Меню Рубрики

Структурная схема аппарата для электрофореза

Физические процессы,происходящие в тканях организма под воздействием электрической составляющей переменного электромагнитного поля высокой частоты. УВЧ-терапия. Изобразить графически влияние на растворы электролитов и жидкие диэлектрики.

Электромагнитное поле (ЭМП)представляет собой совокупность двух переменных, взаимно индуктирующих друг друга электрических и магнитных полей. В ЭМП выделяют две составляющие-электрическую и магнитную. Электрическое поле (ЭП) формируется покоящимися заряженными телами. Важнейшей силовой характеристикой ЭП является- напряженность Е, единицей измерения является В*м -1 .

Магнитное поле(МП)формируется движущимися зарядами, намагниченными телами и переменным электрическим полем. Важнейшей характеристикой МП является –магнитная индукция В, в которая измеряется в теслах(Тл).

Ткани тела человека п своим электрическим свойствам можно разделить на проводники электрического тока и диэлектрики.

Проводники(электролиты)-это тела хорошо проводящие электрический ток. К проводникам электрического тока относятся жидкие среды организмы (кровь ,лимфа,желчь,спинномозговая жидкость,моча), а также мышечная ткань.

Диэлектрики— это тела , не проводящие электрического тока. Плохо проводят ток ткани: костная, жировая, нервная , грубоволокнистая соединительная ткань и зубная эмаль.

При воздействии поля УВЧ в тканях человека наблюдаются два эффекта:

2. Не тепловой (осцилляторный или физико-химический эффект)

УВЧ-терапия— это метод физиотерапии, в котором используется воздействие на организм человека с лечебной целью электрической составляющей электромагнитного поля, ультравысокой частоты (40,68МГц)

Физические процессы ,происходящие в тканях организмы под воздействием постоянного тока. Гальванизация и электрофорез. Блок-схема аппарата.

Гальванизацией называется метод физиотерапии, при котором используется воздействие на организм человека с лечебной цельюпостоянным током малой силы(40-50 мА) и низкогонапряжения (40-50В)

Физические процессы в организме

При прохождении постоянного тока через тело человека между электродами возникает электрическое поле. При воздействии электрического тока молекулы в тканях распадаются на электрически заряженные ионы. Положительно заряженные ионы (H,K,Ca и тд)движутся по направлению к катоду (отрицательному электроду) и называются катионами. Отрицательнозаряженные ионы(ОН,Сl,СО3,SO3) движутся к аноду (положительному электроду) и называется анионами. Достигнув электродов ионы теряют свой электрический заряд и превращаютсяв нейтральные атомы.

Этот процесс называетсяэлектролизом . Взаимодействует с водой эти атомы образуют продукты электролиза. Под анодом образуется кислота (HCl), а под катодом щелочь (KOH,NaOh). Продукты электролиза являются химически активные веществами и могут вызвать химический ожог подлежащих тканей. Для предотвращения ожога необходимо применять прокладки , смоченные физраствором.

2. Поляризация

Электрическая поляризация – это скопление у мембран противоположно заряженных ионов с образованием электродвижущей силы , имеющей направление, обратное приложенному напряжению.

Мембраны создают припятствия для движения токов, так как обладают ёмкостными свойствами ( свойствамикондесатора). Ионы скапливаются у мембран и формируют добавочные полюса в толще тканей, междукоторыми возникают добавочные токи, получившие название поляризационных токов.Эти токи повышают сопротивление прохождению гальванического тока в тканях организма.

Поляризация происходит в тканях, находящихся на пути прохождения тока.Затухает поляризация в течение нескольких часов , с чем в какой-то степени связано длительное последствие постоянного тока .

Ионная ассиметрия

При прохождении через ткани постоянного тока катионы движутся к катоду, а анионы- к аноду . Неодинаковая скорость перемещения ионов связана с различными в их физико-химических свойствах (заряд,радиус ,гидратация и др.) поэтому после гальванизации возникает ионная асимметрия, сказывающаяся на жизнедеятельности клеток, скорости протекания в них биофизических, биохимических и электрофизиологических процессов . Наиболее характерным проявлением ионной асимметрии можно считать преобладание у катода одновалентных катионов,а у анода – двухвалентных анионов . такие изменения сопровождаются повышением возбудимости нервных окончаний у катода. У анода происходят противоположные сдвиги

4. Электродиффузия

Электрический ток изменяет проницаемость тканей и увеличивает пассивный транспорт крупных белковых молекул и других веществ.

5. Электроосмос–это перенос воды ,заряженными ионами. Под действием электрического поля в тканях возникает разнонаправленное движение молекул свободной и захваченной в гидратные оболочки ионов (Na,K,Cl)воды примембранного слоя относительно клеток. Из-за того, что количество молекул воды в гидратных оболочках катионов больше , чем у анионов ,содержание воды под катодом увеличивается, под анодом- уменьшается.

Блок-схема аппарата .

· Выпрямитель со сглаживающим фильтром

· Терапевтический контур(потенциометр, миллиамперметр, клеммы для подсоединения пациента)

o Первый блок является понижающий трансформатор, уменьшающий напряжение на входе от 220 до 40-60 В на выходе трансформатор

· Второй блок- выпрямитель собирается на полупроводниковых диодах. Вместо синусоидального переменного тока появляется пульсирующий ток одного направления (постоянный ток)

· Сглаживающий фильтр состоит из дросселя и конденсаторов и нужен для уменьшения пульсаций тока.

· Напряжения снимается на клеммы пациента с потенциометра и измеряется миллиамперметром. Потенциометр необходим для регуляции силы тока в цепи пациента .

Механизмы биологического действия лазерного излучения. Основные направления использования лазерного излучения в медицине. Устройство и принцип работы аппарата для лазерной терапии «Орион» (терапевтические эффекты способы облучения»

В зависимости от характера взаимодействия лазерного света с биологическими тканями различают три вида фотобиологических эффектов:

1) фотодеструктивное воздействие, при котором тепловой, гидродинамический, фотохимический эффекты света вызывают деструкцию тканей. Этот вид лазерного взаимодействия используется в лазерной хирургии.

2) фотофизические и фотохимическое воздействие, при котором поглощенный биотканями свет возбуждает в них атомы и молекулы, вызывает фотохимические и фотофизические реакции. Это лазерное излучение используется как терапевтическое.

3) невозмущающее воздействие, когда биосубстанция не меняет своих свойств в процессе взаимодействия со светом. Это такие эффекты, как рассеивание, отражение и проникновение. Этот вид используют для диагностики (лазерная спектроскопия).

Фотобиологические эффекты зависят от параметров лазерного излучения: длины волны, интенсивности потока световой энергии, времени воздействия на биоткани. В лазеротерапии применяют световые потоки низкой интенсивности, не более 100 мВТ/см 2 , что сопоставимо с интенсивностью излучения Солнца на поверхности Земли в ясный день. Поэтому его называют низкоинтенсивным лазерным излучением (НИЛИ).

