Меню Рубрики

Устройство для электрофореза в геле

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

источник

Что такое клинические исследования и зачем они нужны? Это исследования, в которых принимают участие люди (добровольцы) и в ходе которых учёные выясняют, является ли новый препарат, способ лечения или медицинский прибор более эффективным и безопасным для здоровья человека, чем уже существующие.

Главная цель клинического исследования — найти лучший способ профилактики, диагностики и лечения того или иного заболевания. Проводить клинические исследования необходимо, чтобы развивать медицину, повышать качество жизни людей и чтобы новое лечение стало доступным для каждого человека.

У каждого исследования бывает четыре этапа (фазы):

I фаза — исследователи впервые тестируют препарат или метод лечения с участием небольшой группы людей (20—80 человек). Цель этого этапа — узнать, насколько препарат или способ лечения безопасен, и выявить побочные эффекты. На этом этапе могут участвуют как здоровые люди, так и люди с подходящим заболеванием. Чтобы приступить к I фазе клинического исследования, учёные несколько лет проводили сотни других тестов, в том числе на безопасность, с участием лабораторных животных, чей обмен веществ максимально приближен к человеческому;

II фаза — исследователи назначают препарат или метод лечения большей группе людей (100—300 человек), чтобы определить его эффективность и продолжать изучать безопасность. На этом этапе участвуют люди с подходящим заболеванием;

III фаза — исследователи предоставляют препарат или метод лечения значительным группам людей (1000—3000 человек), чтобы подтвердить его эффективность, сравнить с золотым стандартом (или плацебо) и собрать дополнительную информацию, которая позволит его безопасно использовать. Иногда на этом этапе выявляют другие, редко возникающие побочные эффекты. Здесь также участвуют люди с подходящим заболеванием. Если III фаза проходит успешно, препарат регистрируют в Минздраве и врачи получают возможность назначать его;

IV фаза — исследователи продолжают отслеживать информацию о безопасности, эффективности, побочных эффектах и оптимальном использовании препарата после того, как его зарегистрировали и он стал доступен всем пациентам.

Считается, что наиболее точные результаты дает метод исследования, когда ни врач, ни участник не знают, какой препарат — новый или существующий — принимает пациент. Такое исследование называют «двойным слепым». Так делают, чтобы врачи интуитивно не влияли на распределение пациентов. Если о препарате не знает только участник, исследование называется «простым слепым».

Чтобы провести клиническое исследование (особенно это касается «слепого» исследования), врачи могут использовать такой приём, как рандомизация — случайное распределение участников исследования по группам (новый препарат и существующий или плацебо). Такой метод необходим, что минимизировать субъективность при распределении пациентов. Поэтому обычно эту процедуру проводят с помощью специальной компьютерной программы.

  • бесплатный доступ к новым методам лечения прежде, чем они начнут широко применяться;
  • качественный уход, который, как правило, значительно превосходит тот, что доступен в рутинной практике;
  • участие в развитии медицины и поиске новых эффективных методов лечения, что может оказаться полезным не только для вас, но и для других пациентов, среди которых могут оказаться члены семьи;
  • иногда врачи продолжают наблюдать и оказывать помощь и после окончания исследования.
  • новый препарат или метод лечения не всегда лучше, чем уже существующий;
  • даже если новый препарат или метод лечения эффективен для других участников, он может не подойти лично вам;
  • новый препарат или метод лечения может иметь неожиданные побочные эффекты.

Главные отличия клинических исследований от некоторых других научных методов: добровольность и безопасность. Люди самостоятельно (в отличие от кроликов) решают вопрос об участии. Каждый потенциальный участник узнаёт о процессе клинического исследования во всех подробностях из информационного листка — документа, который описывает задачи, методологию, процедуры и другие детали исследования. Более того, в любой момент можно отказаться от участия в исследовании, вне зависимости от причин.

Обычно участники клинических исследований защищены лучше, чем обычные пациенты. Побочные эффекты могут проявиться и во время исследования, и во время стандартного лечения. Но в первом случае человек получает дополнительную страховку и, как правило, более качественные процедуры, чем в обычной практике.

Клинические исследования — это далеко не первые тестирования нового препарата или метода лечения. Перед ними идёт этап серьёзных доклинических, лабораторных испытаний. Средства, которые успешно его прошли, то есть показали высокую эффективность и безопасность, идут дальше — на проверку к людям. Но и это не всё.

Сначала компания должна пройти этическую экспертизу и получить разрешение Минздрава РФ на проведение клинических исследований. Комитет по этике — куда входят независимые эксперты — проверяет, соответствует ли протокол исследования этическим нормам, выясняет, достаточно ли защищены участники исследования, оценивает квалификацию врачей, которые будут его проводить. Во время самого исследования состояние здоровья пациентов тщательно контролируют врачи, и если оно ухудшится, человек прекратит своё участие, и ему окажут медицинскую помощь. Несмотря на важность исследований для развития медицины и поиска эффективных средств для лечения заболеваний, для врачей и организаторов состояние и безопасность пациентов — самое важное.

Потому что проверить его эффективность и безопасность по-другому, увы, нельзя. Моделирование и исследования на животных не дают полную информацию: например, препарат может влиять на животное и человека по-разному. Все использующиеся научные методы, доклинические испытания и клинические исследования направлены на то, чтобы выявить самый эффективный и самый безопасный препарат или метод. И почти все лекарства, которыми люди пользуются, особенно в течение последних 20 лет, прошли точно такие же клинические исследования.

Если человек страдает серьёзным, например, онкологическим, заболеванием, он может попасть в группу плацебо только если на момент исследования нет других, уже доказавших свою эффективность препаратов или методов лечения. При этом нет уверенности в том, что новый препарат окажется лучше и безопаснее плацебо.

Согласно Хельсинской декларации, организаторы исследований должны предпринять максимум усилий, чтобы избежать использования плацебо. Несмотря на то что сравнение нового препарата с плацебо считается одним из самых действенных и самых быстрых способов доказать эффективность первого, учёные прибегают к плацебо только в двух случаях, когда: нет другого стандартного препарата или метода лечения с уже доказанной эффективностью; есть научно обоснованные причины применения плацебо. При этом здоровье человека в обеих ситуациях не должно подвергаться риску. И перед стартом клинического исследования каждого участника проинформируют об использовании плацебо.

Обычно оплачивают участие в I фазе исследований — и только здоровым людям. Очевидно, что они не заинтересованы в новом препарате с точки зрения улучшения своего здоровья, поэтому деньги становятся для них неплохой мотивацией. Участие во II и III фазах клинического исследования не оплачивают — так делают, чтобы в этом случае деньги как раз не были мотивацией, чтобы человек смог трезво оценить всю возможную пользу и риски, связанные с участием в клиническом исследовании. Но иногда организаторы клинических исследований покрывают расходы на дорогу.

