Меню Рубрики

Система для электрофореза это

Электрофорез, как движение заряженных частиц под действием внешнего электрического поля в среде электролита, известен уже много лет. С конца 19 века электрофорез является предметом бурных обсуждений и дискуссий, а потому информации о данной методике огромное количество. Но методика капиллярного электрофореза появилась относительно недавно. Впервые упоминания о ней появились в семидесятых годах двадцатого века. Немного позже, около восьмидесятых годов двадцатого века, были созданы и выпущены в масштабное производство первые приборы или первая система капиллярного электрофореза.

После начала производства первых приборов ученые оценили практическую ценность капиллярного электрофореза, благодаря чему в начале девяностых годов практическое использование метода капиллярного электрофореза стало набирать обороты и пользоваться популярностью во многих аналитических лабораториях мира.

Не стоит отрицать, что методика капиллярного электрофореза появилась и стала внедряться в практику, непростительно поздно, но это можно объяснить. Лишь спустя столетие, после открытия метода электрофореза, технологические возможности стали производить и выпускать кварцевые капилляры, но их главная особенность заключалась в незначительном, точнее очень маленьком, и равномерном внутренним диаметре (приблизительно десятки микрон). Эти кварцевые капилляры с небольшим и равномерным внутренним диаметром прозрачны в ультрафиолетовой области. К тому же, к моменту создания необходимой модели кварцевых капилляров, ученые и разработчики метода уже накопили немало опыта в вопросах детектирования аналитических сигналов в потоке. Для того, чтобы методика работы капиллярного электрофореза стала более понятна и проста, необходимо детально рассмотреть ряд процессов, которые происходят в кварцевом капилляре, наполненном электролитом, а также помещенном в продольное электрическое поле.

Явление электрофореза — капиллярный электрофорез – в наше современное время представляется одним из немногих наиболее перспективных и высокоинформативных методов, которые используются исключительно для разделения и анализирования сложных смесей на их множественные составляющие компоненты. Электрофорез капель с каждым днем находит все большую популярность и многостороннее использование в различных областях медицины и производства, особенно часто капиллярный электрофорез используется в зарубежной аналитической практике по производству лекарственных средств.

Сферы использования капиллярного электрофореза:

  • Катионы металлов;
  • Неорганические и органические анионы;
  • Аминокислоты;
  • Витамины;
  • Наркотики;
  • Пигменты и красители;
  • Белки, пептиды;
  • Анализ фармпрепаратов и пищевых продуктов;
  • Контроль качества вод и питьевых напитков;
  • Технологический контроль производства;
  • Входной контроль сырья;
  • В области криминалистики, медицины, биохимии;
  • Расшифровка генетического кода живых организмов и т.д.

Характеристика капиллярного электрофореза:

  • Экспрессивность;
  • Микрообъемы вещества или смеси, подвергающихся детальному анализированию, и разделению;
  • Полное отсутствие колонки и твердого сорбента;
  • Для проведения капиллярного электрофореза абсолютно не требуются органические растворители.

Работа систем капиллярного электрофореза заключается в разделении множественных заряженных компонентов сложнокомпонентных смесей. Сама процедура выполняется в кварцевом капилляре под воздействием добавленного электрического поля, высокое напряжение подается к концам капилляра.

Методика капиллярного электрофореза классифицируется на два варианта:

  • Капиллярный зонный электрофорез, который зачастую обозначается, как КЗЭ;
  • Мицеллярная электрокинетическая хроматография, известную под аббревиатурой МЭКХ.

Капиллярный зонный электрофорез или КЗЭ – это метод разделения сложных смесей, производимый в капиллярах. Данная вариант капиллярного электрофореза основан на разнице в электрокинетических движениях заряженных частиц, либо в водных, либо в неводных электролитах.

Мицеллярная электрокинетическая хроматография или МЭКХ – один из вариантов капиллярного электрофореза. Его работа основывается на разделении составов ионного и нейтрального характера, а для проведения данного процесса используется поверхностно – активные вещества (ПАВ). За счет чего происходит разделение соединений при МЭКХ? В состав ведущего электролита соединений электронейтрального характера вводятся мицеллообразователи. Зачастую, особенно в зарубежной практике, при работе с МЭКХ внедряют анионный ПАВ, к примеру, додецилсульфат натрия – ДДСН. Добавленный анионный ПАВ необходим в концентрации, которая превышает критическую концентрацию мицеллообразования. Это и оказывает практически главную, решающую роль в эффекте МЭКХ, формируется определенные «псевдостационарные фазы», а компоненты распределяются между мицеллой и буферным электролитом, в соответствии с их гидрофобностью.

Традиционно капиллярный электрофорез сравнивают с ВЭЖХ или высокоэффективной жидкостной хроматографией. Схожесть этих двух методов в том, что в обоих случаях разделение сложных смесей на компоненты происходит в ограниченном пространстве, например, в колонке или капилляре, с использованием жидкой движущейся фазы, а также для детектирования оба метода используют идентичные принципы.

Преимущества капиллярного электрофореза над высокоэффетивной жидкостной хромотографией:

  • При выполнении ВЭЖХ процент разделение компонентов в сложной смеси небольшой, в отличие от капиллярного электрофореза, что связано с плоским профилем электроосмотического потока;
  • Электрофорез капель не требует масштабных затрат, то есть незначительный расход реактивных веществ и практически полное отсутствие потребности в использовании дорогостоящих высокочистых растворителей, например, ацетонитрил, метанол, гексан;
  • Система капиллярного электрофореза отличается отсутствием дорогостоящих хромотографических колонок, что приводит к отсутствию проблем с, так называемым, «старением» сорбента и сменой колонок при полностью выработанном ресурсе;
  • Система капиллярного электрофореза не требует пернициозных насосов, что снижает материальные затраты;
  • Аппаратура, необходимая для проведения капиллярного электрофореза, проста и неприхотлива в использовании и уходе;
  • Капиллярный электрофорез – это экспрессивный анализ.

Однако, даже такой простой и недорогостоящий метод, как капиллярный электрофорез, обладает рядом недостатков, например, данный метод в лишь в редких случаях может применяться для образцов, которые практически не растворяются или плохо растворяются в водных или водно – спиртовых растворах. Также к недостаткам капиллярного электрофореза относится незначительная чувствительность при регистрации сигнала в кварцевом капилляре, это объясняется незначительной длинной оптического пути.

Самый простой комплект системы капиллярного электрофореза включает в себя:

  • Кварцевый капилляр;
  • Источник высокого электрического напряжения;
  • Устройство ввода пробы;
  • Детектор;
  • Система вывода информации.

источник

Лекарственный электрофорез: показания и противопоказания, методики, алгоритм проведения, механизм действия, преимущества

В настоящее время в лечении различных заболеваний используют разнообразные методы. Если раньше медицина больше основывалась на лекарственной терапии, то сейчас часто назначают физиотерапевтические процедуры. Они помогают быстрее справиться с болезнью. Надо знать, что физиотерапия включает много методов, с одним из которых мы и познакомимся подробнее. Рассмотрим, что собой представляет лекарственный электрофорез, при каких патологиях он показан и имеет ли противопоказания.

Электрофорез относится к физиотерапевтическим процедурам. Во время сеанса организм пациента подвергается воздействию электрических импульсов с целью получить стойкий терапевтический эффект.

Лекарственный электрофорез используют также для введения медицинских препаратов через кожные покровы и слизистые оболочки. Можно сказать, что этот метод является комплексным, так как идет одновременное воздействие тока и лекарственного средства. Какой препарат выбрать для процедуры, каковы процентное содержание и полярность введения, определяет только лечащий врач с учетом состояния пациента и тяжести заболевания.