Фотобиологической активностью обладает свет в ультрафиолетовой, видимой и инфракрасной областях спектра. В основе фотобиологических процессов лежат фотофизические и фотохимические реакции, возникающие под действием света.

Фотофизические реакции обусловлены нагреванием объекта до различной степени (в пределах 0.1-0.3 0 С) и распространением тепла в биотканях. Разница температуры более выражена на биологических мембранах, что ведет к оттоку ионов Na + и K + , раскрытию белковых каналов и увеличению транспорта молекул и ионов.

Фотохимические реакции обусловлены возбуждением электронов в атомах поглощающего свет вещества. На молекулярном уровне это выражается в виде фотоионизации вещества, его восстановления или фотоокисления, фотодиссоциации молекул, их перестройке – фотоизомеризации.

Лазерное излучение избирательно поглощается содержащимися в клетках пигментными веществами. Пигмент меланин поглощает свет наиболее активно в фиолетовой области, порфирин и его производные – в красной и т.д.

Поглощение лазерной энергии происходит и различными молекулярными образованиями, не имеющими специфических пигментов и фотобиологических мишеней. Вода поглощает видимый свет и красную часть спектра. Это меняет у мембран структурную организацию водного слоя и изменяет функцию термолабильных каналов мембраны.

Работы по применению лазеров в хирургии в СССР начались в 1965 году в МНИОИ им. П. А. Герцена (рук. работ профессор С. Д. Плетнёв) совместно с НПП «Исток» (рук. работ академик АН СССР Н. Д. Девятков и В. П. Беляев). Использовался высокоэнергетические С02 лазеры с длиной волны 10,6 мкм. По результатам этих работ в НПП «Исток» было создано несколько модификаций лазерных хирургических установок, которые были переданы в клиники и использовались при проведении хирургических операций [8] .

С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза — это точечная контактная сварка; лазерный скальпель — автогенная резка; сваривание костей — стыковая сварка плавлением; соединение мышечной ткани — тоже контактная сварка.

Специалистам по сварке металлов давно известно, что при резке пакета тонких металлических листов необходимо, чтобы они плотно прилегали друг к другу, а при точечной контактной сварке для тесного контакта свариваемых деталей необходимо дополнительное давление.

Этот метод был использован и в хирургии: профессор О. К. Скобелкин и его соавторы предложили при сварке тканей слегка их сдавливать, чтобы вытеснить кровь. Для осуществления нового способа был создан целый набор инструментов, который применяется сегодня в желудочно-кишечной хирургии, при операциях на желчных путях, селезенке, печени, лёгких.

  • Косметическая хирургия (удаление татуажа и пр.);
  • Коррекция зрения;
  • Хирургия (Гинекология, урология, лапароскопия);
  • Стоматология
  • Диагностика заболеваний
  • Удаление опухолей, особенно мозга и спинного мозга

В стандартную комплектацию аппарата Орион Степвходит две насадки:

    Зеркальная насадка:

Зеркальная насадка многократно отражает направленный луч лазера, благодаря чему энергия лазера распределяется более равномерно, а интенсивность поглощения ее тканями увеличивается. Насадка позволяет сократить длительность проведения лазерных процедур аппаратом Орион Степ.
Зеркальная насадка эффективна при лечении: болезней кожи и перифирических сосудов, травм различной локализации, внутренних заболеваний.

    Зеркально-магнитная насадка:

Зеркально-магнитная насадка продуцирует магнитное поле 40-60 мТл, что многократно усиливает эффективность воздействия лазера на ткани и клетки. Кроме того при наличии магнитного поля лазер способен глубже проникать сквозь ткани, а значит воздействовать на патологические очаги, расположенные в недосягаемости для других физиотерапевтических аппаратов.
Зеркально-магнитная насадка эффективна лечений заболеваний, локализованный глубоко под кожей, например болезни суставов и позвоночника, болевые синдромы, заболевание ЖКТ и др.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10527 — | 7317 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Что такое клинические исследования и зачем они нужны? Это исследования, в которых принимают участие люди (добровольцы) и в ходе которых учёные выясняют, является ли новый препарат, способ лечения или медицинский прибор более эффективным и безопасным для здоровья человека, чем уже существующие.

Главная цель клинического исследования — найти лучший способ профилактики, диагностики и лечения того или иного заболевания. Проводить клинические исследования необходимо, чтобы развивать медицину, повышать качество жизни людей и чтобы новое лечение стало доступным для каждого человека.

У каждого исследования бывает четыре этапа (фазы):

I фаза — исследователи впервые тестируют препарат или метод лечения с участием небольшой группы людей (20—80 человек). Цель этого этапа — узнать, насколько препарат или способ лечения безопасен, и выявить побочные эффекты. На этом этапе могут участвуют как здоровые люди, так и люди с подходящим заболеванием. Чтобы приступить к I фазе клинического исследования, учёные несколько лет проводили сотни других тестов, в том числе на безопасность, с участием лабораторных животных, чей обмен веществ максимально приближен к человеческому;

II фаза — исследователи назначают препарат или метод лечения большей группе людей (100—300 человек), чтобы определить его эффективность и продолжать изучать безопасность. На этом этапе участвуют люди с подходящим заболеванием;

III фаза — исследователи предоставляют препарат или метод лечения значительным группам людей (1000—3000 человек), чтобы подтвердить его эффективность, сравнить с золотым стандартом (или плацебо) и собрать дополнительную информацию, которая позволит его безопасно использовать. Иногда на этом этапе выявляют другие, редко возникающие побочные эффекты. Здесь также участвуют люди с подходящим заболеванием. Если III фаза проходит успешно, препарат регистрируют в Минздраве и врачи получают возможность назначать его;

IV фаза — исследователи продолжают отслеживать информацию о безопасности, эффективности, побочных эффектах и оптимальном использовании препарата после того, как его зарегистрировали и он стал доступен всем пациентам.

Считается, что наиболее точные результаты дает метод исследования, когда ни врач, ни участник не знают, какой препарат — новый или существующий — принимает пациент. Такое исследование называют «двойным слепым». Так делают, чтобы врачи интуитивно не влияли на распределение пациентов. Если о препарате не знает только участник, исследование называется «простым слепым».

Чтобы провести клиническое исследование (особенно это касается «слепого» исследования), врачи могут использовать такой приём, как рандомизация — случайное распределение участников исследования по группам (новый препарат и существующий или плацебо). Такой метод необходим, что минимизировать субъективность при распределении пациентов. Поэтому обычно эту процедуру проводят с помощью специальной компьютерной программы.