Если вы решили принять участие в исследовании, обсудите это со своим лечащим врачом. Он может рассказать, как правильно выбрать исследование и на что обратить внимание, или даже подскажет конкретное исследование.

Клинические исследования, одобренные на проведение, можно найти в реестре Минздрава РФ и на международном информационном ресурсе www.clinicaltrials.gov.

Обращайте внимание на международные многоцентровые исследования — это исследования, в ходе которых препарат тестируют не только в России, но и в других странах. Они проводятся в соответствии с международными стандартами и единым для всех протоколом.

После того как вы нашли подходящее клиническое исследование и связались с его организатором, прочитайте информационный листок и не стесняйтесь задавать вопросы. Например, вы можете спросить, какая цель у исследования, кто является спонсором исследования, какие лекарства или приборы будут задействованы, являются ли какие-либо процедуры болезненными, какие есть возможные риски и побочные эффекты, как это испытание повлияет на вашу повседневную жизнь, как долго будет длиться исследование, кто будет следить за вашим состоянием. По ходу общения вы поймёте, сможете ли довериться этим людям.

Если остались вопросы — спрашивайте в комментариях.

источник

Электрофорез (от электро- и др.-греч. φορέω — «переношу») —метод разделения макромолекул, различающихся по размеру, молекулярной массе, пространственной конфигурацией, вторичной структурой или электрическому заряду. Впервые было открыто профессорами Московского университета П. И. Страховым и Ф. Ф. Рейссом в 1809 году.

Молекулы в буферном растворе обладают электрическим зарядом, величина и знак которого зависят от pH среды. При пропускании электрического тока через раствор в нем формируется направленное электрическое поле, напряженность которого измеряется разностью потенциалов по концам емкости, в которой производится электрофорез. Под действием поля молекулы начинают движение в направлении катода или анода. Скорость движения зависит от величины заряда, размеров и трения окружающей среды. С течением времени смесь разделяется на фракции, состоящие из молекул, движущихся с одинаковой скоростью. В современных экспериментах рабочий канал приборов для электрофореза заполняют гелем, имеющим структуру сетки. В этом случае основное влияние на подвижность молекул и их степень разделения оказывают их линейные размеры. В некоторых случаях может возникнуть ситуация, при которой особо крупные молекулы не проходят через поры геля.

Электрофорез в агарозном геле в различных модификациях широко применяется для разделения молекул нуклеиновых кислот, белков и других макромолекул в биологии и медицине. На водяной бане или в лабораторной печи плавят смесь агарозы, буфера и воды. Затем ее охлаждают до 50-60 °C и заливают в форму. Лунки для нанесения делаются при помощи гребенки. Исследуемый образец наносят в лунку при помощи дозатора. Когда краситель, помещаемый в лунки в начале эксперимента, достигает конца геля, электрофорез останавливают. Затем гель окрашивают красителем, который связывается с исследуемыми молекулами. Интенсивность окраски полос красителя дает представление о концентрации молекул в образце. Кроме концентрации, метод электрофореза позволяет определить относительную молекулярную массу исследуемых молекул, для этого в крайнюю лунку помещают набор маркеров молекулярной массы, который должен полностью покрывать диапазон молекулярных масс исследуемой системы.

Бромфеноловый синий и ксиленцианол — могут заметно мешать наблюдению фрагментов под UV. Краситель Cresol red совместим с ферментативными реакциями, практически не мешает наблюдению под UV. OrangeG наиболее подвижный краситель, практически всегда находится вне «рабочей зоны». Заметен под UV. Краситель в буфере нужен лишь для того, чтобы образец был легко заметен в лунке и в геле.

Самое широкое применение агарозные гели имеют в исследованиях, связанные с разделением нуклиновых кислот. Последние имеют довольно значительные отрицательный заряд, величина которого слабо зависиот от pH раствора, вследствие чего разделение на фракции происходит в основном за счет различия в линейных размеров молекул. В таких экспериментах используют 0.089М Трис-боратный, 0.05 Трсфосфатный и Трис-ацетатный буфер. Стоит отметить, что при обычном электрофорезе в геле можно разделять фрагменты нуклеиновых кислот, размер которых менее 50 тыс п.н. Также часто из эксперимента нужно получить оценку размеров молекул. Для этого используются наборы молекул известной длины. Например, для регистрации продуктов амплификации ДНК применяется электрофорез в агарозном геле в присутствии бромистого эитидия, который образует с фрагментами ДНК устойчивое соединение внедрения, проявляющееся в виде светящихся полос при облучении геля УФ-излучением длиной волны 290-330 нм.

источник

Электрофорез в агарозном геле.

Принцип метода электрофореза.

Электрофорез – метод разделения макромолекул, различающихся по таким параметрам, как размеры (или молекулярная масса), пр о- странственная конфигурация, вторичная структура и элек трический заряд.

Физический принцип метода заключается в следующем. Наход я- щиеся в буферном растворе макромолекулы обладают некоторым су м- марным электрическим зарядом, величина и знак которого зависит от рН среды. Если через этот раствор, зак люченный в канал из изолирующего материала начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т.е. сформируется электрическое поле. Его напряженность измеряется разностью поте н- циалов по концам канала, отнесен ной к его длине (В/с). Под действием поля макромолекулы в соответствии со своим суммарным зарядом м и- грируют в направлении катода или анода, причем их трение об окр у- жающую среду ограничивает скорость миграции. В зависимости от в е- личины заряда и размеров мол екулы приобретают различные скорости. Постепенно исходный препарат, состоящий из различных молекул, ра з- деляется на зоны одинаковых молекул, мигрирующих с одинаковой скоростью. В современных приборах рабочий канал заполняют гелем, наличие сетки которого вн осит важную дополнительную деталь в эле к- трофоретическую миграцию молекул. Фракционируемые молекулы сталкиваются с нитями полимера, образующую сетку геля, что увел и- чивает сетку геля и снижает скорость движения молекул. Препятствия для миграции становятся о собенно серьезными, если средний размер пространственных ячеек геля оказывается соизмерим с размерами ма к- ромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных макромолекул и степень разделения оказывает соотношение их линей ных размеров. Возможна даже такая ситуация, когда особенно крупные молекулы белков или нуклеиновых кислот в о- обще не могут «протиснуться» через поры геля и их миграция прекр а- титься.

Читайте также:  Растворы для электрофореза при грыже

В настоящее время используют ПААГ и агарозный гель. В а- рьируя концентрацию полимера, можно получать гели с очень шир оким диапазоном размеров пор. Кроме того, можно изменять электрич еские заряды макромолекул путем вариации рН буфера, а их конфигур ацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость.

В ходе электрофореза зоны макромолекул остаются невид и- мыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же зн а-

ка, что и фракционируемые молекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость м и-

грации наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают.

