Меню Рубрики

Решение задач методом электрофореза

Виртуальный практикум «Электрофорез белков» принадлежит к числу сложных заданий, требующих от школьника как применения полученных в курсе биохимии знаний, так и умение самостоятельно находить решения не ставившихся ранее задач (в режиме самостоятельной работы). Поэтому в том случае, если для каждого ученика в классе будет разработана индивидуальная траектория обучения, к работе с этим практикумом следует привлекать учащихся, наиболее успешно изучающих курс биохимии и проявляющих наибольший интерес к нему. Более слабых учеников можно знакомить с данным практикумом в режиме демонстрации.

Занятие с использованием виртуального практикума может быть организовано как в конце изучения всего курса биохимии, так и в середине курса – сразу после прохождения материалов урока 7 «Методы разделения биологических молекул». В первом случае необходимо дать указание учащимся, которые будут выполнять работу с данным виртуальным практикумом, перечитать материалы урока 7, описывающие теоретические основы метода электрофореза, различные варианты постановки этого метода, их возможности и способы практического применения (стр. 3–6 в данном пособии).

В демонстрационную часть практикума включен показ трёх разновидностей метода электрофореза: электрофорез с додецилсульфатом натрия, позволяющий определить молекулярную массу белка пепсина; неденатурирующий электрофорез с определением ферментативной активности лактатдегидрогеназы, позволяющий увидеть изменения спектра изоформ этого фермента при заболевании инфарктом и гепатитом; двумерный электрофорез, позволяющий увидеть полный спектр белков вируса. В режиме демонстрации виртуальный практикум показывает учащимся, как выглядит в действительности лабораторная техника обработки образцов, проведения самого электрофореза в различных его вариантах, а также последующая окраска гелей и визуализация результатов опыта.

В самостоятельную часть виртуального практикума включены три задачи. В первой из них требуется определить молекулярную массу трипсина. Для решения этой задачи школьник должен выбрать метод электрофореза с додецилсульфатом натрия. Молекулярная масса трипсина составляет 23,8 килодальтон, при правильном выполнении задания полоса данного белка должна находиться выше полосы 5-го сверху стандарта (миоглобин – 17,2 кД) и ниже 4-го сверху (карбоангидраза – 29 кД). Во второй задаче требуется определить, какое заболевание можно предполагать у пациента по спектру изоферментов лактатдегидрогеназы в его сыворотке. Для решения этой задачи школьник должен выбрать метод неденатурирующего электрофореза с определением ферментативной активности. Правильным диагнозом является инфаркт миокарда – при правильном выполнении задания появляются пять полос, соответствующих изоформам лактатдегидрогеназы (номера изоформ соответствуют расположению полос сверху вниз), при этом заметно явное преобладание первой изоформы при большой интенсивности и первой, и второй изоформ. В третьей задаче требуется определить полный спектр белков, содержащихся в вирусной частице. Для решения этой задачи школьник должен выбрать метод двумерного электрофореза. При правильном выполнении задания появляются пятьдесят восемь пятен (проверять их количество не надо), каждое из которых соответствует одной полипептидной цепочке из состава вириона.

В самом начале урока целесообразно среди учащихся, которые будут работать с этим практикумом, провести опрос, проверяющий степень знакомства с материалом. Возможны следующие варианты вопросов.

  • Почему при использовании метода электрофореза с додецилсульфатом натрия белки разделяются строго по размеру молекул?
    Отвечая на этот вопрос, школьники должны знать, что при обычном электрофорезе в неденатурирующих условиях движение молекул белка в геле определяется двумя факторами: отношением заряда к массе белковой глобулы (заряд обеспечивает движение молекулы при воздействии электрического поля, а масса создает инерционность) и размером этой глобулы (от него зависит число столкновений с пространственной решеткой геля, замедляющих движение). Молекулы додецилсульфата натрия, имеющие отрицательный заряд, связываются с белковой глобулой в количестве, пропорциональном её размеру, и в результате отношение заряда к массе становится одинаковым для всех белковых молекул. Теперь единственным фактором, определяющим скорость движения в геле, остаётся размер белковой глобулы.
  • Почему метод электрофореза с додецилсульфатом натрия, несмотря на высокую разрешающую способность, не применяется в тех случаях, когда требуется сохранение ферментативной активности?
    Отвечая на этот вопрос, школьники должны знать, что при обработке раствором додецилсульфата натрия происходит денатурация белка, сопровождающаяся утратой его биологической активности, в данном случае – ферментативной.
  • Почему метод двумерного электрофореза обладает такой большой разрешающей способностью?
    Отвечая на этот вопрос, школьники должны знать, что в ходе двумерного электрофореза белки последовательно разделяются по двум различным свойствам. При разделении в первом направлении методом изоэлектрофокусировки главным параметром является изоэлектрическая точка белка, а при разделении во втором направлении методом электрофореза в додецилсульфата натрия – размер белковой молекулы. В результате двумерный электрофорез сочетает в себе все достоинства этих двух методик и обладает наибольшей разрешающей способностью.

В процессе выполнения заданий самостоятельной части практикума у учащихся могут на нескольких этапах встретиться трудности. Учителю следует всячески поощрять стремление школьников самостоятельно выполнить всё задание, нецелесообразно давать ученикам готовые инструкции по решению возникших проблем. Однако, учитель может, не раскрывая сразу же весь алгоритм решения, помочь учащемуся с помощью наводящих вопросов.