  • бесплатный доступ к новым методам лечения прежде, чем они начнут широко применяться;
  • качественный уход, который, как правило, значительно превосходит тот, что доступен в рутинной практике;
  • участие в развитии медицины и поиске новых эффективных методов лечения, что может оказаться полезным не только для вас, но и для других пациентов, среди которых могут оказаться члены семьи;
  • иногда врачи продолжают наблюдать и оказывать помощь и после окончания исследования.
  • новый препарат или метод лечения не всегда лучше, чем уже существующий;
  • даже если новый препарат или метод лечения эффективен для других участников, он может не подойти лично вам;
  • новый препарат или метод лечения может иметь неожиданные побочные эффекты.
Читайте также:  Электрофорез по ратнеру для грудничков что это такое

Главные отличия клинических исследований от некоторых других научных методов: добровольность и безопасность. Люди самостоятельно (в отличие от кроликов) решают вопрос об участии. Каждый потенциальный участник узнаёт о процессе клинического исследования во всех подробностях из информационного листка — документа, который описывает задачи, методологию, процедуры и другие детали исследования. Более того, в любой момент можно отказаться от участия в исследовании, вне зависимости от причин.

Обычно участники клинических исследований защищены лучше, чем обычные пациенты. Побочные эффекты могут проявиться и во время исследования, и во время стандартного лечения. Но в первом случае человек получает дополнительную страховку и, как правило, более качественные процедуры, чем в обычной практике.

Клинические исследования — это далеко не первые тестирования нового препарата или метода лечения. Перед ними идёт этап серьёзных доклинических, лабораторных испытаний. Средства, которые успешно его прошли, то есть показали высокую эффективность и безопасность, идут дальше — на проверку к людям. Но и это не всё.

Сначала компания должна пройти этическую экспертизу и получить разрешение Минздрава РФ на проведение клинических исследований. Комитет по этике — куда входят независимые эксперты — проверяет, соответствует ли протокол исследования этическим нормам, выясняет, достаточно ли защищены участники исследования, оценивает квалификацию врачей, которые будут его проводить. Во время самого исследования состояние здоровья пациентов тщательно контролируют врачи, и если оно ухудшится, человек прекратит своё участие, и ему окажут медицинскую помощь. Несмотря на важность исследований для развития медицины и поиска эффективных средств для лечения заболеваний, для врачей и организаторов состояние и безопасность пациентов — самое важное.

Потому что проверить его эффективность и безопасность по-другому, увы, нельзя. Моделирование и исследования на животных не дают полную информацию: например, препарат может влиять на животное и человека по-разному. Все использующиеся научные методы, доклинические испытания и клинические исследования направлены на то, чтобы выявить самый эффективный и самый безопасный препарат или метод. И почти все лекарства, которыми люди пользуются, особенно в течение последних 20 лет, прошли точно такие же клинические исследования.

Если человек страдает серьёзным, например, онкологическим, заболеванием, он может попасть в группу плацебо только если на момент исследования нет других, уже доказавших свою эффективность препаратов или методов лечения. При этом нет уверенности в том, что новый препарат окажется лучше и безопаснее плацебо.

Согласно Хельсинской декларации, организаторы исследований должны предпринять максимум усилий, чтобы избежать использования плацебо. Несмотря на то что сравнение нового препарата с плацебо считается одним из самых действенных и самых быстрых способов доказать эффективность первого, учёные прибегают к плацебо только в двух случаях, когда: нет другого стандартного препарата или метода лечения с уже доказанной эффективностью; есть научно обоснованные причины применения плацебо. При этом здоровье человека в обеих ситуациях не должно подвергаться риску. И перед стартом клинического исследования каждого участника проинформируют об использовании плацебо.

Обычно оплачивают участие в I фазе исследований — и только здоровым людям. Очевидно, что они не заинтересованы в новом препарате с точки зрения улучшения своего здоровья, поэтому деньги становятся для них неплохой мотивацией. Участие во II и III фазах клинического исследования не оплачивают — так делают, чтобы в этом случае деньги как раз не были мотивацией, чтобы человек смог трезво оценить всю возможную пользу и риски, связанные с участием в клиническом исследовании. Но иногда организаторы клинических исследований покрывают расходы на дорогу.

Если вы решили принять участие в исследовании, обсудите это со своим лечащим врачом. Он может рассказать, как правильно выбрать исследование и на что обратить внимание, или даже подскажет конкретное исследование.

Клинические исследования, одобренные на проведение, можно найти в реестре Минздрава РФ и на международном информационном ресурсе www.clinicaltrials.gov.

Обращайте внимание на международные многоцентровые исследования — это исследования, в ходе которых препарат тестируют не только в России, но и в других странах. Они проводятся в соответствии с международными стандартами и единым для всех протоколом.

После того как вы нашли подходящее клиническое исследование и связались с его организатором, прочитайте информационный листок и не стесняйтесь задавать вопросы. Например, вы можете спросить, какая цель у исследования, кто является спонсором исследования, какие лекарства или приборы будут задействованы, являются ли какие-либо процедуры болезненными, какие есть возможные риски и побочные эффекты, как это испытание повлияет на вашу повседневную жизнь, как долго будет длиться исследование, кто будет следить за вашим состоянием. По ходу общения вы поймёте, сможете ли довериться этим людям.

Если остались вопросы — спрашивайте в комментариях.

источник

Гальванизация — применение с лечебной целью постоянного непрерывного электрического (гальванического) тока низкого напряжения (до 80 В) и небольшой силы (до 50 мА), подводимого к телу больного через контактно наложенные электроды.

Под действием электрического тока положительно заряженные ионы движутся по направлению к катоду (отрицательному электроду) и называются катионами, отрицательно заряженные — к аноду (положительному электроду) и называются анионами.

Одновалентные ионы (К- и Nа-) быстрее достигают электродов, чем двухвалентные (Са2- Nа2-), вследствие чего на катоде скапливаются одновалентные ионы, а в области анода — двухвалентные. Накопление в клетке одновалентных ионов приводит к повышению ее возбудимости, а двухвалентных — к снижению. В результате электроосмоса происходит движение жидкости к катоду, что способствует отеку, разрыхлению клеток, под анодом же наблюдается сморщивание и уплотнение клеточных оболочек.

Наряду с этим под свинцовыми электродами в результата химических реакций, называемых электролизом, образуются сильнодействующие раздражающие вещества: на катоде — щелочи, на аноде — кислоты. Для того, чтобы эти вещества не попали на кожу, используют гидрофильные прокладки определенной толщины, тогда агрессивные продукты этих реакций скапливаются на границе слоя прокладки, не повреждая кожу.

Лекарственный электрофорез — метод сочетанного воздействия на организм постоянного тока и лекарственного вещества, вводимого с его помощью в организм. Ионы медикаментов вводятся с электрода одноименной полярности.

