных компонентов смеси.

В свою очередь от » ά » зависит коэффициент скорости движения – Rf (retention factor – фактор удерживания), который легко определить практически:

Rf данного вещества зависит не только от качества растворителя (его состава, рН), но и от температуры среды и качества используемой бумаги (плотность, толщина и др.). Поэтому очень важно хроматографию проводить при определенной и постоянной температуре (20-22°) и пользоваться только предназначенной для хроматографии бумагой.

Rf является характерной величиной для каждой аминокислоты и постоянен для данных условий опыта. Поэтому им широко пользуются при идентификации веществ при их анализе методом распределительной хроматографии на бумаге. Для этого сравнивают Rf аминокислот исследуемой смеси с Rf известных стандартных аминокислот.

Основные преимущества хроматографического метода – простота, точность данных при незначительных количествах исследуемых веществ (десятые и сотые доли миллиграмма), быстрота и возможность одновременно проводить большое количество анализов.

Ход работы: Для разделения смеси аминокислот вырезают полоску хроматографической бумаги длиной 15-16 см и шириной 1,5 см, в зависимости от величины хроматографической камеры, в которой проводится хроматографирование. В качестве хроматографической камеры могут использоваться большие пробирки, стеклянные цилиндры. Хроматографическую бумагу, можно брать только пинцетом. Один из концов полоски «заостряют», отрезая от него кусочки ножницами, и на нем проводят простым карандашом линию на расстоянии 2 см от края. Этот конец бумаги зажимают между двумя стеклянными пластинками и проводят стеклянной палочкой, смоченной раствором смеси аминокислот, по начерченной линии. После подсыхания полоски вновь наносят порцию аминокислот. Эту процедуру повторяют 3-4 раза.

На дно хроматографической камеры осторожно, не смачивая стенок, наливают из пипетки 1-2 мл смеси бутанола, уксусной кислоты и воды (4:1:5).

Конец хроматограммы, где не нанесена смесь аминокислот, прикрепляют с помощью иголки к пробке, которой плотно закрывают хроматографическую камеру, при этом заостренный конец хроматограммы должен быть погружен в растворитель на 1 см, полоска со смесью аминокислот не должна касаться растворителя, (рис.1). Хроматографирование проводят в течение 1,5-2 часов. За это время проявитель пройдет по хроматограмме путь снизу вверх, равный примерно 10 см. Затем хроматограмму вынимают из камеры, отмечают границу фронта продвижения растворителя (делают надрезы ножницами слева и справа) и высушивают под тягой. На высушенную хроматограмму наносят с помощью пульверизатора 0,5% раствор нингидрина в ацетоне так, чтобы вся хроматограмма была равномерно (без подтеков) смочена раствором. Как только ацетон испарится, хроматограмму помещают в сушильный шкаф при температуре 70°С на 15 минут. Отдельные аминокислоты обнаруживаются в виде цветных (синих или фиолетовых) пятен, расположенных на разных расстояниях от места нанесения исследуемой смеси.

На хроматографической бумаге наблюдают нингидриновую реакцию (лабораторная работа №1).

Рис.1. Упрощенный прибор для распределительной хроматографии на бумаге: 1-пробка; 2-иголка; 3-фронт растворителя; 4-пробирка; 5-полоска хроматографической бумаги; 6-место нанесения смеси аминокислот, очерченное карандашом; 7-растворитель.

Идентификацию аминокислот осуществляют по значению Rf. Для этого измеряют с точностью до миллиметра расстояние, пройденное проявителем от линии нанесения аминокислот до границы фронта проявителя. С такой же точностью измеряют расстояние от точки нанесения аминокислот до центра цветного пятна. Путем деления величины пути, пройденного аминокислотой на хроматограмме, на величину пути, пройденного проявителем, находят значение коэффициента Rf.

Таким же образом вычисляют Rf для стандартных известных аминокислот (хроматограммы с известными аминокислотами ставятся параллельно). И сравнивая Rf известных аминокислот с Rf аминокислот смеси, определяют последние.

ЗНАЧЕНИЯ Rf АМИНОКИСЛОТ (при температуре 20°С)

Аминокислота Растворитель бутанол-уксусная кислота:вода /4:1:5/
Цистин 0,04
Цистеин 0,05
Аспарагиновая кислота 0,24
Глутаминовая кислота 0,28
Серии 0,22
Лизин 0,14
Глицин 0,25
Треонин 0,29
Гистидин 0,16
Алании 0,36
Тирозин 0,45
Валин 0,50
Метионин 0,50
Лейцин 0,69
Фенилаланин 0,66
Изолейцин 0,68
Аргинин 0,18

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9790 — | 7665 — или читать все.

источник

Хроматография является эффективным методом для решения одной из важнейших задач биохимии – разделения и идентификации химических соединений (белков, аминокислот, жирных кислот, моно- и дисахаридов и др.). Метод предложен в 1903 г. профессором Воронежского университета М.С. Цветом для разделения растительных пигментов.

В настоящее время известно большое число различных видов хроматографии (распределительная, адсорбционная, ионообменная, на молекулярных ситах) и различных приемов их применения (на бумаге, колоночная, тонкослойная, газовая). Современные разновидности хроматографии, различающиеся по технике выполнения позволяют быстро разделить отдельные компоненты из небольшого количества сложной смеси.

Принцип распределительной хроматографии состоит в том, что вещества помещают в систему, которая содержит два физически различных компонента- подвижную и неподвижную фазы. Неподвижную (стационарную) фазу называют сорбентом. Если сорбентом служит жидкость, удерживаемая каким-либо твердым телом, то это тело называют носителем или матрицей. Подвижную фазу называют растворителем или проявителем; компоненты разделяемой смеси – растворенными веществами. В варианте распределительной хроматографии на бумаге носителем служит целлюлоза в виде листов хроматографической бумаги. Неподвижной фазой служат пары воды, насыщающие лист этой бумаги при данных условиях. В качестве подвижной фазы применяют насыщенный водой органический растворитель, который, двигаясь по бумаге, растворяет и увлекает за собой нанесенный образец.