Разделившиеся зоны биополимеров во избежание их дифф у- зии немедленно фиксируют. Для этого гель извлекают из стеклянной формы и вымачивают в смеси, кислоты выпадают в осадок в том мес те, где закончилась их миграция в ходе электрофореза. После фиксации (или одновременно с ней) проводят окрашивание зон путем вымачив а- ния геля в растворе красителя, прочно связывающегося с белком или нуклеиновой кислотой. Излишек красителя удаляют.

Вместо цилиндрических часто используют гели в виде тонких пластин, заполимеризованные между двумя плоскими стеклами. Такие пластины имеют важное преимущество: на них можно одновременно фракционировать несколько препаратов. Обычно их вносят с одного края геля на равных расстояниях друг от друга. Каждый препарат ра з- деляется в электрическом поле независимо от своих соседей, образуя свой набор зон. Кроме того, поскольку гель заливают в форму для п о- лимеризации жидким, то его концентрация, состав буфера и содерж а- ние добавок строго одинаковы по всему сечению геля. Следовательно, плотность тока и напряжение электрического поля также одинаковы. Это обеспечивает строго идентичные условия фракционирования ра з- ных препаратов и дает возможность достоверного сопоставления их с о- става путем сравнения положения полос в параллельных треках.

Особенности агарозного геля.

Агароза – это особо чистая фракция природного линейного пол и- сахарида агара, который получают из морских красных водорослей

(Gracilaria, Gelidium, Ahnfeltia).

Агароза состоит из строго чередующихся остатков 3-О- замещенной-β-D-галактопиранозы и 4-О-замещенной 3-6-ангидро-α-L- галактопиранозы. Молекулярная масса ее составляет 10 4 -10 5 . Гелеобразование идет путем связывания в пространственную сетку пучков нитей за счет водородных связей между ними. Некоторые виды агарозы обр а- зуют прочные гели уже при концентрации 0,3%.

При температурах 84 -96 o (а у специальных типов – уже при 70 o ) раствор агарозы переходит в прозрачную жидкость – «плавится». Вязкость расплавленного 1%-ного раствора агарозы составляет 10 -15 с П, что примерно соответствует вязкости 50% -ного раствора сахарозы при комнатной температуре. Растворы агарозы характеризуются ярко выр а- женным гистерезисом: они затвердевают, образуя гель, при значител ь- но более низких температурах (36 -42 o ). У легкоплавких типов агарозы

эта температура снижается до 30 o . Такая особенность облегчает ман и- пуляции с расплавленной агарозой — можно не опасаться преждевременного ее застывания в гель. Более того, расплавленную агарозу пре д- варительно охлаждают до 50 -55 o и уже при этой температуре заливают

в формы; это удобно и не связано с возникновением значительных те п- ловых деформаций.

Гели агарозы не вполне прозрачны, что обусловлено «кристалл и- зацией» геля.

Затвердевший гель представляет собой н е вполне равновесную систему: со временем он несколько уплотняется, выдавливая из себя жи д- кость. Температура плавления и гелеобразования зависят от с одержания в агарозе метоксильных групп, которое может достигать 3 -4%. Наличие этих групп затрудняет гелеоб разование.

В агарозе неизбежно содержатся и эфиры серной кислоты. Чем меньше в агарозе заряженных сульфогрупп, тем слабее силы электр о- статического отталкивания между молекулами полимера и выше их способность к связыванию водородными связями. Их присутствие существенно влияет не только на температуры плавления и застывания гелей, но и на сам процесс электрофореза. В частности, именно эфиры серной кислоты обусловливают сильно выраженное при электрофорезе

в гелях агарозы явление эндосмоса, суть которого в след ующем: отрицательно заряженные остатки серной кислоты неподвижно связаны с полимерными нитями агарозы. Соответствующие им положительные ионы, находясь в водной фазе под действием электрического поля м и- грируют в направлении катода. Их место занимают катионы, которые увлекают за собой всю массу жидкости, находящейся внутри геля, и вместе с ней – растворенные в водной фазе геля макромолекулы. Эле к- трофорезом в агарозном геле чаще всего разделяют отрицательно зар я- женные макромолекулы, а эндосмос направлен в про тивоположную сторону и ухудшает разделение. Поэтому агарозу подвергают спец и- альной очистке, и содержание иона сульфата в продажных препаратах не превышает 0,5%.

Рис. 1. Влияние эндосмоса в агарозном геле на характер фракционирования двунитевых ДНК одина кового разме-

1 — сверхскрученная ДНК; 2 — линейная; 3 — кольцевая; степень эндосмоса увеличивается слева направо

Типы агарозы, отличающиеся слабо выраженным эндосмосом, с о- держат менее 0,3% сульфата. В случае необходимости мо жно провести дополнительную очистку агарозы от сульфата обработкой 1М NаОН в 0,05%-ном боргидриде натрия и переосаждением 50% -ным этанолом. Наличие заряженных сульфогрупп иногда обусловливает еще и не специфическую сорбцию белков на агарозе, в результате чег о полосы расплываются с образованием «хвостов». Степень эндосмоса колич е- ственно оценивают с помощью коэффициента относительной миграции

(-m r ) – представляющего собой отношение скоростей миграции незаряженного полимера (за счет только эндосмоса) и сходного с ним по структуре полианиона при электрофорезе в агарозе данного типа.

Некоторые типы агарозы по номенклатуре фирмы « Miles»: тип LE – малая степень эндосмоса -m r =0,1-0,15;

тип HE – сильно выраженный эндосмос -m r =0,23-0,26.

Агароза с повышенными темпера турами плавления и гелеобразования (тип HGT) имеет -m r r >0,3) , но не за счет увеличения сульфатов, б лагодаря чему неспецифической сорбции белков на агарозе этого типа почти не происходит.

Агароза для электрофореза выпускается обычно в виде лиофилизированного порошка. Для приготовления геля выбранной концентр а- ции навеску порошка растворяют в соответствую щем буфере и нагре-

вают до 90-95 o . Перед заливкой в форму раствор агарозы охлаждают до 50 o .

Выбор концентрации агарозы, т.е. пористости ее геля, диктуется размерами фракционируемых макромолекул. Средний размер пор 2% — ного геля агарозы приблизительно соот ветствует диаметру сферически упакованной молекулы биополимера с массой 50 млн. дальтон. Гели с более высоким содержанием агарозы используют для гель -фильтрации. При электрофорезе поры геля должны быть легко проницаемы для м о- лекул биополимеров, чтобы лишь тормозить их миграцию в электрич е- ском поле за счет трения, поэтому для электрофореза применяют аг а-

розные гели с концентрацией 0,4 -2%. Ниже представлены примерные концентрации гелей агарозы (в %) для некоторых распространенных объектов фракционирования:

Высокомолекулярная ДНК вирусов и пла з-

Рестрикты ДНК (5-20 тыс. пар оснований)

Реовирусная двунитевая РНК (500 -5000 пар

Нативные мРНК; рестрикты ДНК (100 -1000

Разновидности электрофореза в агарозном геле.