Наибольшей чувствительностью к лекарственному электрофорезу обладает кожа живота, затем межлопаточная область, плечо, предплечье, бедро, голень, кисть, стопа. Через слизистые оболочки лекарственные вещества поступают легче и в большем количестве, чем через кожу, накопление же веществ в организме индивидуально и зависит от их структуры и химических свойств.

Лекарственные вещества, введенные с помощью гальванического тока, вызывают непрерывное и длительное раздражение нервных окончаний кожи с включением рефлекторных механизмов, вступают в обменные процессы в зоне воздействия. Они влияют на физиологические процессы, поступая в кровь и лимфу, разносятся по всему организму.

К преимуществам метода лекарственного электрофореза относят: 1) создание кожного депо, в котором лекарственные вещества обнаруживаются от 1 до 3 дней и более; 2) воздействие непосредственно на патологический очаг; 3) значительное урежение физиологических реакций; 4) безболезненное введение лекарственных веществ. Недостатками метода являются: 1) не вес препараты могут быть использованы для лечения, так как неизвестна электрофоретичность и полярность многих медикаментов; 2) при ряде заболеваний требуется большая концентрация лекарства, чем вводится с помощью тока; 3) представляет трудность определения точного количества введенного лекарственного препарата.

Источником постоянного электрического тока, применяемого с лечебными целями являются аппараты для гальванизации. Существует несколько аппаратов. Наиболее часто применяется «Поток-1», «ГР-2» (для гальванизации полости рта), «ГК-2» (устройство для проведения гальванизации и электрофореза в четырехкамерных ваннах). В последние годы применяется аппарат «Нион», который отличается от аппарата «Поток-1» только наличием таймера.

Аппарат «Поток-1» рассчитан на проведение процедур одному больному. Корпус смонтирован из ударопрочного полистирола, может крепиться на стене или устанавливаться на столе. Выполнен по II классу электробезопасности.

Аппарат укомплектован пластинчатыми электродами различной формы и размеров и специальными электродами для проведения процедур гинекологическим и офтальмологическим больным. Для подключения четырехкамерной ванны аппарат может быть снабжен приставкой.

На панели управления расположены (рис. 1): 1 — миллиамперметр для измерения силы тока с делениями шкалы от 0 до 5 мА (от 0 до 50 мА); 2 — сигнальная лампочка; 3 — ручка потенциометра для регулирования силы тока; 4 — ручка-переключатель шунта миллиамперметра на 5 и 50 мА; 5 — выключатель сети; 6 — две клеммы с обозначениями «плюс» (+) и «минус» (-) для подключения токонесущих проводов с электродами; 7 — шнур для включения аппарата в сеть, находящийся на нижней стенке. Если старая модель аппарата, то на задней стенке находится переключатель напряжения на 127 и 220 В.


Включение аппарата:

1) ручку включателя сети (5) установить в положение («ВЫКЛ.»);

2) ручка потенциометра (3) должна быть в нулевом положении;

3) ручку переключателя шунта миллиамперметра (2) поставить в положение, соответствующее величине тока, указанного врачом — 5 или 50 мА при положении переключателя шунта на цифре 5 вся шкала миллиамперметра соответствует 5 мА, а расстояние между большими делениями шкалы равно 1 мА. При положении переключателя шунта на 50 вся шкала соответствует 50 мА, а расстояние между большими делениями равно 10 мА;

4) расположить электроды на пациенте и зафиксировать их;

5) токонесущие провода от электродов присоединить к клеммам аппарата соответствующей полярности (+ или -);

6) вилку аппарата включить в розетку сети;

7) ручку выключателя перевести в положение («ВКЛ.»). При этом на панели аппарата загорается красная сигнальная лампочка (2);

8) ждать нагрева кенотронной лампы-выпрямителя (2-3 мин);

9) ручкой потенциометра (3) установить заданную для процедур силу тока, вращая се медленно и плавно по часовой стрелке;

10) в первые 2-3 мин после включения тока его сила может самостоятельно увеличиться в связи с уменьшением сопротивления кожи. Поэтому во время процедуры следует периодически проверять силу тока по показаниям стрелки миллиамперметра и регулировать се (уменьшая или увеличивая) при отклонении от заданной величины;

11) на своем столе медицинская сестра включает процедурные часы;

12) после окончания процедуры необходимо выключить ток, подаваемый на пациента. Для этого ручку потенциометра (3) медленно и плавно повернуть против часовой стрелки;

13) ручку выключателя сети (5) перевести в положение («ВЫКЛ.»);

14) снять электроды с тела больного. Отсоединить провода электродов от клемм аппарата (6) в конце рабочего дня.

Порядок включения и выключения аппаратов «АГН-32» и «АГП-33» идентичен вышеописанному аппарату.

Аппарат «ГР-2» (рис. 2) предназначен для гальванизации полости рта. Смонтирован в металлическом корпусе, выполнен по II классу элсктробсзопасности, максимальная выходная сила тока 5 мА. Устанавливается на столе или на тумбочке.
На панели управления расположены: 1 — миллиамперметр для измерения силы тока с делениями шкалы от 0 до 5 мА; 2 — регулятор тока; 3 — пружинные кнопки А и П для фиксации вилок, которыми оканчиваются провода электродов; 4 — сигнальные лампы А+ и А-; 5 — кнопка включения и выключения тока; 6 — кнопка переключения полярности выходных гнезд А±. На задней стенке находятся ввод сетевого шнура и держатель предохранителя.

Включение аппарата: 1. Переключатель, напряжения должен стоять в положении 220 В. 2. Кнопка включателя сети (5) должна находиться в выключенном положении. 3. Ручку регулятора тока (2) повернуть до упора против часовой стрелки. 4. Вилку сетевого шнура вставить в розетку электросети. 5. Нажать пружинные кнопки (3) фиксаторов А и П. 6. К выходным гнездам однополюсных вилок подключить провода электродов. 7. К концам провода подключить два электрода, один из которых укрепляют на руке с помощью резинового бинта, так называемый пассивный электрод.

Другой электрод располагают в корневом канале (проволочный) или на десне в виде резинового корытца длиной от 3 до 10 см с вложенной в него свинцовой пластиной, закрытой влажной марлевой полоской из 10-12 слоев (активный электрод). 8. Нажать кнопку «Вкл.» (5). При этом загораются сигнальные лампы А+ или А- (4), свидетельствующие о готовности аппарата к работе.

Читайте также:  Как делать электрофорез с лидазой на ухо

При необходимости перемены полярности нажимают кнопку А± (6). 9. Ручку потенциометра (2) плавно и медленно повернуть по часовой стрелке, при этом силу тока устанавливать по показаниям миллиамперметра и ощущениям больного. Пациент должен испытывать ощущения жжения, боли. 10. После окончания процедуры ручку регулятора тока (2) медленно повернуть против часовой стрелки до упора, таким образом прекратить подачу тока на пациента, снять электроды с пациента, отключить аппарат от сети, нажав на кнопку (5).