Распределительная хроматография основана на том, что растворенное вещество распределяется между подвижной и неподвижной фазами. Этот процесс называется распределением и количественно описывается коэффициентом распределения, представляющим собой отношение концентраций растворенного вещества в каждой из двух фаз. Рассчитывают этот коэффициент по следующей формуле:

,

где, mп – масса подвижной фазы;

mн – масса неподвижной фазы;

Rf – коэффициент подвижности (скорости перемещения зоны компонента).

По мере движения растворителя происходит множество микроскопических актов распределения каждого из исследуемых компонентов между подвижной и неподвижной фазами, в результате чего вещества с разными коэффициентами распределения оказываются на различном расстоянии от старта.

Коэффициентом Rf (подвижности) называют отношение расстояния от места нанесения исследуемого вещества до середины пятна (а) к расстоянию, от места нанесения вещества до фронта растворителя (в): Rf = а/в. Каждое из разделяемых веществ имеет свой Rf. Этот коэффициент может быть использован для идентификации (определения) компонентов исследуемой смеси, но воспроизводимость его зависит от условий опыта (температура, сорт бумаги, чистота растворителя, однотипность процедур и др.).

Существуют различные виды хроматографии на бумаге: нисходящая (растворитель движется по бумаге сверху вниз), восходящая (растворитель движется по бумаге снизу верх), круговая (движение растворителя происходит от центра круга к периферии) и др. В учебных целях наиболее удобна круговая (радиальная) хроматография.

Все операции с хроматографической бумагой проделывают тщательно вымытыми перед работой руками или в чистых резиновых перчатках. Надписи на бумаге делают простым карандашом.

ХОД РАБОТЫ. Работа состоит из нескольких этапов, которые выполняются в определенной последовательности:

1.Разметка и маркировка хроматографической бумаги. Из хроматографической бумаги вырезают квадрат со стороной на 0,5 см больше диаметра используемой для работы чашки Петри (рис.3).

Двумя перпендикулярными линиями, проведенными карандашом через центр, квадрат делят на четыре сектора. По краю каждого сектора делают простым карандашом надпись о наносимом веществе.

На взаимно перпендикулярных прямых, отступив от центра 1,5 см к краю каждой стороны квадрата, сделать карандашом метки (1). Это будет место для нанесения пробы (стартовая линия).

2. Нанесение растворов. В отмеченные точки микропипеткой наносят растворы аминокислот (в соответствии с надписью) или смесь в объеме 0,002-0,01 мл. Нанесение осуществляют прикосновением острого конца заполненной микропипетки к бумаге в отмеченную точку и быстром ее поднятии. При этом на бумаге должно оставаться пятно диаметром не более 3-4 мм. После полного подсыхания пятна операцию повторяют. Так поступают до тех пор, пока весь раствор из микропипетки не будет перенесен на отмеченную точку (стартовую линию).

В центре хроматограммы просверливают отверстие (2) и в него вставляют фитилек (трубочку, скрученную из хроматографической бумаги). Фитилек (3) должен плотно прилегать к краям отверстия, высота его должна быть несколько меньше, чем внутренняя высота камеры.

3. Приготовление растворителя. В колбу объемом 100 мл приливают бутанол, уксусную кислоту и воду в соотношении 12:3:5 и тщательно перемешивают. Полученный раствор наливают в одну из половин чашки Петри по 15-20 мл, приготовленного для разделения смеси аминокислот.

4. Разгонка аминокислот. Хроматограмму укладывают на половинку чашки так, чтобы фитилек располагался в центре и касался ее дна. Для уменьшения испарения растворителя хроматограмму накрывают второй половиной чашки, добиваясь совмещения краев чашек.

Насыщенный неподвижной фазой растворитель по фитильку непрерывно поступает к центру хроматограммы и, двигаясь к краям, растворяет нанесенные аминокислоты и увлекает их за собой. При этом каждая из аминокислот движется по слою бумаги с определенной скоростью, что обусловлено коэффициентом распределения. Скорость аминокислот неодинакова, так как зависит от степени их растворения в неподвижной и подвижной фазе растворителя. Аминокислоты с полярными незаряженными, отрицательно и положительно заряженными (гидрофильными) радикалами движутся медленно, вместе с водой, некоторые чуть впереди воды. Аминокислоты с неполярными, гидрофобными радикалами перемещаются быстрее, так как вода, продвигаясь по бумаге, выталкивает их, а бутилово-уксусная фракция – увлекает за собой. Скорость перемещения аминокислот одновременно зависит от величины и объема радикала.

После того как растворитель дойдет почти до краев чашки, хроматограмму снимают, удаляют фитилек, простым карандашом проводят линию между сухой и мокрыми зонами бумаги (отмечают границу фронта растворителя) и высушивают в вытяжном шкафу.

5. Проявление. Хроматограмму смачивают в налитом в ванночку растворе с массовой концентрацией нингидрина в ацетоне 1 %, вновь высушивают в вытяжном шкафу и помещают для развития окраски пятен аминокислот на 1,5-2 мин в сушильный шкаф при температуре 100 °С или прогревают над плиткой до полного развития окраски комплексов аминокислот с нингидрином.

6. Определение коэффициента подвижности аминокислот. Описывают кратко принцип метода бумажной хроматографии, определяют Rf аминокислот-метчиков и аминокислот смеси, идентифицируют аминокислоты смеси, хроматограмму зарисовывают. Замеряют расстояние, пройденное каждой аминокислотой от точки старта до середины пятна (а), и расстояние пройденное растворителем в данном секторе (в). По формуле рассчитывают коэффициент подвижности:

7. Идентификация аминокислот, содержащихся в смеси, осуществляется по совпадению их позиций с позицией аминокислот-метчиков на хроматограмме, по совпадению коэффициентов подвижности и по однородности окраски пятен.