Современные варианты электрофореза используют пластинки или колонки с агарозным гелем.

В зависимости от цели исследований эоектрофорез в агарозном геле может быть аналитическим и/или препаративным.

Аналитический электрофорез в агарозном геле имеет целью электрофоретическое разделение макромолекул с последующей визуализ а- цией и анализом полученных результатов.

Агарозный электрофорез применяют в препаративных целях. Для извлечения из геля разделенных компо нентов используют несколько способов: агарозный гель подвергают элюции буферными растворами, центрифугированию, замораживанию и оттаиванию.и др.

Вертикально расположенные трубки

Вертикальное расположение гелей и меет то преимущество, что препарат, наносимый на гель сверху, при любом его объеме равномерно покрывает всю рабочую поверхность геля. Затруднение при вертикал ь-

ном расположении могут возникать при недостаточной сцепле нности геля со стеклом, он будет сползат ь вниз.

Все приборы для с вертикальным расположением гелей ко н- структивно сложнее, чем аппараты с горизонтальным расположением, т.к. верхний электродный резервуар должен быть поднят над гелем.

Необходимо уплотнение в местах сочленения его с трубками или пл а- стинами.

Трубки (12-18штук) с уже заполимеризованным в них гелем вставляют снизу в резиновые прокладки так, чтобы их верхние концы выступали над дном резервуара. Если используют не все трубки, то на их место ставят заглушки. Собранный вместе с трубками в ерхний электродный резервуар устанавливают на нижний так, чтобы концы трубок оказались на некотором расстоянии от дна последнего и заполняют нижний резервуар электродным буфером до такого уровня, что трубки оказываются почти полностью погруженными в буфер. Это делается для улучшения теплоотвода в процессе электрофореза. С этой же целью нижний буфер перемешивают магнитной мешалкой или вводят допо л-

нительную охлаждающую систему. Оба резервуара цилиндрической или прямоугольной формы изготавливают из плексигласа , что позволяет следить за продвижением фронта красителя. В резервуарах должны быть закреплены электроды из платиновой проволоки. Нижний эле к- трод при этом должен располагаться так, чтобы поднимающиеся от н е- го пузырьки газа не попадали на нижние торцы трубо к, что создавало бы помехи протекания через них тока. Объемы электродных резерву а- ров достаточно велики, чтобы рН находящегося в них буфера не изм е- нялся под влиянием продуктов электролиза.

Для заливки и полимеризации геля нижние торцы трубок з а- клеивают парафильмом и устанавливают строго вертикально в штатив. Заливают гель. Собрав прибор, заливают буфер в верхний электродный резервуар. При полимеризации геля часть трубки с верхнего ее конца оставляют свободной, и туда при заливке попадает буфер. Затем под него, на поверхность геля, пипеткой наслаивают препарат, в который добавляют предварительно 5 -10% сахарозы. При любом варианте эле к- трофореза надо быть уверенным в том, что исходный препарат своб о- ден от взвешенных частиц (пыли или осадков), которые будут соб и- раться на торце геля и однородность тока по его сечению, что повлечет за собой деформацию разделяющихся зон. В этом случае препарат сл е- дует отфильтровать или очистить центрифугированием.

По окончанию электрофореза гель из трубки извлекают. В большинстве случаев это легко сделать с помощью длинной и зату п- ленной иглы шприца, которую вводят с одного из концов трубки, кр у- говыми движениями отслаивая гель от ее стенок. Если необходимо т а- кую операцию проводят и с другого конца. Через иглу при этом пост у- пает вода из закрепленного выше резервуара. Если гель отслаивается с трудом, в воду можно добавить 0,5 -1% раствор детергента. Во избеж а-

ния поломки следует дать гелю возможность выскользнуть из трубки в сосуд с водой, над которым проделывают эти манипуляции. Иногда д ля удаления геля из очень длинных трубок по его периферии с концов впрыскивают глицерин, а сам гель выталкивают водой из присоединя е- мого к трубке шприца. Если гель высокой концентрации вынуть не уд а- ется, его приходится замораживать, а трубку разбивать моло тком. Иногда можно решить проблему путем вымачивания трубки с гелем в мет а- ноле: гель постепенно съеживается и отстает от стенки.

Основным недостатком электрофореза в трубках является з а- трудненный отвод тепла даже при диаметре 5мм. На оси геля темпер а- тура оказывается выше, чем у его прилегающей к стеклу поверхности.

Это приводит к изгибу зон и соответственно окрашенных полос, п о- скольку электрофоретическая подвижность зависит от температуры. В условиях хорошего теплоотвода можно вести микроэлектрофорез в к а- пиллярах диаметром 0,7 -1,5мм.

Вертикально расположенные пластины

Для электрофореза белков обычно используют пластины ш и- риной 8-14 см и длиной (в направлении электрофореза) 8 -28 см.

Полимеризацию акриламида или застывание агарозы, а затем и электрофорез ведут в форме, образованной двумя пластинами зе р- кального стекла толщиной 5 -6мм. Расстояние между пластинами зад а- ется толщиной прокладок из тефлона или плексигласа («спейсеров») и определяет толщину геля. Прокладки шириной 10 -15мм устанавливают вдоль боковых краев стекол. Эти же прокладки можно использовать и для уплотнения формы во время нахождения в ней еще не затвердевш е- го геля. Для этого устанавливают еще одну прокладку точно такой же толщины по нижнему краю стекол и плотно прижимают ее к фрезер о- ванным торцам боковых прокладок.

Читайте также:  Электрофорез при поясничной грыже сделать

При заливке агарозы уплотнение формы можно осуществить проще — заклеить торцы стекол липкой лентой. Нижнюю прокладку при этом можно не устанавливать. Уплотнение не будет совершенным, но агароза в контакте с прокладками и лент ой быстро застынет и заметного ее вытекания не будет. Для надежности можно сначала залить н е- большой слой агарозы и дать ей застыть в нижней части формы, а п о- том залить остальной ее объем.

Собранную и уплотненную форму устанавливают вертикал ь- но и заливают в нее раствор мономеров ПААГ или расплавленную аг а- розу.

В аналитических опытах на каждой пластине обычно ведут электрофорез нескольких препаратов, состав которых можно затем с о- поставить при идентичных условиях разделения. Сопоставляемые пр е- параты фракционируют в параллельных друг другу «треках». В ходе полимеризации на верхнем крае геля формируют ряд одинаковых углублений прямоугольной формы — «карманов», в которые затем вн о-

сят исследуемые препараты. Для этого в еще незаполимеризовавшийся

гель или горячую агарозу вставляют гребенку из тефлона или плекс и- гласа. Прямоугольные зубцы гребенки и формируют карманы.