Устройство «ГК-2» — гальванизация конечностей (риc. 3), рассчитано на проведение процедуры больному в четырехкамерных ваннах. Устройство состоит из аппарата «Поток-1» (1), коммутирующей приставки к нему (2), подставки на четырех опорах (3), двух ручных (4) и двух ножных ванн (5), винтового стула для больного (6). Каждая ванна имеет по два отделенных перегородками с отверстиями прилива, в которые помещены графитовые электроды (7), соединяющиеся с помощью раздвоенных проводов с гнездом приставки (2) — «правая», «левая», «нога» «рука». Приставка подключена к выходным гнездам аппарата «Поток-1».


Слив воды из ванны:

1. Слить воду из ручных ванн в ножные: концы сливных шлангов (8), ручных ванн (4) опустить в ножные ванны (5) и вынуть пробки из ручных ванн.

2. Воду из ножных ванн слить в канализацию с помощью водоструйного насоса, входящего в комплект устройства. Насос надеть на водопроводный кран над раковиной.

3. Опустить в ножную ванну (5) резиновую трубку и открыть водопроводный кран. Насос отсасывает воду.

4. Воду из ножных ванн можно сливать и без насоса, опустив сливные шланги в какую-либо емкость.

5. Техника безопасности при отпуске процедуры: наполнять ванны и сливать воду необходимо в отсутствие больного, исключить возможность контакта больного с водопроводными трубами, кранами с водой, батареей — все эти предметы должны располагаться на расстоянии 1,5 м от стула (6) больного, убрать резиновые шланги.

Дозиметрия. При назначении больному гальванизации и лекарственного электрофореза врач-физиотерапевт указывает величину силы тока, однако интенсивность воздействия дозируется по плотности тока, т. с. зависит от количества миллиампер, приходящихся на 1 см2 матерчатой прокладки электрода. Оптимальной является плотность тока в пределах 0,03-0,2 мА/см2.

В рекомендациях обычно дастся плотность тока, но для того, чтобы провести процедуру, следует рассчитать силу тока по формуле I = b*S, где I — сила тока, b — плотность тока, S — площадь прокладки. При общих и сегментарно-рефлекторных воздействиях плотность тока меньше и составляет 0,05 мА/см2, при локальных процедурах больше — 0,1 мА/см2. Если 2 электрода разных размеров, то силу тока определяют по площади меньшей прокладки, в 3-электродной методике силу тока следует исчислять по сумме площади раздвоенных электродов.

Например: при заболевании почек один электрод площадью 300 см2 располагают в подложечной области, 2-й — раздвоенный по 100 см2, каждый помещают над областью левой и правой почки. Силу тока определяют по сумме площадей раздвоенного электрода, т. с. 200 см2, умноженной на плотность тока — 0,05 мА/см2. Она составит 10 мА. Эту величину следует указывать в форме назначения.

Медицинская сестра должна знать, что при отпуске процедуры необходимо постепенно увеличивать силу тока до 10 мА, не более, ориентируясь при этом на ощущения больного. При появлении под электродами неприятного жжения или боли следует уменьшить силу тока и проверить правильность наложения электродов. Продолжительность процедуры 15-30 мин. Гальванизацию назначают ежедневно или через день от 10 до 20 на курс лечения. Повторной курс гальванизации проводят не ранее, чем через 1-1,5 месяца.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

источник

Лабораторная работа №5

Цель работы:изучить действие постоянного тока на ткани и органы, лечебные методики — гальванизация, лечебный электрофорез, устройство и принцип действия аппарата для гальванизации.

Приборы и принадлежности:аппарат для гальванизации, вольтметр,

Ткани организма по электропроводным свойствам подразделяются на диэлектрики и электролиты. К диэлектрикам относятся твердые ткани: связки, сухожилия, роговой слой кожи, кость без надкостницы, клеточные мембраны. К электролитам — биологические жидкости: кровь, лимфа, спинномозговая жидкость и др. Электролиты содержат большое количество ионов, которые участвуют в различных обменных процессах. По тем участкам, где имеется жидкость (кровеносные и лимфатические сосуды, мышечные и нервные ткани), может протекать электрический ток.

При пропускании постоянного электрического тока и, соответственно, наложении электрического поля ионы упорядоченно перемещаются: положительные — в направлении поля, отрицательные — против. Вследствие этого происходит поляризация тканей, меняется концентрация ионов в клетках и межклеточных жидкостях ( прежде всего ионов Na, K, Cl ), кислотно-щелочное равновесие, водный баланс, усиливается крово- и лимфообращение и т.д. Количество перемещенных ионов определяется величиной пропускаемого тока и создаваемого электрического поля. Дозируя величину тока ( поля) и время воздействия, можно добиться желаемого лечебного эффекта.

На этом основаны две лечебные методики:

· лекарственный ( лечебный) электрофорез.

Гальванизация — метод физиотерапии, при котором используется действие на ткани организма постоянного электрического тока силой несколько миллиампер и, соответственно, электрического поля напряженностью Е=4-10 В/м.

Ток подводят с помощью проводов и пластинчатых электродов, изготовленных из металла, малая химическая активность которых не вызывает появления на электродах ЭДС поляризации. Чаще всего используется свинец. При прохождении постоянного тока через организм возможно возникновение химического и термического ожогов.

Химический ожог вызывают продукты электролиза раствора NaCl, содержащегося в тканях (то есть щелочи и кислоты)

Для устранения химического ожога между электродами и кожей помещают гидрофильные прокладки, смоченные физиологическим раствором или теплой водой. В этом случае кислоты и щелочи накапливаются в прокладках.

Термический ожог вызывает ток, если он достигает значительной величины. Это возможно вследствие того, что электропроводность тканей, и прежде всего кожи, зависит от содержания пота и влаги, поэтому даже при небольшом напряжении на электродах ток, пропускаемый через организм, может быть значительным.

Во избежание термического ожога нельзя превышать допустимое значение плотности тока.

Плотность тока определяется величиной силы тока и площадью электродов ( или прокладки ):

В зависимости от площади электродов величина допустимой плотности тока может колебаться в пределах от 0,01 до 0,2 mA/ см 2 . Чтобы при контакте плотность тока была одинакова по всей площади прокладок, электроды и прокладки должны быть плотно прижаты к участку тела. Для этого на электроды кладут подушки с песком. По допустимому значению плотности тока определяют максимальный ток, который можно пропустить через пациента:

Лекарственный электрофорез — это введение при помощи постоянного электрического тока и поля лекарственных веществ через кожу и слизистые оболочки. Растворами этих веществ смачивают прокладки под электродами. Вещество, образующее в растворе положительные ионы, вводится с положительного электрода, образующее отрицательные ионы — с отрицательного электрода. Частицы лекарственного вещества под действием тока и поля проникают в толщу кожи и образуют в ней так называемое ионное депо , из которого вымываются лимфой и кровью. При этом методе на организм действуют одновременно постоянный ток ( активный биологический фактор) и лекарственное вещество ( фармакотерапевтический фактор). Продолжительность лечебных процедур от 20 до 40 минут.