Так, если ученику досталось задание виртуального практикума на определение молекулярной массы белка трипсина, и он испытывает затруднения с выбором варианта метода электрофореза, который следует использовать для решения этого задания, то можно задать наводящий вопрос: «Какой из вариантов метода электрофореза делит белки строго по молекулярной массе?». В случае если школьник ответит, что таким методом является электрофорез в неденатурирующих условиях, то ему необходимо напомнить разбор вопросов, проведённый в начале занятия. В случае если школьник ответит, что таким методом является двумерный электрофорез, учитель должен указать, что двумерный электрофорез, действительно, обеспечивает разделение белков по молекулярной массе, однако, кроме того, он разделяет их и по изоэлектрической точке, чего в данной задаче совершенно не требуется. В итоге получится, что названный учеником метод позволит решить задачу чрезмерно сложным, дорогим и трудоёмким путём, что в реальной лабораторной практике неприемлемо. Если ученик правильно выбрал метод и правильно провёл виртуальный эксперимент, но испытывает трудности с трактовкой полученных результатов, то можно задать наводящий вопрос: «Какие белки при электрофорезе с додецилсульфатом натрия будут двигаться быстрее, а какие медленнее?», что поможет учащемуся правильно идентифицировать стандарты и определить молекулярную массу трипсина.

Если ученику досталось задание виртуального практикума на диагностику заболевания по изменению спектра изоформ фермента лактатдегидрогеназы, и он испытывает затруднения с выбором варианта метода электрофореза, который следует использовать для решения этого задания, то можно задать наводящий вопрос: «Какой из вариантов метода электрофореза позволяет сохранить биологическую активность ферментов?». В случае если школьник ответит, что таким методом является электрофорез с додецилсульфатом натрия, то ему необходимо напомнить разбор вопросов, проведённый в начале занятия. В случае если школьник ответит, что таким методом является двумерный электрофорез, ему необходимо напомнить, что при двумерном электрофорезе белки разделяются во втором направлении с использованием додецилсульфата натрия, и, следовательно, теряют свою активность. Если ученик правильно выбрал метод и правильно провёл виртуальный эксперимент, но испытывает трудности с трактовкой полученных результатов, то можно задать последовательно два наводящих вопроса: «В каком порядке изоформы лактатдегидрогеназы движутся при электрофорезе в неденатурирующих условиях?» и «При каком заболевании повышено содержание изоформ 1 и 2, причём изоформы 1 содержится больше, чем 2?», что поможет учащемуся правильно определить заболевание.

Если ученику досталось задание виртуального практикума на определение полного спектра белков, содержащихся в вирусной частице, и он испытывает затруднения с выбором варианта метода электрофореза, который следует использовать для решения этого задания, то можно задать наводящий вопрос: «Какой из вариантов метода электрофореза обладает наибольшей разрешающей способностью?». В случае если школьник ответит, что таким методом является электрофорез с додецилсульфатом натрия или электрофорез в неденатурирующих условиях, то ему необходимо напомнить разбор вопросов, проведённый в начале занятия.

В конце занятия учителю целесообразно провести анализ выполнения задания каждым учащимся. Такой анализ сильно облегчается тем, что при неправильном выборе метода, неправильном выполнении экспериментальных процедур, а также при неверной трактовке результатов на экране появляется надпись, поясняющая на каком этапе (или на каких этапах) была допущена ошибка. Эти надписи достаточно подробно комментируют ошибки при выполнении экспериментальных процедур (например, добавление раствора уксусной кислоты вместо раствора красителя), так что вмешательство учителя не требуется.

В комментирующих ошибки школьника надписях нет указаний, называющих правильный метод выполнения конкретной задачи, они лишь указывают, что ученик выбрал неверный метод. Учитель может или просто назвать правильный вариант методики, или использовать дополнительные вопросы, приведённые выше. Точно так же обстоит дело с комментариями, касающимися неверной трактовки результатов.

источник

Гидролитическое расщепление L-аспарагина до L-аспарагиновой кислоты, при участии фермента аспарагиназы, используется в медицине при лечении лейкозов. Лейкозные клетки не могут синтезировать аспарагин и получают его из плазмы крови. Если аспарагин, содержащейся в плазме крови, разрушить реакцией гидролиза, происходит нарушение метаболизма в лейкозных клетках. Напишите реакцию гидролитического превращения L-аспарагина в L-аспарагиновую кислоту проекционными формулами Фишера.

Смесь глицина, аланина, лизина, аргинина, серина и глутаминовой кислоты разделяли методом электрофореза при рН = 6.

Определите направление движения аминокислот при электрофорезе, если изоэлектрические точки этих аминокислот соответственно равны значениям pH: 6,0; 6,0; 9,8; 10,8; 5,7 и 3,2.

В изоэлектрической точке (pI рН) суммарный заряд б-аминокислоты равен нулю. В данных условиях такое соотношение выполняется для аланина, глицина и серина и эти аминокислоты в электрическом поле перемещаться не будут.

При рН > pI преобладает анионная форма и аминокислота (в данном случае глутаминовая кислота) будет перемещаться к аноду.

У лизина И.Э.Т. будет находиться в более щелочной среде, чем у глицина, так как для предотвращения образования второй NH3 + группы требуется дополнительное количество ионов OH.

Написать уравнения реакций аланина:

  • а) с водным раствором щелочи;
  • б) с водным раствором соляной кислоты;
  • в) с бензоилхлоридом в щелочной среде.

Написать уравнения реакций лейцина:

  • а) с уксусным ангидридом;
  • б) с нитритом натрия в среде соляной кислоты;
  • в) с этиловым спиртом в среде серной кислоты;
  • г) с карбобензоксихлоридом.

В сильнощелочном растворе аминокислота существует в виде аниона и содержит две основные группы: NH2 и СОО. Учитывая тот факт, что константы основности для NH2-группы и карбоксилат-аниона R СОО соответственно равны 6,3•10 5 и 2,5•10 12 , определите, какая из этих групп будет более основной и к какой группе будет предпочтительно присоединяться протон при прибавлении к раствору кислоты. Какое соединение при этом образуется?