Гель или агарозу заливают между пластинами с таким расч е- том, что при опускании гребенки до упора жидкий гель заполнил пр о- межутки между ее зубцами. Гре бенку начинают вставлять с некоторым перекосом, чтобы под ее зубцами не задерживались пузырьки воздуха. Когда гель готов, вынимают нижнюю прокладку или снимают липкую ленту и осторожно вытаскивают гребенку. При работе с концентрир о- ванным ПААГ гель может прилипать к зубцам гребенки и нижние плоскости карманов могут оказаться неровными. Это ухудшает условия формирования исходных полос в геле. В таком случае имеет смысл вв е- сти еще один слой геля пониженной концентрации, и гребенку устана в- ливают в него.

Для проведения электрофореза чаще всего используются приборы конструкции, предложенной Стадиером. Верхний и нижний резервуары прямоугольной формы соединены вертикальной стенкой, в которой имеется вырез, ведущий в полость верхнего резе рвуара. Такой

же вырез имеет и одна из двух стеклянных пластин, меду которыми п о- лимеризуется гель. Пластины прижимаются пружинными зажимами к вертикальной стенке так, чтобы оба выреза совпадали. Буфер в верхний резервуар заливают до такого уровня, чтобы он через в ырез покрывал верхний торец геля. При этом вторая, не вырезанная, стеклянная пл а- стинка выступает в роли передней стенки резервуара. В месте совм е- щения двух вырезов, между стеклянной пластиной и стенкой, должно быть осуществлено уплотнение, препятствующее вытеканию верхне го буфера. В оба резервуара вмонтированы электроды из платиновой пр о- волоки. При установке в прибор форму с гелем частично погр ужают в буфер нижнего резервуара, так что она опирается на разнесенные по сторонам выступы и ее нижний торец оказывается приподнят ым над дном резервуара. После погружения необходимо удалить пузырьки воздуха.

По окончании электрофореза пластины разнимают, отслаивая одну из них от геля с помощью шпателя. Его всовывают между пласт и- нами со стороны карманов и слегка поворачивают. Со вто рой пластины гель снимают руками и переносят в ванночку для фиксации или окр аски. Необходимо проводить манипуляции в перчатках, т.к. случайное прикосновение кожи рук к рабочей поверхности геля при современных чувствительных методах окрашивания может остави ть на геле артефактное белковое пятно.

Горизонтально расположенные пластины

Преимущество-отсутствие проблемы уплотнения. Оба эле к- тродных буфера находятся в резервуарах, расположенных ниже уровня горизонтального столика, на который кладут гель.

Гель, полимеризованный на тонкой стеклянной пластинке или плашке из плексигласа, помещают на столик открытой поверхн о- стью кверху, поскольку препарат вносят не с торца, а в ряд специал ь- ных «колодцев», расположенных на некотором расстоянии от края. Электрофорез проводят в форезных камерах. Препараты вносят в «к о- лодцы» вместе с красителем — бромфеноловым синим, содержащим также глицерин, который «прижимает» краситель и препарат, не позв о- ляя им диффундировать в геле или в буфере.

Пластины для горизонтального элект рофореза в агарозе можно приготовить чрезвычайно просто. На горизонтально установленную (по уровню) плоскость кладут тонкое стекло определенного размера и на него выливают расплавленный раствор агарозы в буфере. Его объем надо рассчитать или подобрать так, чтобы получить пластину нужной толщины. Колодцы для препаратов в этом случае можно и не делать. Фирма LKB рекомендует наносить препараты прямо на поверхность

агарозы через прорези наложенного на пластину специального шаблона со щелями. Препарат объемом 2 — 4 мкл вносят в щель шаблона, откуда он полностью впитывается в агарозу. Впрочем, сравнительно пр о- стое приспособление, смонтированное на столике для заливки, позволяет установить над пластиной (перпендикулярно к ее плоскости) гребенку и с ее помощью при з аливке агарозы образовать колодцы для препаратов. Перед использованием пластину агарозы тоже следует выдержать во влажной атмосфере в течение суток.

Итак, электофорез в агарозном геле позволяет идентифицировать большое количество белковых фракций. Пример – электрофоретическое разделение белков сыворотки крови.

Электрофорез проводят в 1% -ном агарозном геле в мединал — вероналовом буфере рН=8,6 с ионной силой 0,05. Все белки сыворотки крови при рН=8,6 заряжаются отрицательно заряд и движутся от катода к аноду, причем дальше всего уходят альбумины, имеющие меньшую молекулярную массу, затем располагаются 1 -, 2 -, — и -глобулины. Иногда каждая из этих основных фракций может разделиться на н е- сколько подфракций. Первоначальная оценка результатов электрофор е- тического разделения сывороточных белков (выявление нормы или п а- тологии) должна проводиться визуально, путем сравнения с картиной нормальной сыворотки, а количественные данные предназначены тол ь- ко для документирования результатов и динамического наблюдения.

Для электрофореза белков используются различные аппараты, как ручные, так и полуавтоматические. Современные комплексы оснащены микропроцессорными блоками питания и управляются компьютером; в большинстве систем на последней стадии исследования окрашенных мембран или гелевых пластинок (определения относительного колич е- ства белков в каждой фракции) используется электронный цветной ск а-

нер или миниатюрная фотокамера, что существенно повышает точность

и воспроизводимость результатов. Программное обеспечение дает во з- можность усредненного расчета оптической плотности отдельных фракций путем автоматического определения границ «дорожек» и мн о- гократного сканирования каждой из них в нескольких «разрезах», что позволяет исключить ошибки из -за локальных микродефектов и неро в- ного положения носителя, а также до определенной степени нивелир о- вать искривление дорожки и влияние окрашенного фона при неполной отмывке. На экран дисплея и на принтер выводится график — денситограмма с рассчитанным содержанием отдельных белковых фракций. При необходимости маркеры границ фракций на графике можно ско р- ректировать, при этом будет произведен автоматический пересчет их показателей. В компьютере, как правило, создается архив электрофор е- грамм; их можно в любое время извлечь и просмотреть. Электрофорез белков, позволяющий определить их количественные сдвиги и физико — химические характеристики, помогает выявить заб олевания печени и почек, иммунной системы, некоторые злокачественные новообразов а- ния (лейкозы), острые и хронические инфекции, генетически е поломки

Методика электрофореза в агарозном геле.