При данных методиках необходимо учитывать явление поляризации, возникающее при прохождении постоянного тока через ткани организма. Возникающее электрическое поле поляризации направлено против внешнего поля и противодействует ему. Вследствие этого в тканях ток достигает постоянного значения не сразу, а спустя некоторое время. Поэтому в начале процедуры необходимо следить за показаниями миллиамперметра.

Данные лечебные методики обеспечивают локальность действия на органы и ткани. Оба метода можно осуществить с помощью жидкостных электродов в виде ванн, в которые помещаются конечности пациента.

CХЕМА И ПРИНЦИП РАБОТЫ АППАРАТА

Аппарат для гальванизации состоит из полупроводникового выпрямителя, сглаживающего фильтра, потенциометра, миллиамперметра с шунтом ( рис.1). При включении аппарата в сеть переменное напряжение, подаваемое на его вход, в трансформаторе преобразуется до напряжения, необходимого для работы выпрямителя. При помощи диодов переменный ток выпрямляется, затем сглаживается фильтром и поступает на потенциометр R. C потенциометра напряжение подается на клеммы пациента. Меняя величину подаваемого напряжения, регулируют силу тока в цепи пациента.

Ток измеряется миллиамперметром, параллельно которому подключается шунт (Rш), что обеспечивает достаточную чувствительность прибора при измерении токов значительной величины.

Рассмотрим работу отдельных узлов аппарата.

Выпрямитель — это устройство, преобразующее переменный ток в ток одного направления. Для этой цели используются полупроводниковые диоды. В схеме, изображенной на рис. 1 , двухполупериодный выпрямитель состоит их трансформатора и 4 полупроводниковых диодов, включенных по мостовой схеме. Каждый диод является «стороной» четырехугольника. В одну диагональ этого четырехугольника ( СД ) подается напряжение со вторичной обмотки трансформатора, с другой диагонали (АВ ) выпрямленный ток подается на сглаживающий фильтр, а затем на потенциометр R.

Трансформатор — это устройство для повышения или понижения переменного напряжения. Он состоит из двух обмоток, одна из которых называется первичной, а другая — вторичной. Обмотки трансформатора могут быть намотаны параллельно или расположены на общем сердечнике из магнитомягкого железа; обычно он изготавливается наборным для уменьшения потерь на вихревые токи. В любом случае

принцип действия трансформатора основан на том, что магнитный поток, создаваемый током в первичной обмотке, должен проходить через вторичную обмотку.

При конструировании трансформатора стараются добиться того, чтобы весь (или почти весь) магнитный поток, создаваемый первичной обмоткой, проходил через вторичную. В дальнейшем мы будем полагать, что это действительно так. Будем также считать омические потери и потери на гистерезис в сердечнике пренебрежимо малыми. Эти предположения вполне оправданны, так как в современных трансформаторах потери обычно не превышают 1%.

Когда на первичную обмотку подается переменное напряжение, возникающий в результате этого переменный магнитный поток возбуждает во вторичной обмотке переменное напряжение той же частоты.

Однако напряжение на обмотках будет различным в зависимости от числа витков в каждой из них.

Согласно закону Фарадея, возникает ЭДС, равная :

в первичной обмотке ε1=-N1, во вторичной — ε2=-N2.

Напряжение, приложенное к первичной обмотке, равно ( без учета омических потерь) U1 = ε1=N1, а для вторичной обмотки можно записать: U22.С учетом этого можно теперь получить так называемое уравнение трансформатора, показывающее, как напряжение на вторичной обмотке связано с напряжением на первичной:

.

Если N2>N1, то трансформатор называется повышающим, если же N2 2

jmax= мAсм 2 jдоп, мAcм 2 Iдоп, мA 0,01 1 000 0,1 2 000 0,1 5 000 0,1 10 000 0,2

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Гальванизация и лечебный электрофорез как лечебные методики.

2. В каких случаях может произойти термический ожог при гальванизации?

3. Как рассчитать максимальный ток, который допустимо пропускать через пациента?

4. Какое нарушение методики данной лечебной процедуры может привести к химическому ожогу?

5. Начертите схему аппарата для гальванизации, объясните назначение и принцип работы трансформатора, выпрямителя, фильтра, потенциометра.

6. Представьте графически работу выпрямителя и фильтра.

Дата добавления: 2014-10-15 ; Просмотров: 1617 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Тема: Электролечение. Принципы устройства аппаратов: лекарственного электрофореза, диадинамической терапии, дарсонвализации, магнитотерапии, УВЧ-терапии.

Электрический ток — направленное (упорядоченное) движение электрических зарядов. В металлах, т. е. проводниках первого рода, он представляет собой упорядоченное движение свободных электронов, в электролитах — проводниках второго рода — движение ионов, т. е. электрически заряженных частиц. Именно такой механизм характерен для прохождения тока в биологических объектах, в том числе и организме человека.

В электролечении, кроме постоянного электрического тока, используются импульсные токи, магнитные и электромагнитные поля, токи и поля высокой (ВЧ), ультравысокой (УВЧ) и сверхвысокой (СВЧ) частот. Их особенности будут рассмотрены в соответствующих разделах данной главы.

Различные электротерапевтические процедуры отличаются характерными особенностями. Однако имеются и общие для всех этих процедур этапы, составляющие ориентировочную основу действий медицинской сестры при проведении электротерапевтических процедур: 1) ознакомление с назначением врача в процедурной карте (форма 44) и уяснение всех этапов назначенной процедуры; 2) подготовка аппарата к работе; 3) подготовка больного — осмотр участка воздействия, при необходимости его обнажение, инструктаж больного о соблюдении правил поведения во время процедуры, необходимости принять нужное положение; 4) укладка больного; 5) наложение электродов; 6) включение аппарата и проведение процедуры в точном соответствии с назначением и методикой данного вида электротерапии при соблюдении всех правил техники безопасности, наблюдение за работой аппарата и состоянием больного, оказание ему необходимой помощи; 7) отключение аппарата, осмотр области воздействия тока, отметка о выполнении процедуры в процедурной карте, обеспечение отдыха больного и назначение времени следующего посещения физиотерапевтического кабинета.

Читайте также:  Электрофорез для омоложения лица

ГАЛЬВАНИЗАЦИЯ

Применение с лечебной целью непрерывного постоянного электрического тока малой силы (до 50 мА) и низкого напряжения (30-80 В) называют гальванизацией.