Из приведенных констант основности следует, что аминогруппа является более сильным основанием, чем карбоксильный ион (6,3•10 5 > 2,5•10 12 ), поэтому при добавлении кислоты протон будет присоединяться к аминогруппе, образуя биполярный ион:

В сильнокислом растворе аминокислота существует в виде катиона и содержит две кислотые группы: NH3 + и СООН. Учитывая, что константы кислотности для NH3 + и СООН групп соответственно равны 1,6•10 10 и 4•10 3 , определите, какая из этих групп будет более кислой и какая из них будет легче отдавать протон при прибавлении к исходному раствору щелочи. Какое соединение при этом образуется?

Из приведенных констант кислотности следует, что карбоксильная группа является более сильной кислотой, чем NH3 + ион, так как Kа( NH3 + ) = 1,6•10 10 3 , поэтому при добавлении щелочи карбоксильная группа будет отдавать протон, образуя биполярный ион:

При взаимодействии первичной аминогруппы с азотистой кислотой выделяется азот, по объёму которого по методу Ван-Слайка определяют число аминогрупп в кислоте.

При обработке равных количеств (по 0,001 моль) трех различных аминокислот получили (при н.у.):

  • а) в первом случае 22,4 мл азота;
  • б) во втором случае 44,8 мл азота;
  • в) в третьем случае азот не выделялся вообще.

Какие возможные аминокислоты были взяты для этих экспериментов?

Рассчитаем количество азота, выделившихся в первом и втором опытах:

Таким образом, из 0,001 моль аминокислоты выделилось 0,001 моль азота. Следовательно, это может быть любая моноамино-карбоновая кислота (одно- или двухосновная).

В этом опыте количество выделившегося азота вдвое больше количества исходной кислоты. Следовательно, аминокислота содержит две аминогруппы (это может быть, в частности, лизин или орнитин).

в) В этом опыте азот не выделился вообще, следовательно, аминокислота не содержала свободной первичной аминогруппы. Например, это может быть иминокислота пролин.

Напишите все возможные стереоизомеры треонина в проекциях Фишера. Укажите конфигурацию каждого асимметрического центра. Какие структуры являются энантиомерами, а какие диастереомерами? Есть ли среди приведенных структур мезоформа?

Молекула треонина содержит два асимметрических центра:

следовательно, число оптических изомеров равно 2 n = 2 2 = 4.

I и II, III и IV энантиомеры;

I и III, I и IV, II и III, II и IV диастереомеры.

Среди приведенных структур мезоформы нет, так как каждый стереоизомер имеет свой энантиомер.

Читайте также:  Карипаин электрофорез на спину

Укажите, какие исходные вещества надо взять для синтеза фенилаланина методом прямого аммонолиза и методом циангидринного синтеза. Напишите уравнения всех реакций.

Для синтезов необходимо иметь фенилэтаналь, 2-хлор-3-фенил-пропановую кислоту, аммиак и синильную кислоту.

Фрагментом гормона окситоцина является трипептид цис-тир-иле. Напишите строение этого пептида, выделите пептидные связи и дайте полное название данного пептида.

Проведите синтез дипептида с аминокислотной последовательностью цистир, с предварительной защитой аминогруппы и активацией карбоксильной группы. Укажите все стадии процесса и назовите этот дипептид.

Аминогруппа тирозина будет участвовать в образовании пептидной связи, а аминогруппа цистеина должна быть свободной, поэтому надо проводить «защиту» аминогруппы цистеина карбобензоксихлоридом:

Для того чтобы провести реакцию с тирозином, надо «активировать» карбоксильную группу цистеина:

Тирозин следует «защитить» со стороны карбоксильной группы. Для этого проводят реакцию этерификации:

Полученный сложный эфир тирозина вступает в реакцию нуклеофильного замещения с карбобензоксихлоридом цистеина, защищенного по аминогруппе.

Последняя стадия процесса снятие «защиты» аминогруппы гидрогенолизом и гидролиз сложноэфирной группы в щелочной среде:

Напишите формулу трипептида гис-лиз-три. Дайте полное название этого трипептида, укажите пептидные связи, N- и С-концевые аминокислоты. Определите, в какой области рН находится изоэлектрическая точка данного пептида.

Изоэлектрическая точка этого пептида находится в щелочной среде, так как в данном пептиде число основных групп преобладает над числом карбоксильных групп.

Напишите тетрапептид со следующей последовательностью аминокислот: лизин-аланин-валин-глутаминовая кислота. Отметьте незаменимые аминокислоты, нейтральные и кислые. Выделите пептидную связь и объясните, почему она имеет плоское строение и вокруг каких связей возможно свободное вращение.

Незаменимые кислоты лизин и валин. Кислая кислота глутаминовая, нейтральные валин и аланин.

Плоское строение пептидной связи обусловлено sp 2 -гибридизацией атома углерода карбонильной группы. Сопряжение неподеленной пары электронов атома азота с двойной связью С = О (р-р сопряжение) приводит к частичной двоесвязанности связи С N, что и объясняет плоское строение всей группы СО NH.

Свободное вращение возможно вокруг одинарной связи азота с б-углеродным атомом и вокруг связи б-углеродного атома с атомом углерода карбонильной группы.

В пептидном гидролизате обнаружено четыре аминокислоты в молярном соотношении: гли:ала:фен:сер = 2:1:1:3. Молярная масса этого пептида равна 1438 г/моль. Определите аминокислотный состав данного пептида.

Рассчитаем суммарную массу двух моль глицина, одного моль аланина, одного моль фенилаланина и 3 моль серина:

m=2M(глицина) + 1M(аланина) + 1M(фенилаланина) + 2M(серина)

m = 275 + 89 + 165 + 1053 = 719 г.

Измеренная молярная масса пептида составляет 1438 г/моль, следовательно, число всех аминокислот в пептиде должно быть в два раза больше и тогда состав пептида будет следующим: 4 молекулы глицина, 2 молекулы аланина, 2 молекулы фенилаланина и 6 молекул серина.

В данном случае можно лишь установить количественный состав пептида, но нет возможности установить, в каком порядке эти аминокислоты связаны в пептид.

Как известно, атом галогена прочно привязан к бензольному кольцу, и поэтому ароматические галогениды не склонны реагировать с нуклеофилами. Объясните, почему 2,4-динитро-фторбензол легко реагирует со свободной аминогруппой N-концевой аминокислоты пептида и не реагирует с атомом азота пептидной группы NН С = О, хотя атом азота этой амидной группы тоже содержит неподеленную пару электронов.

Наличие сильно электроноакцепторных нитрогрупп в орто- и параположениях бензольного кольца и атома фтора, имеющего наибольшую электроотрицательность из всех известных элементов, резко уменьшают электронную плотность у атома углерода бензольного кольца, связанного со фтором, делая тем самым молекулу более восприимчивой к атаке нуклеофилом. В качестве нуклеофила выступает атом азота аминогруппы, содержащий неподеленную пару электронов.

Атом азота амидной группы в этой реакции в роли нуклеофила не может конкурировать со свободной аминогруппой, так как в результате сопряжения неподеленной пары электронов атома азота с двойной связью карбонильной группы, амиды становятся значительно более слабыми нуклеофилами, чем амины.

сопряжение пары электронов азота с двойной связью С = О

Напишите формулу тетрапептид фен-цис-три-глу. С помощью каких цветных реакций можно доказать наличие в этом пептиде бензольного кольца, пептидной связи, серусодержащей аминокислоты и триптофана?

Ароматическое кольцо в пептиде можно обнаружить реакцией с концентрированной азотной кислотой (ксантопротеиновая реакция).

Для качественного и количественного определения триптофана можно использовать реакцию Эрлиха в среде серной кислоты появляется красно-фиолетовое окрашивание.

Наличие пептидной связи доказывается с помощью биуретовой реакции.

Для обнаружения цистеина используют реакцию с ацетатом свинца в щелочной среде.

Укажите направления движения (движутся к катоду или к аноду, не перемещаются в электрическом поле) в процессе электрофореза при рН = 1,9; 3; 6,5 и 13 следующих пептидов:

Изоэлектрическая точка этого пептида находится в щелочной среде, так как число аминогрупп превышает число карбоксильных групп.

В сильнокислой среде при рН = 1,9 и при рН = 3 за счет протони-рования аминогрупп образуются катионы R NH3 + и пептид будет перемещаться к катоду. При рН = 6,5 (среда почти нейтральная) пептид будет перемещаться к катоду, так как его изоэлектрическая точка находится в щелочной среде. В сильнощелочной среде при рН = 13 образуется карбоксилат-ион и пептид будет перемещаться к аноду.

Изоэлектрическая точка этого пептида находится в среде близкой к нейтральной, так как число аминогрупп этого пептида равно числу карбоксильных групп. Поэтому в сильнокислой среде (при рН = 1,9 и рН = 3) диссоциация карбоксильных групп подавлена, а аминогруппы будут протонированы и пептид будет перемещаться к катоду. При рН = 6,5 (среда близкая к нейтральной) пептид в электрическом поле перемещаться не будет, так как он практически находится в изоэлектрическом состоянии. В сильнощелочной среде (при рН = 13) будут преобладать анионы (карбоксилат-ионы), и пептид начнет перемещаться к аноду.

источник

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Читайте также:  Как делается электрофорез руки

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

источник

Название Биологическая химия
Анкор BKh_metodichka_1chast.doc
Дата 02.10.2017
Размер 5.58 Mb.
Формат файла
Имя файла BKh_metodichka_1chast.doc
Тип Руководство
#9154
страница 5 из 35
Подборка по базе: Неорганическая химия. Шпаргалки_А.А. Дроздов, М.В. Дроздова_2008, реферат фарм химия.docx, Фармацевтическая химия и фармакогнозия.pdf, шпора овр химия.docx, Мұнай химиясы.doc, 1 лаба химия.doc, 02_00_08 — Химия элементорганических соединений.doc, Аналитическая химия фтора.doc, Общая и неорганическая химия — 1 курс.docx, АНАЛИТИЧЕСКАЯ ХИМИЯ РАСЧЕТЫ В КОЛИЧЕСТВЕННОМ АНАЛИЗЕ.pdf.

1.2. – г (включение пролина вызывает изгиб полипептидной цепи, делая невозможным вращение вокруг связи между a-углеродным атомом и азотом иминогруппы);

1.3. – в (гидрофобные радикалы прячутся внутри частицы белка);

Вид 2 . 2.1. – 1-а, 2-б, 3-в, 4-г; 5-е, 6-ж, 7-д; 2.2. — 1-г, 2-в, 3-б, 4-а.

Вид 3. 3.1. — 4; 3.2. –4; 3.3. – 4; 3.4. – 2,4.

Вид 4. 4.1. –Д (-, +, -), 4.2 –Е (-, -, -), 4.3 – С (+, -, -).
Эталоны ответов на ситуационные задачи

Задача 1. Аминокислотный состав пептида отличается высоким содержанием диаминомонокарбоновых кислот – лизина и аргинина, в то же время, в структуре пептида отсутствуют ароматические и гетероциклические аминокислоты — фенилаланин, тирозин, гистидин и триптофан, дающие положительную ксантопротеиновую реакцию. В частности, тирозин с концентрированной азотной кислотой реагирует по следующей схеме:

желтая окраска

оранжевая окраска
Задача 2. В сильнокислой и щелочной среде осаждению белков препятствует заряд (отрицательный в кислой и положительный в щелочной). Поэтому, если рН исследуемой мочи не соответствует слабокислой реакции, можно получить ложно отрицательный результат.
Задача 3. В живой клетке процесс укладки синтезируемой полипептидной цепи — фолдинг регулируется особыми белками шаперонами. Эти белки контролируют формирование стабильной и биологически активной конформации, предотвращая образование из полипептидной цепи неспецифических клубков и агрегатов, а также участвуют в доставке белков к субклеточным мишеням.

Занятие № 3. Методы выделения и очистки белков.

Цель занятия. Освоить некоторые методы выделения и очистки белков, используемые в препаративной биохимии и лабораторной медицине. В результате освоения темы студент должен ознакомиться с методом электрофоретического разделения белков и научиться анализировать протеинограмму.

Студент должен
знать: уметь:
-физико-химические свойства белков;

-методы фракционирования белков;

-методы очистки белков от низкомолеклярных примесей.

-анализировать протеинограмму;

-производить очистку белка от низкомолекулярных примесей методом гель-фильтрации и диализа.

Содержание занятия: студентам предстоит ответить на вопросы тест-контроля и вопросы преподавателя; ознакомиться с методами электрофореза белка на бумаге, очистки раствора белка от низкомолекулярных примесей методом диализа и гельфильтрации на молселекте, проанализировать полученные данные и сделать выводы.
УИРС — решение ситуационных задач, обсуждение рефератов.

Методические указания к самоподготовке

Методы препаративной химии белков основаны на их физико-химических свойствах, поэтому при подготовке к занятию следует повторить физико-химические свойства белков. Особое внимание следует уделить коллоидным свойствам белков, таким понятиям как амфотерность аминокислот и белков, зависимость электрических свойств белков от аминокислотного состава и свойствам белков в изоэлектрическом состоянии. Для лучшего усвоения материала занятия, используя учебник, лекции и дополнительную литературу, выполните следующие задания.

№№ Задание Указания к выполнению задания
1 2 3
1. Изучите методы выделения индивидуальных белков. 1. Перечислите методы фракционирования белков, позволяющие получить индивидуальный белок.

2. Кратко сформулируйте, на каких физико-химических свойствах основаны перечисленные методы.

2. Изучите, почему белки обладают свойствами коллоидов. 1.Выпишите способы определения молекулярной массы белков.

2.Перечислите данные, подтверждающие высокую молекулярную массу белков.

3.Чем можете подтвердить способность белков образовывать коллоидные растворы?

5.Охарактеризуйте принцип метода диализа. Какое практическое значение имеет диализ?

3. Вспомните электрические свойства белков. 1. Вспомните механизм возникновения электрического заряда. Что такое изоэлектрическая точка?

2.Охарактеризуйте явление электрофореза белков. Запомните виды электрофореза.

3.Укажите факторы, от которых зависит скорость перемещения белковых молекул в поле постоянного электрического тока.

4. Напишите, на какие фракции разделяют белки сыворотки крови при электрофорезе на бумаге. Выпишите протеинограмму – соотношение белковых фракций — здорового ребенка и взрослого человека.

5. Изучите возможности электрофоретического разделения белков на полиакриламидном геле, принцип диск-электрофореза и его значение для разделения белков сыворотки крови.

4. Повторите растворимость белков. 1. Выясните, чем определяется растворимость белков, и какие факторы стабилизируют белковую молекулу в растворе.
5. Изучите метод хроматографии белков. 1.Выпишите классификацию методов хроматографического разделения белков по механизму разделения и технике проведения. Сформулируйте принцип метода адсорбционной, ионнообменной, афинной, и распределительной хроматографии. Кратко опишите процедуру гель-фильтрации и газожидкостной хроматографии.

Подготовьте к предстоящему занятию протокол, в котором отразите принцип метода и ход работы. Не забудьте оставить достаточно места для выводов после выполнения каждой работы.
Графологическая структура «Выделение и очистка белков»

Примеры тестов контроля исходного уровня знаний

Вид 1. Выберите наиболее правильный ответ.

1.1. Молекулярная масса большинства белков находится в пределах … .

а) от 6000 до 10000000 и выше

г) свыше100000
1.2. Глутаминовая кислота при рН 10 находится в виде иона … .

в)

б) г)
1.3. Смесь аминокислот, содержащая аспартат (pI 3,0) и лизин (рI 9,7), разделяется методом ионообменной хроматографии. В каком порядке будут выходить аминокислоты из колонки, заполненной триметиламинополистерольной смолой, имеющей положительно заряженные группы (анионообменник) при рН 7?

б) лиз, асп
1.4. Детергенты (тритон Х-100, додецилсульфат натрия) при экстракции белков к среде извлечения добавляют для … .

а) повышения устойчивости белков к денатурации

б) перевода белков в изоэлектрическое состояние

в) разрушения белково-липидных комплексов
1.5.Оптическое явление, доказывающее коллоидные свойства белков,- это … .

а) явление светорассеивания – конус Тиндаля

б) вращение плоскости поляризованного света

в) интенсивное светопоглощение при длине волны 280 нм
Вид 2. Установите соответствие.

2.1. Классифицируйте приведенные ионообменные смолы в зависимости от заряда функциональных групп.

1. триметиламинополистирол а. катионообменник

2. диэтиламиноэтилцеллюлоза б. анионообменник

4. сульфонированные полистиролы
2.2. В каком направлении будут двигаться в электрическом поле следующие белки при рН 6,3?

1. овальбумин (ИЭТ 4,6) а) останется на старте

2. β-лактоглобулин (ИЭТ 6,3) б) движется к катоду

3. химотрипсин (ИЭТ 9,5) в) движется к аноду
Вид 3. Правильное сочетание ответов.

3.1. Смесь аминокислот, содержащая:

подвергли электрофорезу на бумаге при pH=6.

Какие аминокислоты будут двигаться при этом условии к «аноду»?
3.2. Метод разделения белков, основанный на различии размера белковых молекул —

  1. кристаллизация
  2. диализ
  3. ионообменная хроматография
  4. гель-фильтрация
  5. изоэлектрическое фокусирование

3.3. Электрофоретическая процедура, не зависящая от заряда белка —

3. изоэлектрическое фокусирование

4. электрофорез в полиакриламидном геле с добавлением детергента (натрия додецилсультата)

5. электрофорез на бумаге
Вид 4. Определите правильность утверждений и связь между ними.