Для приготовления агарозного геля в СВЧ-печи или на водяной бане расплавляют смесь агарозы, буфера и воды. Охлажденную до 50-60 о С смесь тонким слоем заливают в форму и с помощью специальных гребенок делают в геле лунки для нанесения образца. Исследуемый препарат (раствор белка, ДНК или РНК) вносят в лунку, расположенную у края геля — полужидкой среды с сетчатой пространственной структурой (обычно для электрофореза используют тонкие пластины геля). Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, и когда через гель пропускают электрический ток, они перемещаются в электрическом поле. Молекулы одинакового размера (и одинакового заряда) движутся единым фронтом, образуя в геле дискретные невидимые полосы. Чем меньше размер молекул, тем быстрее они движутся. Постепенно исходный препарат, состоящий из разных макромолекул, разделяется на зоны, распределенные по длине пластинки. За ходом электрофореза следят по перемещению в геле красителя — заряженного низкомолекулярного вещества, которое вносят в каждую лунку перед началом электрофореза. Когда краситель достигает конца пластины, электрофорез останавливают, а гель окрашивают красителем, прочно связывающимся с белками или нуклеиновыми кислотами. Если образец представляет собой дискретный набор макромолекул разного размера, то после электрофореза получается набор четких полос, расположенных одна под другой. Если же распределение молекул по размеру более или менее непрерывно, то получается смазанная картина. По интенсивности окраски полос можно судить о концентрации макромолекул в образце. Чтобы определить относительную молекулярную массу разделенных фрагментов, одновременно проводят электрофорез маркерных макромолекул с известными молекулярными массами. Набор маркеров

источник

Впоследствии были предложены технологии разделения на плотных носителях, среди которых особое место заняли гели. Последние сочетали удобства разделения в свободном растворе (в геле 95-99% воды) с возможностью фиксировать результаты электрофореза путем высушивания геля. Среди гелеобразующих веществ вначале получил признание крахмал, затем полисахариды из водорослей агар-агар (агароза) и наконец гели, искусственно получаемые путем полимеризации акриламида.

Полиакриламидный гель стал одним из наиболее популярных носителей для электрофореза. Полимеризацию проводят в буферном растворе. Затем гель помещают в электрофоретическую камеру, заполненную буферным раствором и содержащую электроды для образования электрического поля (рис.1.8). рН и другие параметры буферного раствора выбираются из расчета, чтобы разделяемые молекулы несли отрицательный заряд и двигались в электрическом поле слева направо. Поскольку разделяемые молекулы движутся в геле, те из них, которые имеют большие размеры, будут задерживаться при прохождении через поры геля. Меньшие молекулы будут встречать меньшее сопротивление и, соответственно, двигаться быстрее. В результате, после проведения электрофореза, большие молекулы будут находиться ближе к месту нанесения, чем меньшие.

Рис.1.8. Виды проведения электрофореза в полиакриламидном геле (слева — в трубках с гелем, справа — в прямоугольных блоках)

Следует иметь ввиду, что этот метод позволяет разделять молекулы большей частью по их размеру, и совсем необязательно, — по их молекулярной массе. Для примера рассмотрим две молекулы белка по 1000 аминокислот каждая. Одна из них представляет вытянутую цепь (А), а вторая (за счет образования связей между соседними участками) имеет форму шпильки (Б):

Поскольку они движутся внутри геля, обе молекулы будут вести себя как сферы, диаметр которых равняется длине вытянутой части молекулы. Обе молекулы имеют одинаковую молекулярную массу, однако благодаря тому, что вторичная структура Б де-лает её молекулу короче, чем А, быстрее будет передвигаться Б. Дабы устранить влияние различий по форме и оставить только различия по молекулярной массе, разделяемые молекулы должны иметь развернутую конформацию (без вторичной структуры). Для разрушения вторичной и третичной структуры используются различные методы подготовки препаратов белка.

Подготовка белков. Все белки обладают вторичной и третичной структурной организацией. При этом их молекулы не всегда несут отрицательный заряд в растворе. Для разрушения вторичной и третичной структуры и образования на поверхности белков отрицательного заряда их нагревают и обрабатывают детергентом – додецилсульфатом натрия (ДДС-натрий).

Если соблюсти вышеприведенные условия, разделение молекул при электрофорезе будет осуществляться в зависимости от их молекулярной массы. При этом удается, например, разделить 2 молекулы полинуклеотида, различающиеся на 1 мононуклеотид. Высокомолекулярные молекулы будут двигаться медленнее низкомолекулярных. Длина пройденного молекулой расстояния будет пропорциональна логарифму величины, обратной её молекулярной массе (log 1/MM).

Обычно гели изображают в вертикальном положении, где место нанесения находится вверху, а движение разделяемых молекул направлено сверху вниз. Тогда в верхней части геля располагаются большие молекулы, а в нижней – с меньшей молекулярной массой.

Как правило, рядом с опытными пробами на гель наносится смесь белковых (или каких-то других разделяемых) молекул с известной молекулярной массой. Такие стандарты «молекулярной массы» позволяют прокалибровать пробег молекул. Тогда, зная какое расстояние прошло изучаемое вещество, можно установить его молекулярную массу. Ниже на рисунке 1.9 показан гель после обработки его красителем. Молекулы красителя связываются с каким-то определенным классом макромолекул независимо от последовательности расположения мономеров в их составе.

Рис.1.9. Результат проведения электрофореза в полиакриламидном геле после окраски геля неспецифическим красителем

Изображенный на рис.1.9 образец 1 содержит макромолекулы одного размера. Это может быть очищенный белок. При сравнении с подвижностью стандартов ясно, что молекулярная масса этого соединения около 3. Образец 2. Это может быть смесь белков после окраски геля неспецифическим красителем. Здесь находится так много полос, что среди них невозможно вычленить необходимую. В подобных условиях без зонда (который действует как специфический краситель) нам едва ли удастся получить полезную информацию об интересующем соединении. Учитывая это обстоятельство, для определения индивидуальных белков пользуются сочетанием электрофореза с иммунологическими реакциями (иммуноэлектрофорез) (рис.1.10).

Рис.1.10. Схема проведения иммуноблот анализа для обнаружения белка после проведения электрофореза в полиакриламидном геле (описание этапов приведено в гл.13)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8426 — | 7329 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Установка для электрофореза в агарозном геле.На рисунке 7 представлены основные элементы для проведения горизонтального электрофореза в агарозном геле. Схематично, установку можно представить как емкость для электродного буфера, по краям которой расположены два электрода. В пространство между электродами заливается проводящий буфер, в котором проводится электрофорез, и помещают гель. При этом гель может быть залит непосредственно в камере, а может быть залит отдельно на специальном лотке, который помещается в камеру.

Читайте также:  Лидаза для электрофореза при аднексите

Агароза. Природный коллоид, который выделяют из морских водорослей, является линейным полисахаридом, образованным повторяющимся элементом ‒ агаробиозой, которая в свою очередь состоит из чередующихся элементов: галактозы и 3,6-ангидрогалактозы. Агароза очень хрупка, и легко разрушается при манипулировании. Агарозные гели имеют «поры» большого размера и используются преимущественно для разделения больших молекул.

Агарозные гели получают суспендированием сухого порошка агарозы в водном буфере, и кипячением смеси до того момента, когда агароза расплавится и образует прозрачный раствор. Затем раствор наливают на подложку и дают остыть до комнатной температуры, чтобы сформировался прочный гель. При застывании агароза формирует матрикс, плотность которого определяется концентрацией.

Буфер для электрофореза. На электрофоретическую подвижность ДНК воздействуют состав и ионная сила буфера для электрофореза. В отсутствии ионов, электропроводность минимальна, и перемещение ДНК происходит медленно. В буфере с высокой ионной силой электропроводность очень эффективна, и образуется значительное количество тепла. В худшем случае, гель расплавляется и ДНК денатурирует. Существует несколько буферов для электрофореза нативной двухцепочечной ДНК. Они содержат ЕОТА (рН 8,0) и Тгis-ацетат (ТАЕ), Тгis-борат (ТВЕ), или Тгis-фосфат (ТРЕ).

Маркерная ДНК. При заданном напряжении, концентрации агарозного геля и буфера, расстояние перемещения зависит от молекулярного веса исходного материала. Поэтому, маркерная ДНК известного размера должна наноситься на дорожки и с левого, и с правого края геля. Маркер обычно содержит определенный набор известных сегментов ДНК, которые облегчают определение размера исследуемой ДНК, если какое-либо систематическое искривление геля возникнет во время электрофореза.

Буфер для нанесения. Образцы ДНК, которые будут наноситься на агарозный гель, сначала смешивают с буфером для нанесения, обычно содержащим воду, сахарозу и краситель (например ксиленцианол, бромфеноловый синий, бромкрезол зеленый и другие).

Окраска и фиксация

Для анализа результатов электрофореза, после его завершения, требуется, прежде всего, визуализовать картину распределения полос в геле. С этой целью могут применяться два основных подхода. Первый способ состоит в окрашивании ДНК специфическими красителями. Для этой цели существует большое разнообразие красителей, способных специфически окрашивать двунитевые или однонитевые участки ДНК, ДНК в составе различных комплексов или в определённой конформации. К достоинствам такого подхода можно отнести высокую чувствительность, избирательность окрашивания и дешевизну метода. Среди недостатков можно упомянуть относительную трудоёмкость процедуры, невозможность следить за ходом электрофореза в реальном времени, токсичность некоторых из широко применяемых красителей, воздействие красителей на структуру ДНК, и необходимую иногда предварительную фиксацию ДНК в геле.

Другой путь основан на способности самой ДНК поглощать свет в УФ диапазоне. Поэтому можно просканировать гель в УФ-свете и определить местоположение ДНК в геле. В настоящее время промышленностью выпускаются специальные комплексы, позволяющие следить за миграцией ДНК в геле в автоматическом режиме непосредственно в ходе электрофореза и получать оцифрованное изображение в любой момент времени. При использовании этого подхода предварительная фиксация ДНК в геле не требуется. К недостаткам подхода можно отнести малую избирательность метода и относительную дороговизну оборудования.

Наиболее распространенным красителем ДНК в экспериментах по электрофорезу является бромистый этидий. Этот краситель относится к соединениям, способным интеркалировать между парами оснований ДНК. Вещество является сильным канцерогеном и мутагеном, способным проникать через кожу. По этой причине работа с ним требует особой осторожности и соблюдения повышенных мер безопасности. При работе с бромистым этидием всегда необходимо использовать перчатки и маску. Отходы, содержащие бромистый этидий, требуют специальной утилизации.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Для приготовления 1%-го геля ‒ смешайте 100 мл воды и 1 г агарозы и доведите раствор до кипения. Размешайте до ресуспендирования осевшей агарозы. В пластиковую кювету для геля установите гребенку под будущие лунки. Влейте агарозу в кювету. Агароза должна заполнить куветю полностью. Когда гель затвердеет, осторожно удалите гребенку.

2. Готовим камеру ‒ кладем пластиковую кювету с гелем в камеру, заливаем буфером так, чтобы гель скрылся под ним.

3. Вносим 5–10 мкл образца в лунки и закрываем верхней крышкой.

4. К черному штекеру присоединяем отрицательный полюс, а к красному положительный.

5. Включаем форез ‒ 120 В 20–30 мин. Возле электродов должны быть небольшие пузырьки, как индикатор, что форез пошел. ДНК двигается от минуса к плюсу, поэтому лунки с ДНК должны быть возле черного штекера (минуса).

6. Через 20–30 мин, выключаем прибор, открываем крышку и вытаскиваем кувету с гелем шипцапи или используем перчатки. В случае наличия в образце красителя, разделение можно будет увидеть невооруженным глазом, а при его отсутствии просматривают гель в УФ-свете на трансиллюминаторе и фотографируют.

Сделать вывод о проделанной работе. Зарисовать электрофореграмму.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте понятие электрофорезу.

2. Дайте понятие электрофорезу в агарозном геле.

3. Физические принципы электрофореза в агарозном геле.

4. Перечислите параметры, от которых зависит движение заряженных частиц в агарозном геле.

5. Перечислите компоненты, необходимые для электрофореза в агарозном геле.

6. Основные элементы установки для электрофореза в агарозном геле.

7. Объясните методы анализа результатов электрофореза, их достоинства и недостатки.

8. К какому полюсу происходит движение молекул ДНК при электрофорезе в агарозном геле и почему?

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

Изобретение относится к технике разделения заряженных частиц в электрическом поле и может быть использовано для препаративного разделения макромолекул. Целью изобретения является повышение разрещающей способности. Цель достигается тем, что элюционная камера имеет замкнутый объем в форме вытянутого шестигранника, отделена от геля пористой перегородкой и дополнительно через измерительный капилляр и двуходовой клапан соединяется с атмосферой или с микрокомпрессором по команде от блока управления, при этом пластина геля, слот и элюционная камера заключены в единый блок. Устройство для препаративного электрофореза в геле позволяет не менее чем в 10 раз повысить разрешающую способность, упростить конструкцию и автоматизировать процесс разделения. 3 ил.

О ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ

РИ ГКНТ СССР у . 7,. фПИСАНИЕ ИЗОБРЕТЕНИЯ АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (.

Gv (1) 4405455/31-25 (2) 04.02.88 (6) 07.08.90. Бюл. N (1) Всесоюаныи научно-исследователвский и ститут прикладной микробиологии и Инс(итут «иБелка» АН СССР (72) Д.В.Гаврюшкин и M.>4.MàTaèaíêî (3) 843.287(088.8) (86) Po>aky F., Anal. Biochem. 1978, ч. 87, р 397 — 410. (4) УСТРОЙСТВО ДЛЯ ПРЕПАРАТИВНОГ ЭЛЕКТРОФОРЕЗА В ГЕЛЕ (7) Изобретение относится к технике раздел ния заряженных частиц в электрическом и ле и может быть использовано для препарвтивного разделения макромолекул.

Изобретение относится к технике разд ления заряженных частиц в электрическом поле и может быть использовано для п )епаративного разделения макромолекул в исследованиях по молекулярной биологии и)генной инженерии.

Целью изобретения является повышение разрешающей способности устройства.

На фиг. 1 показана камера разделения, разрез, вид спереди; на фиг, 2 — то же, вид

ct>оку; на фиг. 3 — структурная схема устройства, Устройство состоит из прямоугольного блока 1 с элюционной камерой 2, отделенн(й от геля 3 пористой перегородкой 4. а от э) ектродного отделения — диализной мембраной 5, двух электродных отделений прям )угольной формы анодного 6 и катодного

7 Ic платиновыми электродами 8, слота 9 и к ышки 10. Канал 11 необходим для заполн ния элюционной камеры буфером, канал

Целью изобретения является повышение разрешающей способности. Цель достигается тем, что элюционная камера имеет замкнутый объем в форме вытянутого шестигранника, отделена от геля пористой перегородкой и дополнительно через изме рительный капилляр и двуходовой, клапан соединяется с атмосферой или с микрокомпрессором по команде от блока управления, при этом пластина геля, слот и элюционная камера заключены в единый блок. Усгройство для препаративного электрофореза в (еле позволяет не менее чем в 10 раз повысить разрешающую способность, упростить конструкцию и автоматизировать процесс разделения. 3 ил, 12 — для периодического отбора раздел(:. шихся фракций, а канал 13 — для связи эл)>цион ной камеры с атмосФерой и с микрокомпрессором.

В состав устройства также входчт (фиг, 2) перистальтический насос для заполнения элюционной камеры 14 буфером из г;. к . .

15, перистальтический насос для отб. разделившихся фракций 16 в колле,7;р 17, измерительный капилляр 18. микрокомпрессор 19, двуходовой клапан 20 с ис )ñë(4>)в тельными элементами А и Б, исто:!; и . 2 I постоянного напряжения и блок 22 управления электрофорезом.

Для исключения влияния элек(. одных процессов используется система рециркуляции раствора, которая заключается (. Паремешивании анодного и катодного буфера в общей емкости. Конструктивно эта система в предлагаемом устройстве выполнена следующим образом. Прямоуголь(;ая >(а((е1583819 ра с электродами помещается в емкость 23, которая также имеет прямоугольную форму.

Эта емкость соединяется с верхним уровнем буфера в анодном 6 и катодном 7 отделениях с помощью двух трубок 24. Из емкости 23 буфер с помощью двухканального перистальтического насоса 25 подается отдельно в нижнюю часть анодного и катодного отделений. Когда уровень жидкости в электродных отделениях достигает края трубки 24, буфер стекает в емкость 23 и рецикл повторяется. При этом длина трубок 24 выбирается таким образом, чтобы не происходило контакта с верхним уровнем жидкости в емкости 23, В этом случае удается полностью осуществить электрическую развязку (предотвратить шунтирование) электродных отделений друг с другом.

Дополнительно с этим в емкости 23 буфер охлаждается с помощью холодильника-термостата через теплообменник (не показан) и интенсивно перемешивается с помощью магнитной мешалки (не показана), Устройство работает следующим образом.

В блок 1 заливают 1 -ный раствор расплавленной агарозы и вставляют слот 10.

После того, как агароза застывает, слот 10 удаляют и блок 1 помещают в разделительную камеру, Затем анодное 6 и катодное 7 отделения.заполняют буфером, а в образовавшуюся емкость 10 вводят разделяемое вещество. С помощью насоса 14 из емкости

15 в элюционную камеру 2 подают буфер, элемент А клапана 20 закрыт, а Б открыт и емкость 2 сообщается с атмосферой. При этом часть буфера при заполнении попадает в измерительный капилляр 18. После этого подают электрическое напряжение от источника 21 и с помощью капилляра 18 измеряют расход буфера в элюционной камере. Расход буфера через разделительную ячейку зависит от качества используемой агарозы и пропорционален напряженности электрического поля. Зная электроосмотический расход буфера через элюционную камеру с помощью блока 22 управления устанавливают соответствующую производительность насоса 14, который должен обеспечить необходимый объем буфера в элюционной камере за.рремя одного цикла разделения. В процессе разделения макромолекулы постепенно выходят из геля в свободный раствор буфера 6, а затем останавливаются на диализной мембране, так как размер пор мембраны много меньше размера макромолекул. По команде от блока 22 управления источник 21 изменяет свою полярность (направление электрического поля) и макромолекулы переходят в

15 ние, которое деформирует (надувает) диа25

55 свободный объем элюционной камеры, После этого поле выключается, исполняющий элемент Б клапана 20 закрывается, а элемент А . открывается и одновременно включаются микропроцессор 19 и перистальтический насос .1 6, Объем жидкости из элюционной камеры попадает в отдельную пробирку коллектора 17, а затем по команде от блока 22 управления весь цикл повторяется, Расход насоса 16 и производительность микропроцессора 19 подбирают таким образом, чтобы в элюционной камере 2 создавалось некоторое избыточное давлелизную мембрану 5 и позволяет тем самым устранить зависание капли в объеме 2. Введение пористой перегородки 4 исключает воэможность перемещения геля 3 в блоке 1, что позволяет уменьшить объем элюционной камеры до 0,5. см и получить воспроизводимые результаты по разделению. Форма. элюционного обьема в виде вытянутого шестигранника позволяет полностью исключить потери буфера в элюционном объеме 2.

Пластина геля, слот и элюционная камера в устройстве выполняются в едином блоке, что исключает возможность угловых искажений зоны в процессе разделения, а также позволяет реализовать одновременное и независимое препаративное разделение двух и более различных биологических образцов, Блок имеет две элюционных камеры, которые соединены двухканальными перистальтическими насосами заполнения и отбора проб, В геле формируют два слота и при нала>кении электрического поля образуются две дорожки с разделенными фракциями, каждая из которых попадает в свой элюционный объем и отбирается в отдельные пробирки.

Предлагаемое устройстцо п0зволяет не менее чем в 10 раз увеличить разрешающую способность, упростить конструкцию и обслуживание устройства, а также автоматизировать процесс разделения.

Устройство для препаративного электрофореза в геле, содержащее прямоугольную камеру с электродами, горизонтально расположенную пластину геля с прилегающей к ней элюционной камерой, соединенной с насосами и отделенной от анодного отделения диализной мембраной, а также блок управления, о т и и ч а ю щ е е с я тем, что, с целью повышения разрешающей способности, оно дополнительно содержит горизонтально расположенный над элюционной камерой измерительный капилляр, соединенный с одной стороны с двуходо1583819

13 вым клапаном и микрокомрессором, а с другой стороны с элюционной камерой, причем элюционная камера выполнена в форме ше;стигранной призмы, вершины которой расположены соосно с входом и выходом элюционной камеры, при этом камера и гелевая пластина размещены в едином блоке, в верхней части которого над гелевой пла-. стиной выполнен щелевой паз для размеще5 ния слота, 1583819

Редактор В.Бугренкова Техред М.Моргентал Корректор М. Самборская

Заказ 2250 Тираж 512 Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат «Патент», г. Ужгород, ул.Гагарина, 101

источник