Rf для аминокислот при разделении на бумаге растворителем, состоящим из бутанола, уксусной кислоты и воды в соотношении 12:3:5 приведены в табл.7.

Коэффициенты подвижности аминокислот (Rf)

Аминокислоты Rf Аминокислоты Rf Аминокислоты Rf
Цистеин 0,08 Оксипролин 0,22 Тирозин 0,45
Гистидин 0,11 Глицин 0,23 Триптофан 0,50
Лизин 0,12 Аспарагиновая 0,23 Метионин 0,50
Аспарагин 0,12 Треонин 0,26 Валин 0,51
Глутамин 0,17 Глутаминовая 0,28 Фенилаланин 0,60
Аргинин 0,15 Аланин 0,30 Изолейцин 0,67
Серин 0,22 Пролин 0,34 Лейцин 0,70

Хроматографический метод позволяет произвести и количественное определение аминокислот в смеси. Для этого пятна аминокислот смеси и аминокислот-метчиков обводят карандашом, нумеруют, вырезают, делают в них надрезы и помещают в пробирки с соответствующим пятну номером.

Затем в пробирки наливают по 3 мл насыщенного сульфатом меди раствора с объемной концентрацией этанола 80 %, содержимое в пробирках перемешивают и ставят в темное место на 30 мин (каждые 10 мин содержимое пробирок перемешивают). Окраска с бумаги переходит в раствор этанола с образованием медных производных сине-фиолетового Руэмана, окрашенных в красный цвет. Оптическую плотность окрашенных растворов аминокислот-метчиков и аминокислот смеси измеряют при 540 нм (зеленный светофильтр) на ФЭКе против насыщенного сульфатом меди раствора с объемной концентрацией этанола 80 %. Массовую концентрацию каждой аминокислоты в смеси рассчитывают по формуле:

,

где, Х – массовая концентрация аминокислоты в исследуемой смеси, мг/мл;

С – массовая концентрация аминокислоты-метчика (свидетеля), мг/мл;

u — объем нанесенного на хроматограмму раствора аминокислоты-метчика, мл;

u1 — объем нанесенного на хроматограмму раствора исследуемой смеси, мл;

Читайте также:  Сроки хранения растворов для электрофореза

Dпр – оптическая плотность раствора с пятна аминокислоты смеси;

Dсв – оптическая плотность раствора с пятна аминокислоты метчика.

Результаты расчетов по количественному составу аминокислот смеси записывают и делают окончательный вывод по всей работе.

РЕАКТИВЫ. Хроматографическая бумага; вода дистиллированная; органический растворитель (бутанол, ледяная уксусная кислота, вода в соотношении по объему 12:3:5); этанол; раствор с массовой концентрацией нингидрина в ацетоне 1 %; смесь аминокислот (взвешивают по 10 мг лизина, аланина и лейцина, смешивают вместе и растворяют в 10 мл раствора с объемной концентрацией этанола 80 %, при отсутствии какой-либо из аминокислот для приготовления смеси можно взять другие аминокислоты с существенно отличающимися величинами Rf); растворы аминокислот-метчиков, или «свидетелей» (10 мг каждой из аминокислот, взятых для приготовления смеси, растворяют в отдельных флаконах в 10 мл раствора с объемной концентрацией этанола 80 %); раствор с объемной концентрацией этанола 80 % насыщенный сульфатом меди.

1. Общая характеристика метода хроматографии и ее роль в биохимии.

2. Назовите основные виды хроматографии.

3. Общая характеристика принципа хроматографии.

4. Назовите разновидности метода хроматографии на бумаге и чем они отличаются.

5. Назовите основные этапы радиальной хроматографии на бумаге.

6. Техника разметки и маркировки хроматографической бумаги.

7.Техника нанесения растворов в точки старта.

8. Состав и техника приготовления растворителя для «разгонки» аминокислот на бумаге.

9. От чего зависит скорость движения аминокислот в процессе хроматографии.

10. Как рассчитывается коэффициент подвижности (Rf) и что он характеризует?

11. Что такое «идентификация аминокислот» и как её проводят.

12. Назовите основные этапы количественного определения аминокислот методом хроматографии на бумаге.

13. Техника экстрагирования окрашенных пятен.

14. Как определяется содержание аминокислот в 1 мл смеси.

Дата добавления: 2015-02-13 ; просмотров: 5014 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Разделение смесей аминокислот и пептидов имеет исключительно важное значение при анализе аминокислотной последовательности белков. Зональный электрофорез, вообще говоря, не позволяет за один прием разделять сложные смеси из 10 — 20 аминокислот. [1]

Разделение смеси аминокислот методом ионообменной хроматографии основано на различии в их изоэлектриче-ских точках. Аминокислоты можно условно разделить на три группы; основные, нейтральные и кислые. Наконец, кислые аминокислоты являются моноаминодикарбоновыми кислотами. [2]

Разделение смесей аминокислот и пептидов имеет исключительно важное значение при анализе аминокислотной последовательности белков. Зональный электрофорез, вообще говоря, не позволяет за один прием разделять сложные смеси из 10 — 20 аминокислот. [3]

Разделение смесей аминокислот в гидролизатах белков при помощи ионообменивающих смол — наиболее простой и легко осуществимый в промышленности способ получения чистых препаратов аминокислот и пептидов и в особенности лечебных препаратов аминокислот. [4]

Для разделения смеси аминокислот , находящихся в гидролизате белка, и качественного обнаружения отдельных аминокислот широко используется метод распределительной хроматографии на бумаге. [5]

Для разделения смесей аминокислот , а также для идентификации и количественного определения разделенных аминокислот особенно широко применяется метод ионообменной хроматографии. Этот метод тоже основан на различиях кислотно-оснбвных свойств аминокислот, но большой вклад в его эффективность вносят некоторые дополнительные факторы. [7]