Сущность электрофореза сводится к тому, что лекарственные препараты поступают внутрь тканей в виде заряженных частиц через межклеточные пространства, протоки потовых и сальных желез. В результате воздействия электрического тока эффективность препаратов существенно увеличивается, так как происходит повышение чувствительности тканей.

Все медикаменты вводятся с учетом их полярности, если это катионы, то они вводятся с анода, а анионы — с катода. Самым лучшим растворителем считается дистиллированная вода, но для плохорастворимых соединений используют спирт или «Димексид».

Механизм действия этой процедуры заключается в том, что лекарственный препарат в виде ионов поступает внутрь организма пациента через поры и протоки сальных и потовых желез. Катионы и анионы задерживаются на кожных покровах под электродом, а затем постепенно проникают в кровь и лимфу. Из-за такого постепенного поступления воздействие лекарства на организм длительное, что является одним из преимуществ этого метода терапии.

Осуществляется лекарственный электрофорез при помощи разных аппаратов, одним из которых является «Поток». Этот прибор в медицине используется уже давно, он проверен временем и надежен. Есть возможность регулировать во время процедуры силу тока, а также устанавливать время. В настоящее время выпускаются современные аналоги прибора, которые имеют цифровые индикаторы.

Чтобы получить терапевтический эффект, совсем необязательно располагать электроды на больном органе или вводить большие дозы препаратов. Посредством физиотерапии вводят ионы кальция, магния, йода для повышения рефлекторного воздействия на пораженную ткань.

Чтобы повысить эффективность данной процедуры, постоянно разрабатываются и совершенствуются методики электрофореза лекарственного. В настоящее время используют следующие:

  1. Пролонгированная гальванизация. Применяют электрический ток малой силы, но время воздействия продолжительное. Батарея «Крона» является источником тока. Курс лечебных процедур обычно составляет 20-30 сеансов. Электрофорез хорошо успокаивает, оказывает обезболивающее действие.
  2. Лабильная гальванизация. Один электрод во время процедуры закрепляется неподвижно, а второй находится в движении и перемещается со скоростью 3-5 см в секунду по поверхности кожи. Чтобы исключить колебания тока, в аппарат вводят стабилизирующее устройство. Процедура хорошо повышает метаболизм, улучшает кровоснабжение органов и тканей и нервно-мышечную проводимость.
  3. Внутритканевый электрофорез. Проведение процедуры лекарственного электрофореза по данной методике сводится к введению через канюлю подкожно или внутримышечно препарата или смеси веществ. Вводиться лекарство может струйно или капельно. К очагу поражения поперек накладывают электроды, чтобы увеличить концентрацию медицинского препарата. Если лекарство вводят струйно, то ток включают одновременно с этим, а при капельном — после введения.

В неврологической практике электрофорез используют при многих заболеваниях нервной системы. Применяют следующие методики:

1. Вакуум-электрофорез. Используется специальный аппарат ЭВАК-1, который имеет вакуумный насос, кюветы. Во время процедуры кюветы прикладываются к кожным покровам или слизистой оболочке, а прокладка пропитывается лекарственным препаратом. После того как создается разряженное давление, кожа приподнимается и тесно соприкасается с препаратом. Длительность процедуры составляет всего 5-10 минут, на курс необходимо сделать таких 5-10 в зависимости от состояния пациента и тяжести его заболевания. Этот метод электрофореза позволяет ввести большее количество лекарства и гораздо глубже.

2. Микроэлектрофорез. Для проведения процедуры используют ватный вкладыш, в который вставляют фитилек, пропитанный лекарственным препаратом. Сверху располагается электрод для создания контакта металлического наконечника с ватой. Применение лекарственного электрофореза по данной методике используют часто при гипертонии, нарушениях сна, патологиях нервной системы.

3. Электрофонофорез представляет собой сочетание ультразвука и электрофореза. Имеется специальный прибор, который состоит из источника переменного тока, оказывающего терапевтический эффект, датчика, преобразующего ультразвук, источника стабилизированного тока, электронасадки и электрода. Во время процедуры электрод фиксируется на коже, электронасадку заполняют препаратом, закрепляют на ультразвуковом датчике и соединяют с другим полюсом источника тока. Сила тока наращивается постепенно, а потом уже включается ультразвук. Процедуры делают ежедневно, можно через день, по 10-15 минут.

Методики электрофореза лекарственного разные, но какие использовать, решает лечащий врач.

Кроме различных методик, имеются способы использования данной процедуры:

  1. Ванночковый. Сущность заключается в том, что в специальную емкость со встроенными электродами помещается лекарственный раствор и погружается часть тела пациента.
  2. Внутритканевый. Внутривенно или перорально вводят препарат, а на больной участок накладывают электроды.
  3. Полостной способ используют при заболеваниях прямой кишки или влагалища. Внутрь вводится лекарство и подводится электрод, а второй электрод прикрепляется на внешней части тела.

Если назначается лекарственный электрофорез, алгоритм проведения важно знать, но надо также и учитывать, что на всасывание препарата могут оказать влияние различные факторы:

  • Место воздействия процедуры.
  • Возраст больного.
  • Продолжительность электрофореза.
  • Дозировка и концентрация лекарства.
  • Сила электрического тока.
  • Заряд ионов и их размер.
  • Индивидуальные особенности пациента.

Все это необходимо учитывать и корректировать параметры в каждом случае индивидуально.

Существует много физиотерапевтических процедур, и каждая имеет свои плюсы и минусы. Преимущества лекарственного электрофореза заключаются в следующем:

  • Во время процедуры вводится небольшое количество лекарственного средства.
  • Вещества накапливаются, значит, процедура оказывает пролонгированное действие.
  • Лекарства вводятся в наиболее доступной форме, в виде ионов.
  • Создается высокая местная концентрация без насыщения крови и лимфы.
  • Можно вводить лекарственные вещества в места патологии, что особенно важно при нарушении микроциркуляции.
  • Процедура абсолютно безболезненная.
  • Очень редко наблюдаются побочные эффекты.
  • Лекарства не поступают в ЖКТ, а значит, не разрушаются.
  • Лекарственное вещество вводится через целостные кожные покровы, поэтому специальной стерилизации не требуется.

Таким образом, можно сказать, что этот метод физиотерапевтического воздействия не только эффективный, но и безопасный. Но прежде чем делать лекарственный электрофорез, показания и противопоказания должны быть изучены.

Эта физиотерапевтическая процедура назначается достаточно часто в комплексном лечении многих неврологических, гинекологических, хирургических заболеваний. Не обходится без электрофореза педиатрия и стоматология. Вот перечень некоторых патологий, которые успешно лечатся данной процедурой:

  1. Болезни органов дыхательной системы, начиная с обычного бронхита и заканчивая бронхиальной астмой и пневмонией.
  2. Заболевания уха, горла и носа.
  3. Прекрасно поддаются терапии болезни ЖКТ, например гастрит, панкреатит, язвенная болезнь.
  4. Используется электрофорез в комплексной терапии патологий сердечно-сосудистой системы. Сюда можно отнести гипертонию, гипотонию, стенокардию, мерцательную аритмию и др.
  5. Заболевания мочеполовой системы.
  6. Патологии нервной системы практически не обходятся без данного способа лечения. Прекрасно лечатся мигрени, неврозы, радикулиты, межпозвоночные грыжи и др.
  7. Опорно-двигательная система также хорошо отзывается на электрофорез. Эту процедуру часто назначают после переломов, при остеохондрозе, артрозе, артрите.
  8. Болезни эндокринной системы.
  9. Кожные заболевания.
  10. В области стоматологии также не редкость электрофорез, например при стоматите, гингивите, пародонтите.

Как видно из приведенного списка, лекарственный электрофорез показания имеет достаточно обширные.