4.1. Очистить раствор белка от низкомолекулярных примесей можно методом гель-фильтрации на сефадексе, потому что с помощью этого метода можно разделить вещества с разной молекулярной массой.

4.2. По степени дисперсности растворы белков являются истинными растворами, а по свойствам – коллоидными, так как белки являются высокомолекулярными соединениями.
Примеры ситуационных задач

Задача 1. При электрофорезе на бумаге белков сыворотки крови больного Р.С. получили следующие результаты: альбумины-48,5%, α1-глобулины-12,6%, α2-глобулины-7,3%, β-глобулины-14,8%, γ-глобулины-16,8%. Выделите изменения, обнаруженные в белковом спектре крови больного и рассчитайте величину белкового коэффициента, если общее содержание белка в крови у данного больного составляло 62 г/л.
Задача 2. Необходимо разделить смесь белков, содержащую церрулоплазмин (Mr 151000, ИЭТ 4,4), β-лактоглобуллин (молекулярная масса 150000, ИЭТ 6,3) и γ-глобулин (молекулярная масса 37100, ИЭТ 5,2). Предложите методы разделения смеси этих белков. В какой последовательности будут выделяться эти белки из смеси?
Самостоятельная работа студентов

Работа № 1. Разделение и количественное определение белковых

фракций сыворотки крови методом электрофореза на бумаге.

Принцип метода. Электрофорез – это движение заряженных частиц в поле постоянного электрического тока. Скорость перемещения молекул белков в электрическом поле зависит от величин заряда, молекулярной массы, pH, ионной силы раствора.

Белки сыворотки крови помещают на полоску бумаги, смоченную буферным раствором, через которую пропускают постоянный электрический ток. При pH 8,6 белки сыворотки крови заряжаются отрицательно и под воздействием электрического поля перемещаются к аноду.

Сыворотка крови человека содержит различные белки. С помощью электрофореза на бумаге выделяются 5 фракций — альбумины, α1-, α2-, β-, γ-глобулины.

Клинико-диагностическое значение. Многие патологические состояния сопровождаются количественными изменениями соотношения белковых фракций крови – диспротеинемиями. Уменьшение содержания фракции альбуминов характерно для заболеваний печени за счет снижения белок-синтезирующей функции гепатоцитов. Гипоальбуминемия также сопровождает заболевания почек вследствие потери белка с мочой. Увеличение содержания фракций α1— и α2-глобулинов наблюдается при стрессе, наличии воспалительных процессов за счет белков «острой фазы», при коллагенозах и метастазировании злокачественных новообразований. Фракция β-глобулинов растет при гиперлипопротеинемиях. Фракция γ-глобулинов повышается при иммунных реакциях, вызванных вирусными и бактериальными инфекциями. Снижение γ-глобулиновой фракции может иметь место при первичном и вторичном иммунодефиците.

Порядок выполнения работы

1. Устройство прибора для электрофореза. Прибор состоит из выпрямителя, подающего постоянный ток необходимого напряжения, и камеры для электрофореза. Сама камера состоит из 2-х ванн; в одной из них имеется неподвижная перегородка, куда помещается платиновый электрод (+ анод), а в другой находится электрод из нержавеющей стали (- катод). Между ваннами, заполненными соответствующим буфером, имеется соединительный мост, на который помещают полоски специальной фильтровальной бумаги.

2. Проведение электрофореза. Заполнить обе ванны камеры раствором вероналового буфера с pH 8,6. Буферного раствора в ваннах должно быть столько, чтобы он покрывал неподвижную перегородку, но был ниже подвижных перегородок.

Вставить в ванны электроды. Вырезать из фильтровальной бумаги полосы необходимого размера в зависимости от величины камеры (обычно шириной 4-6 см) и простым карандашом отметить место, на которое впоследствии будет наноситься сыворотка (старт). Смочить эти полоски в вероналовом буфере. Вставить в ванны-камеры соединительный мост. Поместить полоски бумаги на сухие пластинки щипцами, погрузив концы полосок в ванны с буфером, и на заранее отмеченные участки бумаги нанести сыворотку по 0,025-0,005 мл на расстоянии 5-6 см от края моста. Нанесение сыворотки производится со стороны катода.

Рисунок 1. Схема камеры для электрофореза белков на бумаге:

1-стабилизатор; 2-камера для электрофореза; 3-буферный раствор; 4-поддерживающий соединительный мост-электрод; 5-фильтровальная бумага для электрофореза.

После нанесения на бумажные полоски сыворотки камера герметично закрывается крышкой. На крышке камеры расположен прижим блокировки, служащий для включения камеры. Присоединенный выпрямитель подает к камере постоянный ток от 2 до 4 мА при постоянном напряжении 110-160В. Электрофорез проводят при градиенте потенциала от 3 до 8 В на 1 см полосы при комнатной температуре. Хорошее разделение происходит за 18-20 часов.

3. Выключение прибора и выявление белковых фракций. Выключают прибор. Снимают камеры и извлекают бумажные полоски из прибора. Затем каждую полоску помещают в сушильный шкаф на 20 минут при температуре 105 0 С. При этом происходит фиксация белковых фракций на бумаге. Окраску белков проводят раствором бромфенолового-синего в течение 30 минут, затем промывают электрофореграммы 2% раствором уксусной кислоты. Полученные электрофореграммы сушат на воздухе. Белковые фракции окрашиваются в сине-зеленый цвет.

4. Количественное определение белковых фракций. Окрашенные белковые пятна вырезают, краситель элюируют 0,01 н раствором щелочи. Интенсивность окраски каждой фракции определяют колориметрически на ФЭКе.

Количественное определение белковых фракций на электрофореграмме можно установить двумя способами: путем элюирования краски и фотоколориметрирования и денситометрическим методом.

Содержание белковых фракций сыворотки крови, полученное с помощью электрофореза на бумаге, в среднем составляет у взрослого человека:

Денситометрический метод. В специальном аппарате (денситометре) через электрофореграмму пропускают пучок света, поглощение которого зависит от оптической плотности окрашенных белковых пятен. Свет, прошедший через электрофореграмму, улавливается фотоэлементом и превращается в электрический ток, колебания которого фиксируют на бумажном листе в виде кривой, каждый пик кривой соответствует определенной белковой фракции.

Рисунок 2. Электрофореграмма сыворотки человека.
Работа № 2. Очистка белков от низкомолекулярных примесей методом диализа.

Принцип метода основан на неспособности молекул белка (коллоидных частиц) проникать через полупроницаемую мембрану (пергамент, целлофан, колодий и др.), в то время как низкомолекулярные примеси легко проходят через поры этих мембран. Метод диализа широко используется для разделения и очистки белков и других биополимеров от примесей солей и низкомолекулярных органических соединений. Основанный на этом же принципе метод гемодиализа (вивидиффузия), применяется для лечения больных с почечной недостаточностью (аппарат «искусственная почка»).

Ход работы. В подготовленный колодиевый или целлофановый мешочек поместить 1 мл сыворотки крови (раствора яичного белка) и 3-4 мл 6% раствора хлористого натрия, аккуратно поместить их в стакан с дистиллированной водой. Через 30-60 минут с небольшими порциями диализируемого раствора белка (содержимое мешочка) и диализата (наружная жидкость) провести пробы на хлориды и белок, чтоб удостовериться в том, что соль диффундировала, а белок остался в мешочке.

Для обнаружения белка провести биуретовую реакцию.

источник

Для подведения постоянного тока к пациенту используют электроды из металлических пластин (свинца, станиоля) или токопроводящей графитизированной ткани и гидрофильных матерчатых прокладок.

Последние имеют толщину 1-1,5 см и выступают за края металлической пластаны или токопроводящей ткани на 1,5-2 см.

Существуют другие виды электродов: стеклянные ванночки для глаз, полостные — в гинекологии, урологии. Гидрофильные прокладки предназначены для исключения возможности контакта продуктов электролиза (кислоты, щелочи) с кожей и изготавливаются из белой ткани (фланели, байки, бумазеи).

Нельзя пользоваться прокладками из шерстяной или окрашенной ткани. Гидрофильные прокладки сшивают из 5-6 слоев материн (для удобства прополаскивания в воде, кипячения и сушки), пришивают карман из одного слоя фланели, в который вкладывают свинцовую пластинку, соединенную с токонесущим проводом, металлическим зажимом или припаянную непосредственно к проводу.

В кабинете целесообразно иметь набор свинцовых пластин различной площади от 4 до 800-1200 см2 или такой же площади углеграфитовых. В последние годы выпускают одноразовые электроды. Используют электроды специальной формы (в виде полумаски для лица, «воротника» для верхней части спины и надплечий, двухлопастные, круглые на область глаз и др.).

Следует знать, что ионы свинца вредно действуют на организм, поэтому медицинские сестры, постоянно работающие в этом кабинете, должны получать пектин или мармелад. Свинцовые пластины периодически необходимо чистить наждачной бумагой и протирать спиртом для снятия налета окиси свинца, а также тщательно разглаживать металлическим валиком перед процедурой. Электроды фиксируют с помощью эластичных бинтов, мешочков с песком или тяжестью тела больного.

Перед процедурой медицинская сестра должна ознакомить больного с характером ощущений под электродами: равномерное покалывание и легкое жжение. При появлении неприятных болезненных ощущений или неравномерного жжения на определенном участке кожи больной, не двигаясь и не меняя положения, должен вызвать сестру. Не рекомендуется во время процедуры читать, разговаривать, спать. После процедуры необходим отдых в течение 20-30 мин.

Перед процедурой следует убедиться в отсутствии царапин, ссадин, мацерации, сыпи на коже. Гидрофильные матерчатые прокладки хорошо смачивают теплой водопроводной водой и располагают на коже пациента, свинцовая пластина с токонесущим проводом находится при этом в кармашке. Желательно под матерчатый электрод положить на кожу фильтровальную бумагу, чтобы предохранить прокладку от загрязнения.

Расположение электродов на теле больного определяется локализацией, остротой и характером патологического процесса. Различают поперечную, продольную и поперечно-диагональную методики. При поперечном расположении электроды помещают на противоположных поверхностях тела — один против другого (живот и спина, наружная и внутренняя поверхности коленного сустава и т. д.), что обеспечивает более глубокое воздействие. При продольной методике электроды лежат на одной поверхности тела: один — более проксимально, другой — дистально (продольно по позвоночнику, по ходу нерва, мышцы).

В этом случае оказывается влияние на более поверхностные ткани. Для поперечно-диагональной методики характерно расположение электродов на разных поверхностях тела, но один -в проксимальных его отделах, другой — в дистальных. При близком расположении расстояние между электродами должно быть не меньше половины их диаметра.

Методом электрофореза в организм чаще всего вводят лекарства-электролиты, диссоциирующие в растворах на ионы. Положительно заряженные ионы (+) вводят с положительного полюса (анода), отрицательно заряженные (-) — с отрицательного полюса (катода). При лекарственном электрофорезе можно использовать различные растворители, универсальным и лучшим из них является дистиллированная вода. При плохой растворимости лекарства в воде в качестве растворителя применяют димексид, который также оказывает и противовоспалительное действие.

Для электрофореза сложных органических соединений (белки, аминокислоты, сульфаниламиды) используют буферные растворы. Лекарственные вещества, например, лидаза или ронидаза, растворенные в кислом (ацетатном) буферном растворе с рН = 5,2, вводят с положительного полюса. Пропись его: ацетат (или цитрат) натрия И,4 г, ледяной уксусной кислоты 0,91 мл, дистиллированной воды 1000 мл, 64 единицы лидазы (0,1 г сухого вещества). 0,5-1 г ронидазы растворяют в 15 или 30 мл ацетатного буфера.

Для электрофореза трипсина и химотрипсина используют боратный буфер с рН = 8,0-9,0 (щелочная среда), который вводят с отрицательного полюса. Его состав: борной кислоты 6,2 г, калия хлорида 7,4 г, натрия (или калия) гидроксида 3 г, дистиллированной воды 500 мл. 10 мг трипсина или химотрипсина растворяют в 15-20 мл боратного буфера. Учитывая сложность приготовления указанных буферов, B.C. Улащик и Д.К. Данусевич (1975) предложили пользоваться дистиллированной водой, подкисляемой 5-10% раствором соляной кислоты до рН = 5,2 (для введения с анода) или подщелачиваемой 5-10% раствором едкой щелочи до рН = 8,0 (для введения с катода).

Приводим табл. 1, где указывается необходимое количество едкой щелочи или соляной кислоты в различных разведениях для подщелачивания и подкисления. Например: берем 10 мл 0,5 раствора глютаминовой кислоты и добавляем 0,16 мл едкой щелочи, получаем раствор с рН — 8,0 и вводим с отрицательного полюса. При добавлении соляной кислоты создается рН = 5,0.

Концентрация растворов лекарственных веществ, применяемых для электрофореза, колеблется чаще всего в пределах от 0,5 до 5,0%, так как доказано, что большие количества вводить не следует. Расход лекарства на каждые 100 см2 площади прокладки составляет ориентировочно от 10-15 до 30 мл раствора. Сильнодействующие средства (адреналин, атропин, платифиллин и др.) вводятся из растворов в концентрации 1:1000 или наносятся на прокладку в количестве, равном высшей разовой дозе.

Лекарственные вещества готовятся не более, чем на неделю, сильнодействующие — непосредственно перед введением. С целью экономии лекарственные препараты наносятся на фильтровальную бумагу, которую располагают на коже пациента, а сверху располагают матерчатую прокладку, смоченную теплой водой. Лекарственные вещества, используемые для электрофореза, приведены в табл. 2.











При электрофорезе одного лекарственного препарата его раствором смачивают одну гидрофильную прокладку соответствующей полярности. При одновременном введении двух веществ различной полярности («биполярный» электрофорез) ими смачивают обе прокладки (анод и катод). При необходимости введения двух лекарств одинаковой полярности используют две прокладки, соединенные сдвоенным проводом с одним полюсом тока. При этом одну прокладку смачивают одним, вторую — другим лекарством.

Для электрофореза антибиотиков и ферментов, чтобы избегать инактивации их продуктами электролиза, применяют специальные многослойные прокладки, в середине которых помещают 3-4 слоя фильтровальной бумаги, смоченной «предохранительным» раствором глюкозы (5%) или гликоколя (1%). Можно пользоваться и обычными гидрофильными прокладками, но толщина их должна составлять не менее 3 см.

После каждой процедуры необходимо тщательно промывать прокладки проточной водой из расчета 8-10 л на одну, для удаления из них лекарственных веществ. В «кухне» должно быть 2 раковины: одна для индифферентных прокладок, другая — для активных, т. е. смоченных лекарственным веществом. Для сильнодействующих препаратов целесообразнее иметь отдельные прокладки, на которых можно вышить название лекарства.

Промывать и кипятить прокладки, смоченные различными лекарственными веществами следует раздельно, чтобы избежать загрязнения их вредными для организма ионами. В конце рабочего дня гидрофильные прокладки кипятят, отжимают и оставляют в сушильном шкафу.

Введение лекарственных веществ на димексидс с помощью тока называется суперэлектрофорезом. Диметилсульфоксиду (ДМСО) присуща способность усиливать действие многих лекарств и повышать устойчивость организма к повреждающему действию низких температур и радиации. ДМСО обладает выраженным транспортирующим свойством. ДМСО считается биполярным, однако более выражен перенос в сторону катода.

Можно применять димсксид в виде аппликаций на кожу, так как при этом он обнаруживается в крови уже через 5 мин. Максимальная концентрация наблюдается через 4-6 час, удерживается препарат в организме не более 36-72 часов. Выраженное действие оказывают 70-90% растворы, однако они редко применяются из-за выраженной аллергической реакции. Чистый димсксид лучше применять в виде компрессов, а при электрофорезе использовать как растворитель.

Труднорастворимыс лекарственные вещества, приготовленные на ДМСО, проникают в большем количестве и на большую глубину (дерма и подкожножировая клетчатка). При этом они быстрее поступают в кровь, а их фармакологический эффект значительно возрастает.

Для электрофореза водорастворимых лекарств рекомендуется использовать 20-25% водные растворы димексида, а для трудно- и водонерастворимых препаратов — 30-50% водные растворы. Для приготовления последних лекарство сначала растворяют в концентрированном растворе ДМСО, а затем при постоянном взбалтывании добавляют до нужной концентрации дистиллированную воду.

Для электрофореза из среды ДМСО используют 5-10% раствор аспирина в 50% ДМСО, 5-10% раствор анальгина в 25% ДМСО, 1-2% раствор трипсина в 25% ДМСО, 32-64 ЕД лидазы в 25% растворе ДМСО, 2-5% раствор адебита в 25% ДМСО. Все перечисленные препараты вводятся биполярно. Димсксид у некоторых пациентов вызывает аллергическую реакцию, поэтому перед первой процедурой следует нанести на небольшой участок кожи 25% раствор препарата и посмотреть реакцию через 30-40 мин. Если на коже появилась отечность, краснота, зуд, то ДМСО применять не следует.

Порядок назначения. В назначении указывают название метода (гальванизация или электрофорез с обозначением концентрации раствора и полярности иона), место воздействия, применяемую методику (продольная, поперечная и др.), силу тока в миллиамперах, продолжительность в мин, последовательность (ежедневно или через день), число процедур на курс лечения.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

источник