В тканях организма человека содержатся как коллоиды (белки, гликоген и другие крупномолекулярные вещества), так и растворы солей. Они входят в состав мышц, железистой ткани, а также жидкостей организма (кровь, лимфа, межклеточная жидкость и др.). Молекулы образующих их веществ распадаются на электрически заряженные ионы: вода (в незначительной степени) — на положительно заряженный ион водорода (Н4′) и отрицательно заряженный ион гидроксила (ОН

), а неорганические соли — соответственно на ионы металлов (К»*», Na+, Ca24-, Mg24″) и кислотных остатков (S02-, С1

, СОз2″ и др.). Положительно заряженные ионы движутся по направлению к катоду (отрицательному электроду) и называются катионами, отрицательно заряженные — к аноду (положительному электроду) и называются анионами (рис. 1).

Движение электрического тока в теле человека непрямолинейно. Его прохождение зависит от структурных, анатомических взаимоотношений хороших проводников тока (оболочек нервных стволов, кровеносных сосудов, мышц) и плохих — диэлектриков (жировая ткань).

В кожу ток проникает в основном через выводные протоки потовых и сальных желез. Тонкая, нежная, молодая кожа, особенно увлажненная, лучше проводит электрический ток, чем сухая, огрубевшая.

При прохождении гальванического тока через ткани организма в них происходят сложные физико-химические процессы, вызывающие развитие ряда биологических эффектов, так лечебных, так и побочных.

Под электродами происходит химический процесс, связанный с прохождением электрического тока через электролиты, который называется электролизом. В результате положительно заряженные ионы (катионы) направляются к катоду, а отрицательно заряженные ионы (анионы) — к аноду. Достигнув электродов, они теряют свой заряд и становятся электрически нейтральными атомами, обладающими высокой химической активностью. Взаимодействуя с растворителем, они образуют вторичные продукты электролиза — кислоты и щелочи, оказывающие сильное раздражающее действие на кожу, вплоть до ожога. Для избежание этого применяют гидрофильные прокладки, которые располагают между пластинками металлических электродов и поверхностью кожи. Агрессивные продукты электролиза скапливаются на границе слоя прокладки, прилегающего непосредственно к электроду, т.е. в отдалении от поверхности кожи.

Рис. 1 — Движение ионов при гальванизации (схема)

Важное значение имеет разница подвижности ионов. Одновалентные ионы (Na и К’) более мелкие по сравнению с двухвалентными (Сa и Mg) и потому обладают большей подвижностью. Они легче достигают поверхности соответствующего электрода — катода. Вследствие ухода к катоду этих более подвижных ионов в области анода увеличивается относительная концентрация Са и Mg. Известно, что K+ и Na повышают возбудимость клеток, а Са и Mg ее снижают. Поэтому возбудимость тканей в области катода увеличивается, а в области анода уменьшается, что имеет важное значение для лечебной практики.

Межклеточные перегородки на пути прохождения электрического тока создают определенное препятствие для движения ионов. Ионы скапливаются у перегородок и как бы формируют промежуточные полюсы в толще тканей, между которыми возникают добавочные токи, получившие название «поляризационных». Последние повышают сопротивление прохождению гальванического тока в тканях организма.

Таким образом, в основе биологического действия постоянного гальванического тока лежат физические процессы электролиза, изменения концентрации ионов в клетках и тканях и поляризационные процессы. Они обусловливают раздражение нервных рецепторов и возникновение рефлекторных реакций местного и общего характера. Местные реакции проявляются изменением гидратации клеток, дисперсности коллоидов протоплазмы, проницаемости клеточных мембран, ускорением кровотока, повышением проницаемости сосудистых стенок. Усиливается чувствительность периферических нервных рецепторов к изменениям внутренней среды в тканях. В месте воздействия тока образуются биологически активные вещества (серотонин, гистамин и др.), которые всасываются в кровь и определяют общую реакцию организма.

Нервные импульсы, возникающие при раздражении I периферических рецепторов, передаются в ЦНС и вызывают сложные ответные реакции органов и систем организма, развивающиеся по нейрорефлекторно-гуморальному пути. Особенно выражение эти реакции проявляются в органах, имеющих сегментарную связь с раздражаемым участком кожной поверхности. Так, гальванизация трусиковой зоны через пояснично-крестцовый вегетативный аппарат оказывает рефлекторное влияние на органы малого таза. В развитии ответных реакций существенную роль играют сила тока, длительность воздействия, полярность активного электрода, а также исходное функциональное состояние органов и систем организма.

Гальванический ток оказывает нормализующее влияниена функциональное состояние центральной и вегетативной 1 нервной системы, способствует улучшению крово- и лимфообращения, расширяет коронарные сосуды, повышает функциональные возможности сердца, увеличивает напряжение кислорода, содержание гликогена и аденозинтрифосфорной кислоты в миокарде, стимулирует функцию! желез внутренней секреции, влияет на возбудимость нервно-мышечного аппарата.

Показаниями для назначения гальванизации являются 5 гипертоническая болезнь I и II стадии, бронхиальная астма, гастрит, колит, панкреатит, язвенная болезнь желудка и двенадцатиперстной кишки, заболевания периферической нервной системы (неврит, плексит, радикулит), периферических нервов, головного и спинного мозга, энцефалит, миелит, атеросклероз сосудов большого мозга, неврозы, мигрень, солярит, кожные заболевания, заболевания женских половых органов, ЛОР-органов и др.

Гальванизация противопоказана при индивидуальной непереносимости тока, острых гнойных процессах, нарушениях целостности кожи в местах наложения электродов (за исключением раневого процесса), кожных заболеваниях распространенного характера (экзема, дерматит) и полной потере болевой чувствительности.

ЛЕКАРСТВЕННЫЙ ЭЛЕКТРОФОРЕЗ

Обычная гальванизация в настоящее время постепенно уступает место методу лекарственного электрофореза — введению в организм лекарственных веществ с помощью постоянного тока. В этом случае на организм действует два фактора — лекарственный препарат и гальванический ток.

В растворе, как и в тканевой жидкости, многие лекарственные вещества распадаются на ионы и в зависимости от их заряда вводятся при электрофорезе с того или иного электрода. Проникая при прохождении тока в толщу кожи под электродами, лекарственные вещества образуют так называемые кожные депо, из которых они медленно поступают, в организм. Лекарственные вещества могут находиться в коже от 1-2 до 15-20 дней. Продолжительность депонирования во многом определяется физико-химическими свойствами веществ и их взаимодействием с белками кожи. Находящиеся в коже лекарственные ионы являются источником длительной нервной импульсации, что также способствует более длительному действию лекарственных веществ.

Однако не все лекарственные вещества могут быть использованы для электрофореза. Некоторые лекарственные средства под действием тока изменяют фармакологические свойства, могут распадаться или образовывать соединения, оказывающие вредное действие. Поэтому при необходимости использования для лекарственного электрофореза какого-либо вещества следует изучить его способность проникать через кожу под действием гальванического тока, определить оптимальную концентрацию раствора лекарственного вещества для электрофореза, особенности растворителя. Концентрация большинства лекарственных растворов, применяемых для электрофореза, составляет 1-5 %.