Нет такого лечения или процедуры, которые бы были разрешены абсолютно всем. Мы уже рассмотрели, какие имеет лекарственный электрофорез показания. И противопоказания у данного метода терапии имеются. К таковым можно отнести:

  • Доброкачественные и злокачественные новообразования в любом месте организма.
  • Наличие сердечной недостаточности.
  • Наличие кардиостимулятора.
  • Любой воспалительный процесс в организме в стадии обострения.
  • Высокая температура тела.
  • Тяжелая форма бронхиальной астмы.
  • Нарушения свертывания крови.
  • Кожные заболевания, например экзема или дерматит.
  • Нарушение чувствительности кожных покровов.
  • Наличие механических повреждений в месте наложения лекарственных прокладок.
  • Непереносимость электрического тока.
  • Аллергия на лекарственный препарат.
  • Если предполагается наложение электродов на область матки и яичников, то менструация является противопоказанием.
Читайте также:  Камера для проведения электрофореза

В любом случае, даже если вы считаете, что у вас нет противопоказаний к процедуре, проведение лекарственного электрофореза возможно только после консультации с врачом. Должны быть учтены все нюансы.

Если назначается лекарственный электрофорез, методика проведения, в принципе, любая принесет большую пользу, так как процедура производит следующий терапевтический эффект:

  • Снижает интенсивность воспалительных процессов.
  • Обладает противоотечным действием.
  • Снимает болевые ощущения.
  • Устраняет спазм мышечных волокон.
  • Действует успокаивающе на нервную систему.
  • Ускоряет регенерацию тканей.
  • Активизирует иммунную систему человека.

В момент процедуры эффект также зависит от доминирующего электрода. Если это катод, то:

  • Происходит расширение кровеносных и лимфатических сосудов.
  • Релаксация.
  • Нормализуется обмен веществ.
  • Стабилизируется работа желез внутренней секреции.
  • Стимулируется выработка биологически активных веществ.

Положительный электрод – анод — оказывает следующее воздействие:

  • Способствует выведению лишней жидкости из организма.
  • Обезболивает.
  • Убирает воспаление.

В пользе такой процедуры можно не сомневаться, но главное, чтобы были учтены все противопоказания, иначе это может привести к нежелательным последствиям.

Если процедура назначена врачом с учетом состояния пациента и его заболевания, то лекарственный электрофорез нежелательные эффекты дает достаточно редко. Чаще всего это аллергические реакции на лекарственный препарат, которые могут проявляться жжением, покраснением, сыпью и отечностью. После окончания процедуры все симптомы быстро исчезают.

Некоторые пациенты через несколько сеансов отмечают усиление болезненности, небольшое повышение температуры тела. Обычно к концу курса терапии все ощущения проходят без медицинского вмешательства.

Если назначено проведение процедуры лекарственного электрофореза, алгоритм должен быть следующим:

  1. Медсестра или врач перед процедурой должны обязательно проверить исправность аппарата.
  2. Посмотреть в карточке пациента назначения доктора.
  3. Подробно разъяснить, особенно если человек в первый раз делает электрофорез, какие ощущения могут быть.
  4. Помочь пациенту занять удобное положение.
  5. Удостовериться в целостности кожных покровов в месте наложения прокладки.
  6. Приготовить прокладки, соответствующие месту наложения, намочить их в теплой воде.
  7. Приложить их на тело больного.
  8. Сверху накладывается свинцовая пластина, которая будет соединяться проводом с аппаратом.
  9. Произвести расчет силы тока для процедуры.
  10. Проверить, чтобы регулятор интенсивности тока стоял в крайнем левом положении.
  11. Подключить прибор к сети.
  12. Переключатель шунта поставить на отметку «5», если пациентом является ребенок или процедура делается на голову, и «50» для взрослых пациентов и других частей тела.
  13. Постепенно увеличивать силу тока до необходимой величины.
  14. Если пациент процедуру переносит хорошо, то его можно накрыть, но предупредить, что при любых неприятных ощущениях он должен сообщить медсестре.
  15. Засечь время проведения электрофореза.
  16. После окончания регулятор силы тока поставить в положение «0».
  17. Отключить прибор от сети.
  18. Снять с тела пациента электроды и осмотреть кожу на наличие покраснений и раздражений.
  19. Пациенту напомнить, когда он должен прийти на следующую процедуру.

Этот алгоритм выполнения должна знать любая медицинская сестра.

Любые физиотерапевтические процедуры окажут существенную помощь в комплексной терапии, но только тогда, когда они назначаются с учетом патологии и индивидуальных особенностей пациента, а также выполняются качественно, грамотным специалистом. Не стоит пренебрегать электрофорезом, эта процедура поможет быстрее справиться с заболеванием.

источник

Капиллярный электрофорез

Цель работы

Изучение возможностей метода капиллярного электрофореза при определении неорганических анионов в водопроводной воде.

Основные сведения о методе капиллярного электрофореза

Метод капиллярного электрофореза основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (

2 нл) вводят в кварцевый капилляр, предварительно заполненный подходящим буфером — электролитом. После подачи высокого напряжения (до 30 кВ) к концам капилляра компоненты смеси начинают двигаться с разной скоростью, зависящей, в первую очередь, от заряда и массы (точнее, величины ионного радиуса) и, соответственно, в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной — высота или площадь пика, пропорциональная концентрации вещества.

Для того чтобы получить более подробное представление о методе, необходимо рассмотреть ряд процессов, происходящих в капилляре, заполненном электролитом и помещенном в продольное электрическое поле.

Находящиеся на поверхности плавленного кварца силоксановые группы при контакте с водой или водными растворами гидролизуются с образованием удвоенного количества силанольных групп, которые затем гидратируются.

Скорость и степень гидролиза зависят от температуры и pH водных растворов и, в меньшей степени, от концентрации солевого фона раствора. В водном растворе силанольные группы способны к кислотной диссоциации. Константа первой ступени имеет величину Ка1 = 2,5×10 3 . Это означает, что при pH водного раствора больше 2,5 поверхность кварца приобретает некоторый отрицательный заряд, который возрастает при увеличении pH раствора. Наоборот, при pH

2 и меньше диссоциация сила- нольных групп практически полностью подавлена, и поверхность кварца становится нейтральной.

Диссоциация силанольных групп вызывает на границе раздела кварц—водный раствор электролита образование двойного электрического слоя (ДЭС), рис. 1. Первую его обкладку составляют неподвижные отрицательно заряженные силанольные группы. Вторую обкладку двойного слоя составляют положительно заряженные катионы, существующие в растворе. Диэлектриком, разделяющим обкладки этого конденсатора, являются молекулы воды, гидратирующие как силанольные группы, так и катионы.

Положительная часть ДЭС, в свою очередь, делится на две части: первую (или неподвижную), непосредственно примыкающую к поверхности кварца, и вторую (или диффузную), располагающуюся на некотором удалении от поверхности. В неподвижной части количество положительных зарядов меньше, чем отрицательных зарядов на поверхности кварца из-за увеличения размеров катионов вследствие гидратации. В результате в диффузной части ДЭС образуется некоторая избыточная концентрация катионов. Между этими двумя слоями проходит т. н. граница скольжения — при наложении вдоль капилляра электрического поля неподвижная часть остается на месте, в то время как диффузная часть начинает мигрировать к катоду, увлекая за собой в силу межмолекулярного сцепления всю массу жидкости в капилляре. Возникает электроосмотический поток (ЭОП), который осуществляет пассивный перенос раствора внутри капилляра. Скорость ЭОП в сильной степени зависит от pH раствора: в сильнокислых растворах ЭОП отсутствует, в слабокислых — его скорость незначительна, а при переходе в нейтральную и щелочную область pH скорость ЭОП возрастает до максимально возможной. С другой стороны, эта величина зависит от концентрации электролита в ведущем буфере: чем она больше, тем выше становится доля катионов в неподвижной части ДЭС, а толщина диффузной части уменьшается и, соответственно, уменьшается скорость электроосмотического потока.

Рис. 1. Строение двойного электрического слоя.

В приборах для капиллярного электрофореза капилляр, заполненный раствором электролита, своими концами опущен в два содержащих тот же электролит сосуда, в которые введены электроды. Электролит должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой — стабилизировать состояние компонентов пробы в процессе анализа. При подаче на электроды высокого напряжения в капилляре быстро устанавливается стационарное состояние: через капилляр протекает постоянный электроосмотический поток, на который накладывается взаимно противоположная электромиграция катионов и анионов.

Если в капилляр со стороны анода ввести небольшой объем раствора пробы, то ЭОП будет переносить эту зону к катоду (в область детектирования), и зона некоторое время сможет находиться в капилляре под воздействием электрического поля высокого напряжения. В течение этого времени заряженные компоненты пробы будут перемещаться в соответствии с их электрофоретическими подвижностями.

Катионные компоненты пробы, двигаясь к катоду, будут обгонять электроосмотический поток (рис. 2). Скорость их движения складывается из скорости ЭОП и скорости электромиграции, поэтому на выходе капилляра катионы появляются первыми и тем раньше, чем больше их электрофоретическая подвижность.

Нейтральные компоненты пробы способны перемещаться только под действием электроосмотического потока, тогда как анионные будут перемещаться к аноду со скоростями меньшими, чем скорость ЭОП. Медленно мигрирующие анионы появятся на выходе после ЭОП, а те, чья скорость электромиграции по абсолютной величине превышает скорость ЭОП, будут выходить из капилляра в прианодное пространство.

Рис. 2. Электрофоретическая миграция ионов в присутствии электроосмотического потока.

Если время нахождения пробы в капилляре (которое можно регулировать изменением напряжения, величины pH и концентрации ведущего электролита) достаточно, чтобы проявились различия в подвижности ионов, то на выходе капилляра вблизи катода можно наблюдать зоны раствора, в которых находятся индивидуальные компоненты пробы.

Ведущий электролит (его называют также рабочим буферным раствором) должен иметь такую концентрацию, при которой электрическое сопротивление раствора в капилляре будет достаточно велико. Это требование связано с тем, что при прохождении электрического тока в проводнике выделяется тепло. Если ток достаточно велик, то жидкость в капилляре может даже закипеть.

Основные варианты капиллярного электрофореза

Наиболее распространенными вариантами метода капиллярного электрофореза являются капиллярный зонный электрофорез и мицеллярная электрокинетическая хроматография.

Самым простым вариантом КЭ является капиллярный зонный электрофорез (КЗЭ). Компоненты сложной смеси движутся в среде электролита с разными скоростями, образуя дискретные зоны. Отличительная особенность КЗЭ состоит в том, что он пригоден для разделения только ионогенных компонентов пробы, тогда как нейтральные соединения, не обладающие собственной электрофоретической подвижностью, движутся со скоростью ЭОП и выходят в зоне нейтральных компонентов, зоне маркера ЭОП.

В приборах капиллярного электрофореза, в которых используется кварцевый капилляр, полярность входного конца чаще всего положительная (анод), и ЭОП переносит зону пробы к катоду. Вблизи катодного выхода установлен детектор. При этих условиях катионные компоненты пробы, тоже мигрируя к катоду, обгоняют ЭОП и первыми достигают детектора в виде отдельных зон, которые на электрофореграмме регистрируются индивидуальными пиками. Через некоторое время детектора достигает и зона исходного раствора, в которой остались нейтральные компоненты пробы. В зависимости от того, поглощают они или нет, на электрофореграмме регистрируется прямой (в некоторых случаях обратный) пик, который часто называют системным. Иногда для идентификации системного пика в пробу добавляют специальные вещества — маркеры ЭОП, например, бензиловый спирт. Что касается анионных компонентов пробы, то их поведение зависит от соотношения скоростей ЭОП и электромиграции анионов. Если скорость миграции аниона превышает скорость ЭОП, то такой анион рано или поздно выйдет из капилляра в прианодное пространство (это нежелательно, т. к. некоторые анионы, например хлорид, попадая в рабочий буферный раствор, будут, разряжаясь на аноде, вызывать коррозию платинового электрода). Если же скорость электромиграции аниона меньше скорости ЭОП, то такой анион может быть зарегистрирован на той же электрофореграмме после выхода системного пика. В этом варианте КЗЭ с положительной полярностью могут определяться катионные компоненты проб и большинство органических анионов.

Чтобы методом КЗЭ можно было определять анионные компоненты проб (в основном, неорганического происхождения) необходимо изменить полярность прикладываемого напряжения. Однако в этом случае изменится не только направление миграции анионов, но также направление ЭОП. Для преодоления этого противоречия необходимо модифицировать поверхность кварцевого капилляра так, чтобы знаки зарядов двойного электрического слоя поменялись на обратные. Это достигается введением в рабочий буферный раствор катионного поверхностно-активного вещества, например, бромида цетилтриметиламмония (ЦТАБ). Катион ЦТА + активно сорбируется на кварцевой поверхности, занимая при достаточной его концентрации все вакансии в ближайшем к поверхности слое. Поверхность как бы «ощетинивается» длинными цетильными (С16Н33—) цепочками. Ставшая гидрофобной поверхность при дальнейшей промывке рабочим буферным раствором сорбирует еще один слой поверхностно-активного катиона, ориентированного аммонийным концом наружу (сорбция «щетка в щетку»). В результате первый слой двойного электрического слоя становится положительным, а второй, в том числе и диффузная его часть, — отрицательным, и ЭОП снова движется от входного конца к детектору, несколько отставая от мигрирующих быстрее анионов.

Основным достоинством КЗЭ является высокая эффективность (сотни тысяч теоретических тарелок), при этом селективность, определяемая механизмом разделения внутри одной фазы, в КЗЭ недостаточна. Повышение селективности может быть достигнуто за счет изменения pH ведущего электролита, введения в состав буфера различных добавок: поверхностно-активных веществ, макроциклов, органических растворителей и т. д.

Мицеллярная электрокинетическая хроматография объединяет электрофорез и хроматографию. МЭКХ получила наиболее широкое распространение среди других вариантов капиллярного электрофореза, в первую очередь, за счет способности разделять как ионогенные, так и незаряженные компоненты пробы. Разделение нейтральных соединений стало возможным благодаря введению в состав ведущего электролита поверхностно-активных веществ (ПАВ) — мицеллообразователей. Чаще всего используют анионные ПАВ (например, додецилсульфат натрия — ДДСН, англ. SDS) в концентрациях, превышающих критическую концентрацию мицеллообразования (ККМ), которая, например, для ДДСН в водном растворе составляет 8 мМ. В этом случае в растворе электролита находятся преимущественно мицеллы и небольшая доля мономерной формы ПАВ. Мономеры состоят из гидрофобного «хвоста» и гидрофильной (в случае анионного по- верхностно-активного вещества отрицательно заряженной) «головы». При формировании прямых мицелл мономерные фрагменты агрегируются неполярными концами внутрь, а внешняя сферическая поверхность мицеллы становится отрицательно заряженной. Каждая мицелла окружена собственным двойным электрическим слоем, внешнюю диффузную часть которого формируют катионы, присутствующие в растворе ведущего электролита. Число мономеров, образующих мицеллу, может колебаться от 60 до 100 молекул, однако общий заряд мицеллы существенно меньше из-за наличия в неподвижной части второго слоя ДЭС гидратированных катионов. Ни мицеллярная, ни мономерная форма АПАВ не взаимодействуют со стенкой кварцевого капилляра, но при подаче на капилляр высокого напряжения обе формы мигрируют к аноду, в то время как ЭОП направлен к катоду. Если в капилляр на анодной стороне ввести пробу, содержащую нейтральные и заряженные компоненты, то ЭОП будет переносить их к катоду, а навстречу будет двигаться поток отрицательно заряженных мицелл АПАВ. Нейтральные компоненты пробы могут распределяться между фазой раствора и мицеллярной фазой, причем константа этого распределения специфична для каждого сорта молекул пробы. В результате на выходе капилляра регистрируется электрофореграмма нейтральных компонентов, а также медленно мигрирующих анионов пробы.

Читайте также:  Электрофорез при хроническом эндометрите с чем

Общее устройство систем КЭ

Минимальный состав системы, реализующей метод капиллярного электрофореза, должен включать следующие узлы: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и систему сбора, обработки и вывода информации (рис. 3).

Дополнительными устройствами в системах капиллярного электрофореза являются, например, автосемплер и блок жидкостного охлаждения капилляра, которые позволяют:

► автоматизировать подачу образцов,

► осуществить эффективный отвод тепла от капилляра.

Рис. 3. Устройство системы капиллярного электрофореза.

В системах капиллярного электрофореза используют, как правило, капилляры из высокочистого плавленого кварца, прозрачного в УФ-области спектра, с внешним полимерным, чаще полиимидным, защитным покрытием. В случае детектирования внутри капилляра (on-line) полиимидное покрытие в зоне детектирования снимают, оставляя для прохождения света зону чистого кварца. Внутренний диаметр капилляров может варьироваться от 20 до 100 мкм, но чаще всего используют 50 и 75 мкм. Внешний диаметр составляет 365 мкм, длина капилляров 20—100 см.

Доминирующее число разделений в КЭ ведут на непокрытых изнутри капиллярах, так называемых немодифицированных. Их подготовка к анализу начинается, как правило, с промывки раствором щелочи для обеспечения диссоциации силанольных групп кварца и возникновения ЭОП.

Анализ методом КЭ можно проводить только тогда, когда капилляр находится в кондиционном состоянии. С точки зрения анализа кондиционное состояние капилляра следует понимать так, что выполняемые последовательно анализы должны быть воспроизводимы как по временам миграции пиков, так и по площадям пиков. При подготовке к работе капилляр обычно промывают раствором кислоты, водой и раствором щелочи. Цель первой операции заключается в удалении с поверхности примесей, в частности, многовалентных катионов, и первичном гидролизе силокса- новых групп. Промывка водой способствует удалению кислоты и дальнейшему гидролизу поверхности. Наконец, щелочная промывка предназначена для удаления примесей, не реагирующих с кислотой, и максимальной диссоциации образовавшихся силанольных групп. Финишная промывка водой имеет целью удалить из капилляра щелочь.

Источники высокого напряжения

В первую очередь, источники напряжения должны обеспечивать регулируемую подачу напряжения в диапазоне от —25 до +25 кВ и при заданной величине напряжения поддерживать постоянство этого значения. Максимально допустимый ток в капилляре при этом не должен превышать 200 мкА.

Как правило, переключение полярности происходит в ручном режиме, что сопровождается сменой высоковольтных блоков.

Типичный объем вводимой пробы в капиллярном электрофорезе составляет 1—20 нл. Общепринято заполнять пробой не более 2 % объема капилляра с тем, чтобы изначально, до анализа, не создавать широкую зону компонентов и обеспечить достаточное время нахождения зоны пробы в капилляре для установления значимых различий в электрофоретических подвижностях.

Непосредственно перед вводом пробы капилляр промывают рабочим буферным раствором, удаляя остатки пробы от предыдущего ввода.

Различают три способа ввода пробы:

Первые два способа реализованы во всех коммерческих системах капиллярного электрофореза, гидростатический, напротив, не нашел широкого применения.

Ввод пробы давлением (гидродинамический, пневматический) обеспечивается созданием разницы давлений между сосудом для пробы и выходным концом капилляра, при этом давление либо повышается в сосуде для пробы, либо снижается на конце капилляра.

Электрокинетический ввод пробы. При этом способе ввод пробы осуществляется путем подачи высокого напряжения на электроды, когда на входе установлена пробирка с раствором пробы, а на выходе — с рабочим буфером. За счет возникающего при этом ЭОП компоненты пробы перемещаются в капилляр. Количество введенной пробы при этом способе зависит от величины приложенного напряжения, времени, в течение которого приложено напряжение, и подвижности компонентов пробы.

Гидростатический ввод пробы. В этом способе для ввода пробы используют разницу в высоте между буферным сосудом и сосудом для проб.

Детектирование в системах капиллярного электрофореза может осуществляться различными способами:

► непосредственно в капилляре в части, близкой к выходному концу, в режиме реального времени (on-capillary). В зоне детектирования с внешней стенки капилляра снимают защитное полиимидное покрытие. Этот способ характерен для большинства коммерческих систем капиллярного электрофореза;

► непосредственно на выходном конце капилляра (end-capillary)’,

► вне системы КЭ (off-capfflary, при этом, как правило, детектор представляет собой отдельный самостоятельный прибор (например, масс-спектрометр) и соединен с системой капиллярного электрофореза специальным интерфейсом).

Основными принципами детектирования в КЭ являются:

► фотометрическое в УФ-видимой области спектра (прямое и косвенное),

► флуориметрическое (прямое и косвенное),

► амперометрическое (прямое и косвенное),

Наиболее распространенным вариантом детектирования продолжает оставаться фотометрическое, основанное на поглощении веществом УФ или видимого света. Фотометрические детекторы в КЭ, подразделяют на:

► Детекторы с фиксированной длиной волны: источники света с линейчатым спектром (ртутная лампа (254 нм), кадмиевая лампа (229 нм) и цинковая лампа (214 нм). В приборах «Капель-104» фотометрический детектор работает на длине волны 254 нм (строго 253,7 нм), поэтому отклик детектора будет наблюдаться только в том случае, если определяемый компонент имеет заметное поглощение на указанной длине волны

► Детекторы с изменяемой длиной волны: источниками света служат дейтериевые и вольфрамовые лампы (рабочий диапазон длин волн 190—350 нм и 340—850 нм, соответственно). Необходимая спектральная селекция достигается применением монохроматоров или узкополосных светофильтров.

► Детекторы на диодной матрице (ДМД). В таких детекторах световой поток, прошедший через капилляр, разлагается в спектр с помощью высококачественного светосильного монохроматора, а матрица фотодиодов постоянно регистрирует сигналы в ультрафиолетовой и видимой частях спектра (УФ-В-детекторы), обеспечивая запись в режиме сканирования. Данные, полученные одновременно на различных длинах волн (до 5), обрабатываются с помощью компьютеров, выделяющих сигнал на оптимальной длине волны и вычитающих фон. Применение детекторов на диодной матрице обеспечивает получение аналитических данных с гораздо большей степенью достоверности.

Для соединений, анализируемых с помощью КЭ и не поглощающих в УФ-диапазоне, существует возможность регистрации методом косвенного УФ-детектирования. В этом случае в состав ведущего электролита вводят небольшое количество хромофора — вещества, поглощающего на требуемой длине волны. Так, в случае определения анионов поглощающий ион тоже должен быть анионом, например, хромат-ион, фталат-ион, а при определении катионов чаще всего используют катионы ароматических аминов или гетероциклов, в частности, ион протонированного бензимидазола. Так как ионная сила ведущего электролита в процессе разделения остается постоянной, в зоне, где находится непоглощающий ион, уменьшается концентрация поглощающего иона. Обмен происходит строго эквивалентно, на электрофореграмме наблюдаются обратные (отрицательные) пики, площади которых пропорциональны концентрациям определяемых ионов. Косвенное УФ-детектирование является универсальным вариантом детектирования, т. к. позволяет регистрировать все присутствующие в анализируемом растворе компоненты.

Капиллярный электрофорез относится к группе комбинированных методов анализа, в которых объединены два основных процесса: предварительное разделение компонентов сложной смеси и их определение/детектирование. Важными характеристиками разделения являются разрешение, эффективность и селективность. Для конечного определения наиболее актуален параметр чувствительности, в первую очередь зависящий от типа используемого детектора.

Метод капиллярного электрофореза характеризуется высокой эффективностью.

Несмотря на высокую эффективность, достигаемую в капиллярном электрофорезе, селективность разделения, особенно в зонном варианте может быть недостаточна, в первую очередь, из-за осуществления процесса разделения внутри одной фазы. Задача повышения селективности разделения в том или ином варианте КЭ требует знания факторов, ее определяющих, и может быть решена за счет изменения pH ведущего электролита, введения в состав буфера различных добавок, например, ПАВ, макроциклов, органических. Следует иметь в виду, что все эти факторы будут сказываться также на скорости ЭОП, однако, сам по себе электроосмотический поток не ответственен за изменение селективности разделения и определяет лишь изменение времени миграции (на равную величину для всех компонентов пробы).

Выбор ведущего электролита является чрезвычайно важной задачей для успешного разделения в любом варианте КЭ. Величина pH ведущего электролита определяет как скорость течения жидкости в капилляре (величину ЭОП), так и форму нахождения компонента в растворе (заряд). Чувствительность ЭОП к изменению pH раствора заставляет использовать ведущие электролиты с высокой буферной емкостью, при этом диапазон pH, как правило, имеет значения рКа±1. Благодаря высокой стабильности кварцевого капилляра при электрофоретическом разделении можно использовать буферные системы с pH от 2 до 12.

Идеальный буфер для капиллярного электрофореза должен обладать следующими свойствами:

► достаточная буферная емкость в выбранном диапазоне pH,

► малое поглощение на длине волны детектирования,

► низкая подвижность ведущего иона.

Список так называемых «подходящих» буферов возглавляют боратный буфер и TRIS, так как они могут использоваться в широком диапазоне концентраций без существенного увеличения тока, что позволяет, в свою очередь, применять максимально высокие напряжения в ходе анализа.

Среди используемых в капиллярном электрофорезе добавок наиболее популярны поверхностно-активные вещества. Их введение в состав буферных растворов позволяет в разной степени влиять на селективность, причем определяющими факторами являются тип ПАВ и его концентрация. В КЭ могут быть использованы как ионогенные (катионные (КПАВ) и анионные (АПАВ), а также цвиттер-ионные), так и нейтральные поверхностно-активные вещества.

При концентрации ниже ККМ мономерные формы ионогенных ПАВ могут выступать как ион-парные добавки (различные АПАВ, КПАВ), а также влиять на растворимость гидрофобных компонентов смеси и модифицировать стенки капилляра (например, ЦТАБ). Возможные при этом механизмы взаимодействий поверхностноактивного вещества и пробы — ионные и/или гидрофобные. Добавки ПАВ в ведущий электролит влияют не только на поведение зоны пробы в капилляре, но и на стенки самого капилляра, модифицируя ЭОП (уменьшая, увеличивая или обращая).

Органические растворители (метанол, ацетонитрил, изопропанол и др.), которые вводят в буферный раствор в концентрации от нескольких долей процента до 30 % (об.) могут, с одной стороны, повышать растворимость анализируемых соединений, делая капиллярный электрофорез пригодным для анализа веществ с ограниченной растворимостью в водных средах. С другой стороны, органические добавки могут уменьшать гидрофобные взаимодействия между анализируемым компонентом и мицеллой в МЭКХ, а также влиять на подвижность ЭОП и собственную электрофоретическую подвижность аналита. Макроциклические реагенты как компоненты ведущих электролитов широко распространены в КЭ.

Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ

Целью любого анализа является получение ответов на вопросы: какие компоненты присутствуют в анализируемом образце и какова величина их концентраций? Первый из вопросов есть задача качественного анализа, второй — количественного. Для решения обеих задач в КЭ перед анализом пробы обязательно проводят процедуру градуировки системы путем измерения одной или нескольких смесей с известным качественным и количественным составом. Результатом градуировки являются формирование таблицы компонентов (содержит времена миграции и имена определяемых компонентов) и построение градуировочной зависимости (показывает зависимость сигнала детектора от концентрации/содержания вещества).

В капиллярном электрофорезе используют те же принципы интегрирования пиков, методы градуировки, способы формирования отчетов, как в газовой хроматографии и ВЭЖХ. По аналогии с ВЭЖХ большинство детекторов в капиллярном электрофорезе являются концентрационными, для которых высота или площадь пика прямо пропорциональны концентрации вещества, образующего пик.

Качественный анализ. Характеристики миграции/удерживания

Качественный анализ обычно состоит в сравнении времен миграции (в случае капиллярного зонного электрофореза) или времен удерживания (в случае мицеллярной электрокинетической хроматографии), полученных для стандарта и пробы, измеренных в одинаковых условиях. Если эти времена совпадают с заданной точностью (обычно окно идентификации не превышает 5 %), то считают, что искомое вещество в пробе найдено и переходят к количественному анализу. Тем не менее, такой способ идентификации вещества не всегда надежен, особенно в случае анализа проб со сложной матрицей.

Несмотря на высокую разделительную способность капиллярного электрофореза, качественный анализ близкорасположенных пиков может вызывать некоторые трудности. В этом случае можно рекомендовать использование метода добавок. В пробу, для которой затруднена идентификация анализируемого вещества, вносят это вещество и проводят повторный анализ. Если на электрофореграмме появляется новый пик, это означает, что анализируемый компонент ранее в пробе отсутствовал. Если же один из бывших пиков увеличился по высоте (площади), то можно утверждать, что это и есть анализируемый компонент. Величину добавки обычно выбирают так, чтобы высота (площадь) интересующего нас пика увеличилась не более чем в 2—3 раза.

Зачастую приходится сталкиваться с ситуацией, когда время миграции компонента не стабильно от анализа к анализу, что связано, в том числе, с нестабильностью электроосмотического потока. Причин этому несколько, от недостаточно кондиционного состояния капилляра, использования модификации внутренней поверхности капилляра или введения добавок в состав буферного электролита до температурных эффектов и влияния матричных и сопутствующих компонентов. Использование в таких ситуациях маркера ЭОП (например, ацетона) как в растворе стандарта, так и в пробе, позволит вычислить исправленные времена миграции, представляющие собой разность времен миграции анализируемого вещества и метки ЭОП.

Еще одним из вариантов повышения достоверности идентификации анализируемого компонента является введение в стандартный раствор и раствор пробы маркера — внутреннего стандарта. Это должно быть вещество, заведомо отсутствующее в анализируемых пробах, но имеющее схожие с определяемым веществом физико-химические свойства. Для стандарта и пробы вычисляют относительные времена миграции (можно арифметически поделить время миграции компонента на время миграции ЭОП и, наоборот, но для пробы и для стандарта это должно быть сделано одинаково) и находят в пробе близкие по численному значению результаты.

Читайте также:  Электрофорез эуфиллин на область почек

Наиболее полную и достоверную идентификацию вещества на сегодняшний день можно получить при использовании диодно-матричного детектора, который по результату одного анализа может предоставить информацию:

по сопоставлению времени миграции вещества и его спектра в пробе и стандартном растворе (при этом дополнительно будет дана оценка чистоты пика пробы, например, по наложению спектров, снятых в трех точках пика: на обоих склонах и в максимуме);

по отношению откликов пика (например, площади) на двух разных длинах волн, полученных для стандарта и пробы. Для одного и того же вещества на двух разных длинах волн при неизменном времени миграции отношение площадей в стандартном растворе и растворе пробы должно быть постоянным. Длины волн выбирают так, чтобы компонент имел при этом разное поглощение, т. е. высота или площадь пика при двух разных длинах волн были бы различными.

Количественная обработка результатов анализа

В основе количественного анализа лежит прямо пропорциональная зависимость высоты (площади) пика от концентрации вещества при использовании концентрационных детекторов, какими являются, например, фотометрические и флуориметрические детекторы.

Суть количественного определения сводится к следующему: сначала выбирают метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта, метод добавок и т. д.); определяют какую величину отклика детектора — высоту пика или площадь пика — будут использовать; затем анализируют стандартные растворы с известными концентрациями веществ и для каждого компонента строят градуировочную зависимость отклика детектора от концентрации вещества; после чего анализируют пробу неизвестного состава и по градуировочному графику находят концентрацию определяемых веществ.

Основным методом градуировки является метод внешнего стандарта (абсолютной градуировки), для которого необходимо иметь ГСО или химически чистые стандарты всех определяемых компонентов. Градуировка может быть одноточечной и многоточечной. Одноточечная означает, что для градуировки компонента используется только один градуировочный раствор, зависимость носит строго линейный характер и, как правило, выходит из начала координат. Это частный случай многоточечной градуировки, для построения которой анализируют несколько специально подобранных по концентрациям градуировочных растворов, после чего с помощью метода наименьших квадратов рассчитывают коэффициенты прямой, наилучшим образом описывающей экспериментальные данные. Правильное и тщательное проведение градуировки является необходимым условием точности получаемых количественных результатов анализа.

Основными областями применения метода КЭ являются:

· Анализ объектов окружающей среды: природные, питьевые, сточные воды и почвы (анионы, катионы, гербициды).

· Контроль качества пищевой продукции и продовольственного сырья: (неорганические катионы и анионы, консерванты, органические кислоты, подсластители, синтетические красители, антиоксиданты, аминокислоты, витамины, углеводы, белки).

· Анализ показателей качества кормов, комбикормов и сырья для их производства: (аминокислоты, белки, витамины).

· Фармация: технологический контроль и анализ готовых лекарственных форм, разделение оптических изомеров.

· Клиническая биохимия: определение неорганических катионов и анионов, аминокислот, белков в биологических жидкостях, определение фармакокинетики лекарственных препаратов.

· Криминалистическая экспертиза: обнаружение остаточных количеств взрывчатых веществ, анализ наркотических средств.

· Химическая промышленность: технологический контроль, определение состава сырья и полупродуктов.

источник

Доктор ставит электроды с лекарством на спину пожилого пациента»/>

Лекарственный электрофорез – это воздействие на организм постоянным электрическим током в сочетании с введением через кожу или слизистые оболочки разнообразных лекарственных веществ. В физиотерапии электрофорез является наиболее популярным методом, так как оказывает на организм больного множество положительных эффектов:

  • снижает интенсивность воспалительного процесса;
  • оказывает противоотечное действие;
  • устраняет болевой синдром;
  • расслабляет повышенный мышечный тонус;
  • производит успокаивающее действие;
  • улучшает микроциркуляцию;
  • ускоряет процесс регенерации тканей;
  • стимулирует выработку биологически активных веществ (например, витамины, микроэлементы, гормоны);
  • активирует защитные силы организма.

Принцип метода заключается в том, что лекарственные препараты поступают в организм через межклеточные пространства, сальные и потовые железы в виде положительных или отрицательных частиц (ионов). Лекарственная доза при электрофорезе невысока: всего 2-10% от общего объема лекарства, содержащегося на прокладке.

Большая часть фармакопрепарата задерживается в коже и подкожно-жировой клетчатке, т. е. не сразу поступает в кровоток, а спустя сутки и более после процедуры. Этим свойством обусловлено отсроченное (пролонгированное) действие физиопроцедуры: улучшение обмена веществ и иннервации, снятие болевого синдрома, отечности и т. д.

При электрофорезе активные лекарственные вещества максимально накапливаются в патологическом очаге, т. к. прокладка с медикаментом накладывается непосредственно на «больное место», и в несколько раз превышают дозу, вводимую инъекционно или перорально. Поэтому эффективность лекарственного электрофореза достаточно высока. Минуя желудочно-кишечный тракт, фармакопрепарат практически не вызывает побочных действий на организм.

Лекарственный электрофорез широко применяется в комплексной терапии неврологических, терапевтических, хирургических, гинекологических заболеваний, а также в травматологии, педиатрии и стоматологии. Физиопроцедура может назначаться неоднократно, причем каких-то определенных временных ограничений у электрофореза нет.

  • бронхиальная астма;
  • пневмония;
  • острый и хронический бронхит;
  • бронхоэктатическая болезнь;
  • трахеит;
  • плеврит;
  • гастрит;
  • язвенная болезнь желудка и 12-перстной кишки;
  • холецистит;
  • панкреатит;
  • колит;
  • гипертоническая болезнь 1 и 2 стадии;
  • гипотония;
  • атеросклероз;
  • стенокардия;
  • варикозное расширение вен;
  • мерцательная аритмия;
  • эндартериит;

Заболевания мочеполовой системы женщин и мужчин

  • пиелонефрит;
  • цистит;
  • уретрит;
  • простатит;
  • эндометриоз;
  • аднексит;
  • эндометрит;
  • цервицит;
  • вагинит;
  • невриты;
  • невралгии;
  • радикулит;
  • мигрень;
  • неврозы;
  • межпозвоночная грыжа;
  • бессонница;
  • плексит;
  • травмы головного и спинного мозга;
  • парезы и параличи;
  • ганглионеврит;
  • остеохондроз;
  • остеоартроз;
  • артриты и полиартриты;
  • спондилез;
  • вывихи и переломы;
  • контрактура сустава;
  • ожоги;
  • акне (угревая сыпь);
  • себорея;
  • рубцы;
  • псориаз;
  • трофические язвы;
  • пролежни;
  • дерматит;
  • фолликулит;
  • фурункулез;
  • иридоциклит;
  • увеит;
  • конъюнктивит;
  • блефарит;
  • кератит;
  • атрофия зрительного нерва.
  • послеоперационные раны;
  • послеоперационные рубцы.

Лекарственный электрофорез – достаточно универсальный и доступный способ физиолечения, но у него имеется ряд противопоказаний. К ним относятся:

  • опухоли любой локализации и этиологии;
  • сердечная недостаточность;
  • наличие искусственного водителя ритма (кардиостимулятор);
  • воспалительный процесс в фазе обострения;
  • повышенная температура тела;
  • бронхиальная астма (тяжелая форма);
  • нарушения свертываемости крови (повышенная кровоточивость, склонность к кровотечениям);
  • кожные патологии (экзема, дерматит);
  • нарушение чувствительности кожных покровов;
  • механические повреждения в области наложения лекарственных прокладок (ранки, порезы, ссадины);
  • непереносимость электрического тока;
  • аллергия на лекарственный препарат, который требуется ввести с помощью электрофореза.

На заметку: менструальное кровотечение не является абсолютным противопоказанием к электрофорезу, так как является естественным процессом, не вызванным каким-либо патологическим (воспалительным или инфекционным) фактором. Процедуру во время месячных не желательно выполнять, если заведомо известно, что электроды будут накладываться на область матки и яичников.

Суть процедуры заключается в расположении лекарственного средства (раствора или геля) перпендикулярно движению электрического тока, т. е. между электродом и поверхностью кожи человека. В зависимости от способа наложения электродов и метода введения фармакопрепарата различают несколько методик лекарственного электрофореза.

Гальваническая (чрескожная) – лекарственным раствором пропитывают марлевые или из фильтрованной бумаги прокладки, которые размещают на теле пациента с противоположных сторон патологического очага, чтобы создать поле, внутри которого будет двигаться лекарственное вещество. Внутри прокладок помещаются электроды, а сверху накрываются защитной пленкой;

Ванночковая – в специальную емкость (ванночка), которая уже оборудована электродами, наливается необходимый объем лекарственного раствора. Больной погружает в жидкость больную часть тела (руку или ногу);

Полостная – в полые органы (желудок, мочевой пузырь, прямая кишка, влагалище, матка) вводится раствор лекарственного препарата, туда же помещается один из электродов, а второй располагается на поверхности тела;

Внутритканевая – лекарственный препарат вводят перорально (через рот) или инъекционно, после этого размещают электроды в области патологического очага. Наибольшей эффективностью обладает внутритканевой электрофорез в терапии заболеваний органов дыхания (бронхиты, ларингиты, трахеобронхиты и т.д.)

Эффективен при лечении артритов, полиартритов, плекситов, полиневритов и других заболеваний суставов и нервной системы.

Карипазим – это препарат для лечения грыж межпозвоночных дисков (активное действующее вещество папаин). Стандартный курс лечения с карипазином составляет 15-20 сеансов (для получения стойкого клинического эффекта необходимо пройти 2-3 курса с перерывами в 1-2 месяца).

Лидаза (гиалуронидаза) повышает тканевую и сосудистую проницаемость, улучшает движение жидкостей в межтканевых пространствах, способствует размягчению рубцов. Поэтому электрофорез с лидазой очень часто назначается в гинекологии, травматологии и хирургии для рассасывания спаечных процессов.

Эуфиллин обладает болеутоляющим, бронхорасширяющим действием, улучшает кровообращение и кровоснабжение внутренних органов. Поэтому электрофорез с эуфиллином широко используют для лечения легочных, сосудистых, неврологических и других заболеваний.

Назначается при бронхитах, невралгиях, невритах, миозитах. Наиболее часто электрофорез с кальцием применяется в ортопедии для восполнения относительных и абсолютных потерь кальция. Действие, которое оказывает кальций на организм:

  • дезинтоксикационное;
  • противоаллергическое;
  • гемостатическое;
  • противовоспалительное;
  • укрепляющее сосуды и уменьшающее их проницаемость.

Применяется в терапии воспалительных заболеваний дыхательных путей, при бронхиальной астме, глазных патологиях.

В большинстве своем электрофорез проводится гальваническим способом, т.е. просто на кожу накладываются электроды с пропитанной лекарством прокладкой. А вот по какой технике (воротник, пояс, по Щербаку или Ратнеру), зависит от диагноза и локализации патологического очага. Обычно выбор метода определяет лечащий врач (или физиосестра в отсутствие врача).

Самые эффективные и широко применяемые техники лекарственного электрофореза:

Ионные рефлексы по Щербаку

  • назначается при гипертонии, неврозах, язвенной болезни желудка и двенадцатиперстной кишки.
  • эффективен в лечении черепно-мозговых травм, неврозов, гипертонической болезни, нарушений сна и т.д.
  • применяется в терапии воспалительных заболеваний женских половых органов и различных нарушениях сексуальной функции.

Общий электрофорез (метод Вермеля)

  • наибольшей эффективностью метод обладает при лечении гипертонии, атеросклероза, кардиосклероза, невроза, мигрени и др.

Электрофорез по Бургиньону (глазнично-затылочный)

  • процедура назначается для лечения неврита лицевого или тройничного нерва, а также сосудистых, травматических и воспалительных процессов в головном мозге.
  • применяется в терапии сосудистых, воспалительных и травматических патологий головного мозга, язвы желудка и двенадцатиперстной кишки, нарушениях обмена веществ.
  • используется для лечения нарушений кровообращения в шейном отделе позвоночника, в терапии детского церебрального паралича и для восстановления нормального функционирования органов после родовых травм у детей.

При проведении лекарственного электрофореза побочные эффекты или более серьезные осложнения наблюдаются очень редко. Обычно это аллергические реакции на вводимое лекарственное вещество, которые проявляются покраснением кожи, зудящей сыпью, незначительной отечностью в месте наложения электродов. При отмене процедуры и применении антигистаминных средств негативные проявления быстро исчезают.

Также на 2-3 процедуре электрофореза допускается незначительное усиление болезненности и повышение местной или общей температуры при воспалительных заболеваниях (функциональное обострение). К окончанию курса физиолечения неприятные ощущения проходят самостоятельно.

Малышам до года назначают электрофорез для лечения следующих патологий:

  • повышенный или пониженный мышечный тонус;
  • незначительные неврологические нарушения;
  • заболевания опорно-двигательной системы;
  • заболевания, сопровождающиеся выраженными болезненными ощущениями;
  • диатез;
  • патологии ЛОР-органов;
  • ожоги.

На заметку: Повышенный тонус мышц является серьезным препятствием к нормальному физическому развитию ребенка. Лечение электрофорезом позволяет заменить инъекционное или пероральное введение необходимых лекарственных средств.

Каждый ребенок по-разному переносит процедуру электрофореза: одни – спокойно и тихо, другие – нервно и раздражительно. Если реакция малыша резко негативная (плачет на протяжении всей процедуры и после нее, плохо спит и ест и т. д.), то решение о продолжении лечения принимается только с учетом возможной пользы и имеющихся рисков.

Дети старше 1 года ограничений для лечения электрофорезом не имеют, кроме индивидуальной непереносимости лекарственного препарата.

Беременным, при отсутствии противопоказаний, врачи часто назначают в качестве поддерживающего средства физиотерапевтические процедуры.

Обычно это электрофорез – метод, который считается не просто щадящим, но и наиболее оптимальным в период беременности и лактации для улучшения кровообращения, снижения мышечного тонуса, в том числе и тонуса матки.

Нельзя применять электрофорез при беременности в следующих случаях:

  • рвота;
  • заболевания почек;
  • низкая свертываемость крови с риском кровотечений;
  • плохое состояние плода;
  • эклампсия (тяжелый токсикоз второй половины беременности).

В гинекологии электрофорез назначается для лечения хронических воспалительных заболеваний (цервицит, эндометрит, эндометриоз и др.).

Наиболее эффективным в этих случаях будет метод внутритканевого электрофореза с антибиотиками. При эрозии шейки матки и эндометриозе процедура применяется в качестве одного из способов доставки лекарственных препаратов (йод, цинк, лидаза, амидопирин) в пораженные ткани.

Электрофорез при миоме матки входит в программу консервативного лечения и способствует полному устранению или снижению клинических проявлений заболевания, восстановлению функции яичников и миометрия матки.

Лекарственный электрофорез, как одна из основных процедур физиолечения, предоставляется любым государственным учреждением на бесплатной основе. Если нет возможности ежедневно посещать больницу для прохождения процедуры, то можно делать электрофорез на дому.

  • приобрести аппарат и необходимые лекарственные препараты;
  • получить подробные рекомендации для домашнего курса лечения у врача-физиотерапевта;
  • пригласить физиосестру на дом для проведения первого (обучающего) сеанса.

Еще один популярный метод введения лекарственных веществ в организм человека, но не с помощью электрического тока, а посредством ультразвуковых волн – фонофорез. По эффективности фонофорез не уступает электрофорезу и у него намного меньше противопоказаний к проведению.

Вопрос о том, какой способ применить в том или ином случае, решает лечащий врач. Но как показывает практика, чаще всего назначают электрофорез и только при невозможности его проведения выбирают фонофорез, поскольку для фонофореза применяются не все лекарственные вещества, которые используются при электрофорезе.

Это связано с тем, что под действием ультразвука эти вещества разрушаются, теряют свою активность или изменяют свои фармакологические свойства. Например, новокаин, платифиллин, атропин, некоторые витамины (аскорбиновая кислота, витамины гр. В).

источник