Для разделения смеси аминокислот чаще исего применяют метод распределительной хроматографии на бумаге. [8]

Для разделения смесей аминокислот , пептидов и белков Мартин и Сипдж применили систему хлороформ — вода. Применяют также органические основания в смесях со спиртами и водой и буферированные. Примерами служат смеси лутидин — этиловый спирт, лутидин — третичный амиловый спирт, лутидин — третичный амиловый спирт — вода, пиколпн, коллнднн, кол-лидин-буферный раствор, пиридин-амиловый спирт и другие. Бутиловый спирт применяют в смесях с уксусной кислотой, с бензпловым спиртом, с аммиаком, с монохлоргидрином гликоля, с третичным бутиловым спиртом и с другими веществами. Применяют также смесь метилового эфира с муравьиной кислотой, ацетона с водой и мочевиной. [9]

Для разделения смесей аминокислот , пептидов и белков Мартин и Синдж применили систему хлороформ — вода. В настоящее время большее значение имеют фенол, лг-крезол в смесях с водой и буферирующими веществами, такими, как фосфаты, аскорбиновая кислота и др. Применяют также органические основания в смесях со спиртами, водой и буферированные. Например, лутидин — этиловый спирт, лутидин — третичный амиловый спирт, лутидин — третичный амиловый спирт — вода, пиколин, коллидин, коллидин с буфером, пиридин — амиловый спирт и др. Бутиловый спирт применяют в смесях с уксусной кислотой, бензиловым спиртом, аммиаком, монохлоргидрином гликоля, третичным бутиловым спиртом и с другими веществами. Применяют также смесь метилоксида с муравьиной кислотой, смесь ацетона с водой и мочевиной. Для обнаружения аминокислот применяют обычный групповой реагент — нингидрин, позволяющий обнаруживать кроме аминокислот пептиды, белки и первичные амины. [10]

Приведены результаты разделения смесей аминокислот , жирных к-т и стероидов. [11]

Наиболее разработаны методы разделения смесей аминокислот с помощью распределительной хроматографии на бумаге. [12]

В последнее время для разделения смесей аминокислот широко используют метод электрофореза на бумаге, при котором на полосы фильтровальной бумаги наносят смесь аминокислот, бумагу смачивают буферным раствором с определенным значением рН и пропускают через нее электрический ток. Через несколько часов вследствие различия ИЭТ аминокислот и, следовательно, разных скоростей и направлений их движения в электрическом поле смесь аминокислот разделяется на бумаге на индивидуальные аминокислоты, количество которых может быть определено тем или иным методом. В настоящее время электрофорез используется для разделения не только аминокислот, но и белков, нуклеиновых кислот, органических кислот и ряда других соединений. [13]

Нами были проведены опыты по разделению смесей аминокислот на колонках с катионитами или аниопитами различных марок. При этом мы стремились получить данные, характеризующие адсорбционные свойства различных смол и полноту вытеснения адсорбированных аминокислот. [14]

К СЭтот метод можно использовать для разделения смесей аминокислот лизина , аспарагиновой кислоты, аргинина, аланина, глицина, глютаминовой кислоты. [15]

источник

Разделение смесей аминокислот и пептидов имеет исключительно важное значение при анализе аминокислотной последовательности белков. Зональный электрофорез, вообще говоря, не позволяет за один прием разделять сложные смеси из 10 — 20 аминокислот. [1]

Разделение смеси аминокислот методом ионообменной хроматографии основано на различии в их изоэлектриче-ских точках. Аминокислоты можно условно разделить на три группы; основные, нейтральные и кислые. Наконец, кислые аминокислоты являются моноаминодикарбоновыми кислотами. [2]

Разделение смесей аминокислот и пептидов имеет исключительно важное значение при анализе аминокислотной последовательности белков. Зональный электрофорез, вообще говоря, не позволяет за один прием разделять сложные смеси из 10 — 20 аминокислот. [3]

Разделение смесей аминокислот в гидролизатах белков при помощи ионообменивающих смол — наиболее простой и легко осуществимый в промышленности способ получения чистых препаратов аминокислот и пептидов и в особенности лечебных препаратов аминокислот. [4]

Для разделения смеси аминокислот , находящихся в гидролизате белка, и качественного обнаружения отдельных аминокислот широко используется метод распределительной хроматографии на бумаге. [5]

Для разделения смесей аминокислот , а также для идентификации и количественного определения разделенных аминокислот особенно широко применяется метод ионообменной хроматографии. Этот метод тоже основан на различиях кислотно-оснбвных свойств аминокислот, но большой вклад в его эффективность вносят некоторые дополнительные факторы. [7]

Для разделения смеси аминокислот чаще исего применяют метод распределительной хроматографии на бумаге. [8]

Для разделения смесей аминокислот , пептидов и белков Мартин и Сипдж применили систему хлороформ — вода. Применяют также органические основания в смесях со спиртами и водой и буферированные. Примерами служат смеси лутидин — этиловый спирт, лутидин — третичный амиловый спирт, лутидин — третичный амиловый спирт — вода, пиколпн, коллнднн, кол-лидин-буферный раствор, пиридин-амиловый спирт и другие. Бутиловый спирт применяют в смесях с уксусной кислотой, с бензпловым спиртом, с аммиаком, с монохлоргидрином гликоля, с третичным бутиловым спиртом и с другими веществами. Применяют также смесь метилового эфира с муравьиной кислотой, ацетона с водой и мочевиной. [9]

Для разделения смесей аминокислот , пептидов и белков Мартин и Синдж применили систему хлороформ — вода. В настоящее время большее значение имеют фенол, лг-крезол в смесях с водой и буферирующими веществами, такими, как фосфаты, аскорбиновая кислота и др. Применяют также органические основания в смесях со спиртами, водой и буферированные. Например, лутидин — этиловый спирт, лутидин — третичный амиловый спирт, лутидин — третичный амиловый спирт — вода, пиколин, коллидин, коллидин с буфером, пиридин — амиловый спирт и др. Бутиловый спирт применяют в смесях с уксусной кислотой, бензиловым спиртом, аммиаком, монохлоргидрином гликоля, третичным бутиловым спиртом и с другими веществами. Применяют также смесь метилоксида с муравьиной кислотой, смесь ацетона с водой и мочевиной. Для обнаружения аминокислот применяют обычный групповой реагент — нингидрин, позволяющий обнаруживать кроме аминокислот пептиды, белки и первичные амины. [10]

Приведены результаты разделения смесей аминокислот , жирных к-т и стероидов. [11]

Наиболее разработаны методы разделения смесей аминокислот с помощью распределительной хроматографии на бумаге. [12]

В последнее время для разделения смесей аминокислот широко используют метод электрофореза на бумаге, при котором на полосы фильтровальной бумаги наносят смесь аминокислот, бумагу смачивают буферным раствором с определенным значением рН и пропускают через нее электрический ток. Через несколько часов вследствие различия ИЭТ аминокислот и, следовательно, разных скоростей и направлений их движения в электрическом поле смесь аминокислот разделяется на бумаге на индивидуальные аминокислоты, количество которых может быть определено тем или иным методом. В настоящее время электрофорез используется для разделения не только аминокислот, но и белков, нуклеиновых кислот, органических кислот и ряда других соединений. [13]

Нами были проведены опыты по разделению смесей аминокислот на колонках с катионитами или аниопитами различных марок. При этом мы стремились получить данные, характеризующие адсорбционные свойства различных смол и полноту вытеснения адсорбированных аминокислот. [14]

К СЭтот метод можно использовать для разделения смесей аминокислот лизина , аспарагиновой кислоты, аргинина, аланина, глицина, глютаминовой кислоты. [15]

источник

Дата добавления: 2015-08-06 ; просмотров: 3608 ; Нарушение авторских прав

Электрокинетическими явлениями назвали процессы, происходящие в дисперсных системах и связанные с перемещением фаз относительно друг друга под действием внешнего электрического поля. Эти явления впервые были обнаружены Ф.Ф. Рейсом в 1807 г. Причиной их является существование двойного электрического слоя на границе гранула – диффузный слой и легкость смещения гранулы относительно диффузного слоя. В электрическом поле при наложении внешней разности потенциалов двойной электрический слой разрывается по границе (поверхности) скольжения и частица получает заряд, соответствующий x-потенциалу. При этом гранула движется к одному полюсу, а противоионы диффузного слоя, увлекая за собой гидратные оболочки, – к другому.

Движение частиц дисперсной фазы относительно дисперсионной среды под действием внешнего электрического поля называется электрофорезом.

Движение дисперсионной среды относительно дисперсной фазы под действием внешнего электрического поля называется электроосмосом.

Позже, в 1859 г, Квинке обнаружил, что при проталкивании под давлением коллоидного раствора через капилляр на его концах возникает разность потенциалов, названная потенциалом протекания. Это явление можно рассматривать как обратное электроосмосу.

Явление, обратное электрофорезу открыл в 1878 г. Дорн. Он установил, что при оседании частиц дисперсной фазы в жидкой среде по высоте сосуда возникает разность потенциалов между верхним и нижним слоями. Ее назвали потенциалом седиментации. Причина этого явления – деформация ДЭС оседающих частиц при трении о дисперсионную среду.

Электрофорез коллоидных растворов.Метод электрофореза позволяет определить знак заряда частиц золя, а также величину x-потенциала. Наблюдать электрофорез коллоидных растворов можно с помощью прибора, изображенного на рис.36. Прибор представляет собой U–образную трубку, в колена которой вставлены электроды. Коллоидный раствор вводят через трубочку Б до уровня А – А. На поверхность раствора налита контактная жидкость, которая является дисперсионной средой золя или имеет одинаковую с ней электропроводность. На электроды подают напряжение. Через некоторое время уровень золя изменится в обоих коленах (В – В).

В электрическом поле противоионы диффузного слоя обычно двигаются в направлении, противоположном движению гранул. При этом в соответствующем колене прибора повышается уровень жидкости, так как ионы диффузного слоя увлекают за собой дисперсионную среду за счет сил межмолекулярного трения (вязкости) между гидратной оболочкой ионов и окружающей жидкостью. То есть в данном колене наблюдается электроосмос.

Но это только в том случае, если на пути передвижения стоит мембрана, препятствующая движению гранул (т.е. фаза закреплена).

При свободном передвижении диффузный слой удерживается гранулой и в виде отстающего «хвоста» следует вместе с ней. Поэтому уровень золя будет повышается в электродном пространстве, имеющим знак заряда, противоположный заряду частиц. Следовательно, в нашем случае частицы золя заряжены отрицательно, так как уровень жидкости повысился в анодном пространстве.

Зная величину смещения уровня (S) за определенный промежуток времени (t), можно экспериментально рассчитать скорость электроосмоса (электрофореза): V = S/t, м/с. С другой стороны, скорость движения частиц дисперсной фазы в электрическом поле по уравнению Гельмгольца – Смолуховского равна:

V = ,

где V – линейная скорость перемещения частиц (или границы золя), м/с; ε – относительная диэлектрическая проницаемость среды; Н – напряженность электрического поля (градиент потенциала), В/м; k – коэффициент, зависящий от формы частиц (k = 4 – для сферических частиц, k = 6 – для цилиндрических);

η – вязкость среды, Н×с/м 2 ; x – электрокинетический потенциал, В.

Как видно из уравнения, скорость электрофореза тем больше, чем выше диэлектрическая проницаемость среды, напряженность электрического поля, величина ξ -потенциала (т.е. заряд частиц) и чем меньше вязкость среды, а также зависит от формы частиц.

Последнее уравнение позволяет рассчитать величину x-потенциала:

x = .

Линейная скорость электрофореза (V) изменяется пропорционально напряженности электрического поля и не может служить характеристикой частиц. Поэтому было введено понятие электрофоретическая подвижность (u):

Следовательно: x = .

Величина x-потенциала позволяет судить об устойчивости коллоидного раствора, поскольку последняя зависит от этой величины.

Уравнение Гельмгольца – Смолуховского также применимо для электрофореза аминокислот и белков, где x-потенциал определяется суммарным зарядом иона.

Электрофорез аминокислот и белков. Разделение белков, аминокислот методом электрофореза основано на способности их молекул принимать определенный знак заряда в зависимости от рН среды.

Аминокислоты, являясь структурной единицей белков, своим строением и последовательностью соединения молекул определяют специфичность и свойства белков. Так как их молекулы содержат и основную (–NH2), и кислотную (–СООН) группы, то они являются амфотерными соединениями и в водных растворах находятся в виде биполярных ионов:

В нейтральной среде заряд иона аминокислоты (или белка) определяется соотношением числа –NH2 и –СООН групп и степенью их диссоциации. Если число карбоксильных групп больше числа аминогрупп, суммарный заряд иона будет отрицательный, если больше аминогрупп – положительный. Если же количество этих групп в ионе одинаково, то суммарный заряд равен нулю.

Читайте также:  Электрофорез при гайморите что это

Ионизация амино- и карбоксильных групп зависит также от рН среды. В кислой среде диссоциация карбоксильной группы подавляется и протонируется аминогруппа. В результате аминокислота (белок) приобретает положительный заряд:

В щелочной среде аминокислота приобретает отрицательный заряд:

При некотором значении рН среды, характерном для данной аминокислоты (белка), суммарный заряд иона равен нулю. Состояние, в котором молекула аминокислоты или белка обладает равенством положительных и отрицательных зарядов, то есть электронейтральна, называется изоэлектрическим состоянием. А значение рН среды, при котором молекула электронейтральна, называется изоэлектрической точкой (ИЭТ или рJ).

pJ, то молекула заряжается отрицательно и в электрическом поле перемещается к аноду.

ИЭТ белков с преобладанием –СООН групп (кислых белков) находиться в кислой среде, а с преобладанием – NH2 групп (основных белков) – в щелочной. Если число амино- и карбоксильных групп равно, то ИЭТ будет находится приблизительно в нейтральной среде, что зависит от степени диссоциации этих групп. Следовательно, суммарный заряд иона белка (аминокислоты) зависит также от рН среды и ИЭТ белка (аминокислоты).

Любой раствор рН которого меньше, чем ИЭТ, является кислым для молекулы данного белка (аминокислоты), и она, приобретая положительный заряд, в электрическом поле двигается к катоду. Если рН раствора больше чем ИЭТ, то данная среда является щелочной для молекулы, и она, приобретая отрицательный заряд, в электрическом поле двигается к аноду.

Наблюдать электрофорез аминокислот и белков можно с помощью прибора, схема которого изображена на рис.37а. Он представляет собой ванну, состоящую из катодного и анодного отделений, в которые заливается буферный раствор с определенным значением рН. Берется полоска плотной фильтровальной бумаги, пропитанной тем же буферным раствором. На её середину полоски (линия старта) наносят небольшое количество смеси белков, которые необходимо разделить, а на концах ее ставят знаки «+» и «–». Затем полоску помещают на подставке в прибор так, что бы один конец (–) погрузился в раствор катодного отделения, а второй (+) – анодного, и подают внешнее напряжение. Через некоторое время прибор отключают, бумагу вынимают, высушивают и окрашивают красителем, проявляющим белки. На полученной электрофореграмме (рис.37б) будет наблюдаться несколько окрашенных зон. Их число соответствует числу компонентов в смеси. Характер расположения и интенсивность полос на ней определяются качественным и количественным составом белков в смеси.

Так как все компоненты имеют различную электрофоретическую подвижность, то они окажутся на различном расстоянии от линии старта. Причем чем дальше от линии старта оказалась зона, тем выше скорость электрофореза вследствие большей величины ξ-потенциала (заряда) молекулы данного белка (аминокислоты). По направлению движения зон можно судить о заряде молекулы в данной среде. Если зона двигалась к катоду (–), то знак заряда положительный, если к аноду (+) – отрицательный.

Электрофорез и электроосмос широко применяются в медико-биологических исследованиях. Например, методом электрофореза разделяют белки, нуклеиновые кислоты, антибиотики, смеси лекарственных веществ в лекарственных препаратах, очищают от примесей лекарственные сыворотки, определяют белковые фракции в сыворотке крови. Этим методом можно не только разделять аминокислоты и белки, но и определять их ИЭТ. Если проводить электрофорез данного белка (аминокислоты) при разных значениях рН среды, то при рН равном ИЭТ это вещество не будет двигаться ни к катоду, ни к аноду.

Методы электрофореза применяются при диагностике ряда заболеваний и для контроля лечения путем сравнивания фракционного состава (по числу и интенсивности зон на электрофореграмме) нормальных и патологических жидкостей.

Электрофорез и электроосмос происходят при прохождении тока через ткани живых организмов. На поверхности биологических мембран находятся заряженные группы, что обуславливает образование двойного электрического слоя, в котором фиксированный отрицательный заряд клеточной поверхности уравновешивается положительным зарядом, создаваемым ионами межклеточной среды. Поэтому метод электрофореза позволяет определить величину x-потенциала, а следовательно, и заряд эритроцитов, тромбоцитов, лейкоцитов и других элементов крови. Достаточно хорошо изучен электрокинетический потенциал эритроцитов. Было установлено, что величина x-потенциала является характерной для данного вида животных, а также для человека.

Электрофорез (ионофорез) является одним из методов введения лекарственных препаратов в организм человека. Он широко применяется в физиотерапии, поскольку имеет ряд преимуществ по сравнению с другими способами введения лекарств. При электрофорезе оно поступает непосредственно в ткани зоны воздействия (следовательно, требуются меньшие дозы) и действует медленнее, но продолжительнее.

Устойчивость и коагуляция коллоидных растворов

Коллоидные растворы из-за большой удельной поверхности на границе раздела фаз имеют избыток поверхностной энергии и поэтому термодинамически неустойчивы. И только присутствие стабилизатора придает им устойчивость.

Под устойчивостью дисперсных систем понимают постоянство во времени их свойств, в первую очередь постоянство дисперсности и постоянство равновесного распределения частиц дисперсной фазы в среде. В данном определении имеется в виду способность системы противостоять агрегации (укрупнению) частиц дисперсной фазы – агрегативная устойчивость, и способность системы противостоять седиментации частиц (т.е. их осаждению под действием силы тяжести) – седиментационная (кинетическая) устойчивость.

Способность частиц дисперсной фазы удерживаться во взвешенном состоянии зависит от их дисперсности, вязкости дисперсионной среды, разности плотностей дисперсной фазы и дисперсионной среды. Кинетическая (седиментационная) устойчивость золя тем выше, чем меньше размер частиц, чем ближе значения плотностей фазы и среды, чем выше вязкость дисперсионной среды. Причем степень дисперсности частиц оказывает наибольшее влияние. Поэтому высокодисперсные системы, в которых скорость осаждения взвешенных частиц под влиянием силы тяжести настолько мала, что ею можно пренебречь, принято называть седиментационно (кинетически) устойчивыми.

Агрегативная устойчивость характеризует способность частиц дисперсной фазы оказывать сопротивление их слипанию и тем удерживать определенную степень дисперсности. Основными факторами агрегативной устойчивости дисперсных систем являются наличие у частиц ионной оболочки, т.е. ДЭС, диффузного слоя противоинов, а так же их сольватной (гидратной) оболочки. Эти факторы оценивают величиной электротермодинамического потенциала j коллоидной частицы, толщиной ее диффузного слоя, величиной заряда частицы и ее x-потенциала. Их значения зависят от условий получения золя, а также от природы противоиона (его заряда, радиуса, гидратирующей способности). В зависимости от этих условий изменяется количество противоионов в диффузном слое. Чем больше противоионов в нем, тем больше его толщина и, соответственно, выше заряд и x-потенциал частицы. Это способствует увеличению агрегативной устойчивости. Утрата агрегативной устойчивости приводит к коагуляции.

Коагуляция – это процесс слипания коллоидных частиц и образования более крупных агрегатов, ведущий к выпадению их в осадок под действием сил тяжести и последующему разделению фаз. Другими словами это потеря в начале агрегативной, а затем седиментационной устойчивости, ведущая к разрушению дисперсной системы. В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы.

Коагуляцию могут вызвать различные факторы: изменение температуры, механическое воздействие, действие света, облучение, увеличение концентрации золя, добавление электролитов.

Изменение температуры по-разному влияет на кинетическую и агрегативную устойчивость, а следовательно, и на коагуляцию. Первая при увеличении температуры возрастает в результате усиления броуновского движения. Вторая при этом снижается вследствие уменьшения толщины диффузного слоя. Причем увеличивается и вероятность столкновения (соответственно – слипания) частиц, что способствует коагуляции.

Наиболее изучена и имеет большое практическое значение коагуляция электролитами. Электролиты, с одной стороны, необходимы для стабилизации золя, но с другой – их избыток в растворе вызывает коагуляцию. Поэтому коллоидные растворы, полученные химическими методами, необходимо очищать от примесей электролитов.

Коагуляция коллоидных растворов электролитами.Количественной характеристикой коагулирующей способности электролита служит порог коагуляции – наименьшее количество электролита, которое вызывает коагуляцию I л золя. Он рассчитывается по формуле:

γ = ,

где γ – порог коагуляции, моль/л; С – концентрация электролита, моль/л; V – объем раствора электролита, л; V – объем золя, л.

Порог коагуляции можно рассчитывать и в ммоль/л.

Величина, обратная порогу коагуляции (1/γ), является мерой коагулирующей способности электролита: чем меньше порог коагуляции, тем выше коагулирующая способность электролита.

Практически все электролиты способны вызвать коагуляцию золя, если концентрацию электролита увеличить до значений, соответствующих его порогу коагуляции для данного золя.

Коагулирующее действие электролитов зависит от знака заряда и величины заряда ионов и определяется правилом Шульце – Гарди.Коагуляцию вызывают в основном ионы, имеющие заряд, противоположный знаку заряда частицы (М. Гарди). То есть для золя с положительно заряженными частицами ионами-коагулянтами являются анионы, а коагуляцию отрицательно заряженного золя вызывают катионы добавляемого электролита. Ичем выше заряд иона коагулянта, тем выше его коагулирующая способность(Г. Шульце),т.е. требуется меньшее количество электролита для коагуляции (порог коагуляции меньше). Позже Б.В.Дерягиным было установлено, что если коагуляцию вызываютионы одного знака, но разной величины заряда, то их пороги коагуляции соотносятся как величины, обратные их зарядам в шестой степени:

g+ : g2+ : g3+ = = 730 : 11:1

Поскольку порог коагуляции зависит не только от природы иона-коагулянта, но и от природы иона, сопутствующего ему, а также условий проведения опыта, на практике наблюдаются отклонения от указанного соотношения. В настоящее время установлено, что порог коагуляции пропорционален величине заряда иона-коагулянта в степени от 2 до 9, часто в степени 6.

У ионов одного знака и одинаковой величины заряда пороги коагуляции также отличаются друг от друга, но незначительно.

Коагуляция в ряде случаев зависит от способа прибавления электролита-коагулятора. Экспериментальные данные свидетельствуют о том, что если электролит добавлять к золю небольшими порциями, то в итоге коагуляция наступает при более высокой концентрации электролита, чем при внесении сразу большого его количества. Такое явление называют привыканием золя.

Явление коагуляции электролитами играет существенную роль в живом организме, так как коллоидные растворы клеток и биологических жидкостей соприкасаются с электролитами. Поэтому при введении в организм какого-либо электролита надо учитывать не только его концентрацию, но и заряд ионов. К примеру, физиологический раствор хлорида натрия нельзя заменить изотоничным раствором хлорида магния, поскольку данная соль содержит двухзарядный ион магния, оказывающий более высокое коагулирующие действие.

Кинетика и механизм коагуляции электролитами. Коагуляция любого коллоидного раствора не происходит мгновенно – она протекает во времени. Процесс коагуляции можно наблюдать по изменению оптических свойств раствора. Различают две стадии коагуляции: скрытую и явную. На первой стадии происходит укрупнение частиц без видимых изменений оптических свойств раствора (скрытая коагуляция). На второй стадии идет дальнейшее укрупнение частиц, сопровождающееся видимым изменением золя (явная коагуляция).

На рис.38 показана кривая (OSKN) зависимости скорости коагуляции золя от концентрации добавляемого электролита. Отрезок ОS соответствует скрытой коагуляции,а точка А – концентрации электролита при пороге коагуляции, который можно зафиксировать. Признаками явной коагуляции являются помутнение золя или изменение его окраски.

В начале явной коагуляции (отрезок SКN) скорость ее невелика. Но по мере нарастания концентрации электролита она значительно увеличивается. Поэтому различают медленную (SК) и быструю (КN) коагуляцию. Точка В соответствует концентрации электролита при некотором остаточном значении x-потенциала (в литературе его называют критическим x-потенциалом).

Существуют различные теории, описывающие механизм коагуляции. Из них наиболее удовлетворительной считается теория Дерягина – Ландау, доработанная Э.Фербеем и Дж.Обербеком (теория коагуляции ДЛФО). Согласно этой теории, две коллоидные частицы в процессе броуновского движения могут сблизиться на расстояние, при котором перекрываются их диффузные оболочки. Только в этом случае они начинают испытывать силы межмолекулярного притяжения и силы электростатического отталкивания их диффузных слоев.

В первом приближении механизм ионной стабилизации сводится к электростатическому отталкиванию диффузных слоев, зависящему от их толщины. При большой толщине диффузных слоев (рис.39а) их перекрытие проявляется на расстоянии, когда силы отталкивания одноименно заряженных слоев больше сил межмолекулярного притяжения и коллоидные частицы не слипаются (не агрегируют). При малой толщине диффузных слоев (рис.39б) частицы сближаются до расстояния, на котором межмолекулярное притяжение сильнее отталкивания этих слоев, и тогда происходит их агрегация, т.е. коагуляция.

Согласно теории ДЛФО, введение в дисперсную систему электролита вызывает сжатие ионной оболочки частиц за счет избирательной или ионнообменной адсорбции на их поверхности ионов данного электролита. При этом понижается заряд частицы, ее x-потенциал и, следовательно, толщина диффузного слоя. Уменьшение толщины диффузного слоя приводит к преобладанию сил межмолекулярного притяжения над силами электростатического отталкивания, вследствие чего скорость коагуляции возрастает.

В этом механизме коагуляции золей электролитами учтено взаимодействие сил молекулярного притяжения и электростатического отталкивания, но не учтены силы взаимодействия адсорбционно-сольватных оболочек частиц и другие факторы, что является недостатком теории ДЛФО.

Коагуляция золя смесями электролитов.Коагуляцию золей можно вызвать и смесями электролитов, которые способны оказывать на них различные действия (рис. 40).

1. Коагулирующее действие смеси электролитов суммируется, т.е. смесь электролитов оказывает тоже действие, как один из них, взятый тем же количеством – аддитивное действие.

2. Коагулирующее действие смеси электролитов меньше, чем каждого из них в отдельности, т.е. для коагуляции золя количества смеси потребуется больше чем количества каждого из них в отдельности – антагонизм. Это характерно для смесей ионов, имеющих различную валентность.

3. Коагулирующее действие смеси электролитов большее, чем каждого из них в отдельности, т.е. количества смеси потребуется меньше чем количества одного из электролитов в отдельности – синергизм.

Выше описанные явления очень важны для понимания закономерностей воздействия ионов на органы и ткани живого организма, поскольку биологически активные ионы часто выступают в роли «антагонистов» или «синергистов». Это обстоятельство должно учитываться при составлении кровезамещающих растворов: они должны быть не только изотоническими плазме крови и иметь одинаковую с ней ионную силу, но и быть максимально близкими по ионному составу. Однако описанные явления ни в коем случае нельзя смешивать с явлениями физиологического антагонизма ионов, под которым обычно понимают ослабление одним катионом токсического или иного физиологического действия, вызываемого другим катионом.

Взаимная коагуляция золей. Помимо электролитов, коагуляцию золей можно вызвать путем смешивания одного их них в определенных количественных соотношениях с другим золем, гранулы которого имеют противоположный знак заряда. Это явление носит название взаимной коагуляции. Причем даже при незначительной концентрации противоположно заряженных частиц скорость коагуляции существенно возрастает.

Механизм взаимной коагуляции заключается в следующем. При перекрывании диффузных слоев коллоидных частиц, имеющих заряды разных знаков, эти частицы не отталкиваются, а электростатически притягиваются, и как следствие этого идет быстрая агрегация частиц. Наиболее полно взаимная коагуляция происходит тогда, когда заряды частиц, противоположные по знаку, равны между собой по величине.

Данный процесс широко применяется при очистке природных и промышленных вод. Так, перед поступлением воды на песчаные фильтры к ней добавляют соли алюминия или железа. Образующиеся в результате гидролиза этих солей положительно заряженные золи гидроксида алюминия или железа вызывают быструю коагуляцию взвешенных отрицательно заряженных частиц почвы, микрофлоры и т.д.

источник