С прокладки положительного электрода (анода) в ткани организма вводятся ионы металлов, а также положительно заряженные частицы более сложных веществ, напримеркальций, магний, натрий, новокаин, хинин, витамин B,.лидаза, дикаин, димедрол и др. С прокладки отрицательного электрода (катода) вводят кислотные радикалы и отрицательно заряженные частицы сложных соединений, например хлор, бром, йод, пенициллин, салицилат, эуфиллин, гидрокортизон, никотиновую кислоту, (табл. 1).

Таблица 1 — Перечень лекарственных веществ, рекомендуемых для электрофореза

Лекарственное средство Вводимый ион (вещество) Концентрация раствора Полярность
Адреналин гидрохлорид Адреналин 0,1 % (0,5-1 мл на прокладку) +
Анальгин Анальгин 2-5 %
Витамин В 12 Цианокобаламин 100-200 мкг +
Ганглерон Гепарина натриевая соль Ганглерон Гепарин 0,25-0,5 % 5000-10000 ЕД на процедуру +
Гиалуронидаза Гиалуронидаза 0,1-0,2 г на 30 мл подкисленной (до рН 5,0-5,2)дистиллированной воды или ацетатного буфера +
Гидрокортизона сукцинат (водорастворимый) Гидрокортизон Содержимое ампулы, растворяют в 0,2 % растворе соды или подщелоченной (до рН 8,5- 9,0) воде
Грязь лечебная Компоненты грязи Нативная или грязевойраствор +(-)
Дикаин Дикаин 0,5-1 % +
Дибазол Дибазол 0.5 % +
Димедрол Димедрол 0,25-1 % +
Ихтиол Органическая сера 10-30 %
Калия (натрия) йодид Калий (натрий) йод 1-5 % ±
Калия (натрия) хлорид Калий (натрий) хлор 1-5% ±
Кальций хлорид Кальций хлор 1-5 % ±
Кислота аскорбиновая Кислота аскорбиновая 2-5 %
Кислота аминокапроновая Кислота аминокапроновая 0,5-1 % +
Кислота аспарагиновая Кислота аспарагиновая 1-2 %, готовится на подщелоченной (рН 8,9) дистиллированной воде
Кислота никотиноваяя Кислота никотиновая 1%
Ксикаин (лидокаин) Ксикаин 2-5 % +
Лидаза Лидаза 0,1 г на 30 мл ацетатного буфера или подкисленной (рН 5-5,2) дистиллированной воды 1-5 % +
Лития (карбонат, бензоат) Литий 1-5% +
Магния сульфат Магний 2-5 % +
Меди сульфат Медь 0,5-2 % +
Мезатон Мезатон 1-2 % +
Метионин Метионин 0,5-2 % а) на подкисленной (до рН 3,5-3,6) воде; б) на подщелоченной (до рН 8,0-8,2 воде) +
Натрия парааминосалицилат Натрия парааминосалициловая кислота 1-2 %
Натрия салицилат Салициловая кислота 2-5 %
Неомицина сульфат Неомицин 5000-10000 ЕД/мл +
Новокаина гидрохлорид Новокаин 0,25-2 % +
Но-шпа Но-шпа 1-2 %
Норсульфазол-натрий Норсульфазол 1-2% +
Обзидан Обзидан 0,1 % +
Окситетрациклинадегидрат (террамицин) Окситетрациклин 0,25-0,5 г на процедуру +
Окситетрациклина гидрохлорид Окситетрациклин 0,5-1,0 на процедуру
Панангин Аспарагиновой кислоты радикал 1-2% +
Папаверина гидрохлорид Папаверин 0,1-0,5 % +
Пенициллина натриевая соль Пенициллин 5000-10000 ЕД/мл
Пирилен Пирилен 0,1 % +
Сульфадимезин Сульфадимезин 1-2 %, готовится на разбавленной соляной кислоте 2-5 %, готовится на подщелоченной дистиллированной воде (рН 8,5-8,7) +
Тетрациклина гидрохлорид Тетрациклин 5000-10000 ЕД/мл +
Тиамина бромид Тиамин (витамин В,) 1-2 % +
Тримекаин Тримекаин 0,5-2 % +
Трипсин Трипсин 5-10 на процедуру готовится на подкисленной дистиллированной воде +
Цинка сульфат Цинк 1-2% +
Экстракт алоэ жидкий Биологически активные вещества и неорганические ионы 1:3
Эритромицин Эритромицин 0,1-0,25 г на процедуру: готовится на 70 % спирте +
Эуфиллин Теофиллин 2-5 %
Эфедрина гидрохлорид Эфедрин 0,1-1 % +

При применении сложных химических соединений, содержащих несколько ионов разноименного заряда (минеральная вода, лечебная грязь и грязевой раствор), активными являются оба электрода, т. е. ионы этих соединений вводятся одновременно с двух полюсов.

Введение лекарственных веществ методом электрофореза имеет ряд преимуществ по сравнению с обычными способами их использования:

1) лекарственное вещество действует на фоне измененного под влиянием гальванического тока электрохимического режима клеток и тканей;

2) лекарственное вещество поступает в виде ионов, что повышает его фармакологическую активность;

3) образование «кожного депо» увеличивает продолжительность действия лекарственного средства;

4) высокая концентрация лекарственного вещества создается непосредственно в патологическом очаге;

5) не раздражается слизистая оболочка желудочно-кишечного тракта;

6) обеспечивается возможность одновременного введения нескольких (с разных полюсов) лекарственных веществ.

Благодаря этим преимуществам лекарственный электрофорез находит все большее применение, в том числе при лечении заболеваний сердечно-сосудистой системы, в онкологической практике, при лечении туберкулеза. Возникают новые перспективные разработки этого лечебного метода, например электрофорез лекарственных веществ из растворов, предварительно введенных в полостные органы.

Однако имеются и ограничения для использования электрофореза, обусловленные прежде всего особенностями самих лекарственных веществ. Многие из них являются электрически нейтральными, имеют низкую электро-форетическую подвижность либо теряют свою активность под действием электрического тока.

Показания к применению лекарственного электрофореза складываются из показаний к гальванизации и переносимости назначенных препаратов. Противопоказания аналогичны таковым: для гальванизации с учетом индивидуальной переносимости лекарственного вещества.

Интенсивность воздействия при гальванизации и лекарственном электрофорезе определяются используемой силой тока, выражаемой в миллиамперах (мА). Расчет максимально допустимой силы тока производят по показателю плотности тока, т. е. силе тока, приходящейся на 1 см2 площади активного электрода 2 3456Следующая ⇒

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник