Меню Рубрики

Значение электрофореза белка в медицине

Электрофорез белков в полиакриламидном геле

Электрофорез белков в агарозном геле

Электрофорез (от электро- и греч. переносить) — это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля. Впервые было открыто профессорами Московского университета П. И. Страховым и Ф. Ф. Рейссом в 1809 году.

С помощью электрофореза удаётся покрывать мелкими частицами поверхность, обеспечивая глубокое проникновение в углубления и поры. Различают две разновидности электрофореза: катафорез — когда обрабатываемая поверхность имеет отрицательный электрический заряд (то есть подключена к отрицательному контакту источника тока) и анафорез — когда заряд поверхности положительный.

Электрофорез применяют в физиотерапии, для окраски автомобилей, в химической промышленности, для осаждения дымов и туманов, для изучения состава растворов и др. Электрофорез является одним из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии.

Лечебное вещество наносится на прокладки электродов и под действием электрического поля проникает в организм через кожные покровы (в терапии, неврологии, травматологии и др.) или слизистые оболочки (в стоматологии, ЛОР, гинекологии и др.) и влияет на физиологические и патологические процессы непосредственно в месте введения. Электрический ток также оказывает нервно-рефлекторное и гуморальное действие.

Преимущества лечебного электрофореза:

— введение малых, но достаточно эффективных доз действующего вещества;

— накопление вещества и создание депо, пролонгированность действия;

— введение в наиболее химически активной форме — в виде ионов;

— возможность создания высокой местной концентрации действующего вещества без насыщения им лимфы, крови и других сред организма;

— возможность введения вещества непосредственно в очаги воспаления, блокированные в результате нарушения локальной микроциркуляции;

— лечебное вещество не разрушается, как например, при введении per os;

— слабый электрический ток благоприятно влияет на реактивность и иммунобиологический статус тканей.

Противопоказания к проведению электрофореза: острые гнойные воспалительные заболевания, лихорадка, тяжелая форма бронхиальной астмы, дерматит или нарушение целостности кожи в местах наложения электродов, злокачественные новообразования. Учитываются противопоказания для лечебного вещества. Вещества, используемые при электрофорезе, по способу введения разделяются на:

— отрицательно заряженные, вводимые с отрицательного полюса — катода (бромиды, йодиды, никотиновая кислота и другие);

— положительно заряженные, вводимые с положительного полюса — анода (ионы металлов — магний, калия, кальция);

— вводимые как с анода, так и с катода.

Преимущество бишофита — в биполярном введении, так как эффект оказывают одновременно и положительно, и отрицательно заряженные ионы.

Электрофорез в научных исследованиях

В биохимии и молекулярной биологии электрофорез используется для разделения макромолекул — белков и нуклеиновых кислот. Различают множество разновидностей этого метода. Этот метод находит широчайшее применение для разделения смесей биомолекул на фракции или индивидуальные вещества и используется в биохимии, молекулярной биологии, клинической диагностике, популяционной биологии (для изучения генетической изменчивости) и др.

Изотахофорез (ИТФ) — метод разделения различных типов ионов по их подвижности в электрическом поле. При ИТФ все виды ионов мигрируют в одном направлении, образуя набор зон, находящихся в равновесном состоянии и перемещающимися с одинаковыми скоростями.

В основе метода ИТФ лежит система, состоящая из трех различных электролитов, объединенных общим противоионом:

— ведущий электролит, содержащий анионы с наиболее высокой электрофоретической подвижностью, располагается в анодной области;

— замыкающий электролит, содержащий анионы с минимальной подвижностью, располагается в катодной области;

— смесь электролитов анализируемой смеси, содержащая анионы с промежуточной подвижностью.

Если через эту систему пропустить электрический ток, то анионы расположатся последовательно в соответствии с их электрофоретической подвижностью, ведущий в области анода, замыкающий в области катода, остальные между ними в виде узких зон с четкими концентрационными границами. Ширина отдельных зон по завершении процесса соответствует абсолютному количеству в смеси того или иного аниона.

Поскольку отдельные зоны располагаются последовательно. они практически соприкасаются, поэтому в исследуемый образец вносят буфер, содержащий анион с промежуточной подвижностью, зона которого встроится в полученную последовательность и раздвинет зоны исследуемых анионов. Эти вспомогательные зоны называются спейсерами — разделителями, функции которых выполняют амфолиты-носители, используемые в методе ИЭФ. особенностью метода ИТФ является то, что процесс сопровождается концентрированием зон, эффект от которого приводит к разрешению, сравнимому и даже превосходящему разделение методом ИЭФ. Результаты разделения смесей методом ИТФ фиксируются на ленте самописца в виде графика измерения трех параметров:

— интегральная кривая тепловыделения: по этой кривой можно определить разницу температур между соседними зонами, что служит мерой градиента напряженности поля, то есть разницы электрофоретических подвижностью двух ионов

— дифференциальная кривая тепловыделения: длина отрезков этой кривой соответствуют ширине зоны вещества, а также служит мерой абсолютного количества вещества в пробе

— кривая поглощения в УФ-свете: длина отрезков этой кривой соответствует значению экстинкции вещества. Зная коэффициент молярной экстинкции вещества, можно определить абсолютное содержание вещества в пробе, а также вычислить его концентрацию в зоне.

Аналитический изотахофорез проводят в капиллярном приборе для изотахофореза, в тефлоновом капилляре с внутренним диаметром 0,5 мм.

Препаративный изотахофорез проводят в колонке с полиакриламидным гелем.

· Аналитическое разделение (мкг) пептидов, белков, нуклеотидов, органических кислот, ионов металлов (частично изотопов) с высоким разрешением.

· Препаративное разделение белков (г).

· Накопление в виде узкой зоны следовых количеств веществ (мкг) из больших объемов пробы вследствие эффекта концентрирования.

· Определение электрофоретической подвижности.

электрофорез молекулярный биология капиллярный

Капиллярный электрофорез, известный также как капиллярный зональный электрофорез, используется для разделения ионов по заряду. В случае обычного электрофореза заряженные молекулы перемещаются в проводящей жидкости под действием электрического поля. В 1960х годах была предложена методика капиллярного электрофореза для разделения молекул по заряду и размеру в тонком капилляре, заполненном электролитом.

Для проведения капиллярного электрофореза требуется относительно простое оборудование.

Основные компоненты системы — флакон для нанесения образца, стартовый флакон, конечный флакон, капилляр, электроды, мощный источник питания, детектор и устройство обработки данных. Флакон для нанесения образца, стартовый и конечный флаконы заполнены электролитом, например, водным буферным раствором. Для нанесения образца конец капилляра опускают в флакон с образцом и затем перемещают в стартовый флакон. Перемещение анализируемых веществ осуществляется под действием электрического поля, которые прилагают между стартовым и конечным флаконами. Все ионы передвигаются по капилляру в одном направлении под действием электроосмотического тока. Анализируемые вещества разделяются по электрофоретической мобильности и детектируются около конца капилляра.

Детектирование разделившихся молекул при капиллярном электрофорезе может осуществляться различными устройствами. Наиболее распространенные приборы детектируют изменение поглощения излучения в ультрафиолетовой области или в области видимого света. Обычно в таких системах в качестве ячейки используют участок капилляра. Длина пути проходящего света при капиллярном электрофорезе составляет порядка 50 микрометров, что намного меньше, чем в случае обычных ультрафиолетовых ячеек, в которых длина пути света порядка 1 сантиметра.

В соответствии с законом Бугера -Ламберта-Бера, чувствительность детектора пропорциональна длине пути, по которому свет проходит через ячейку. Для увеличения чувствительности удлиняют путь, по которому проходит свет, однако при увеличении размеров ячейки снижается разрешение. Капиллярная трубка может быть расширена в месте детектирования, такую разновидность называют пузырьковой ячейкой. В другом варианте увеличение пути проходящего света достигается за счёт добавления дополнительного капилляра. Оба этих метода снижают эффективность разделения.

Для того, чтобы отличить сходные образцы, системы разделения капиллярным электрофорезом могут быть напрямую связаны с масс-спектрометрами. В большинстве таких систем конец капилляра помещают в прибор для электроаэрозольной ионизации. Ионизированные частицы далее анализируют масс-спектрометрией.

Электрофорез белков — способ разделения смеси белков на фракции или индивидуальные белки. Электрофорез белков применяют как для анализа компонентов смеси белков, так и для получения гомогенного белка. Наиболее распространенным вариантом электрофоретического анализа белков, является электрофорез белков в полиакриламидном геле.

Существует множество разновидностей и модификаций данного метода, которые используются в различных областях:

· Электрофорез в свободных средах (без поддерживающей среды)

· Электрофорез с подвижной границей

· Зональный электрофорез в поддерживающей среде с капиллярной структурой

· Электрофорез на фильтровальной бумаге

· Электрофорез белков на ацетат-целлюлозной мембране

· Электрофорез в колонках и блоках гранулированной поддерживающей среды

· Электрофорез белков в ПААГ

· Электрофроез белков в крахмальном геле

· Электрофорез белков в агарозном геле

Электрофорез белков подразделяется также на одномерный и двумерный (2D-) электрофорез, препаративный и аналитический, а также электрофорез нативных белков и электрофорез в присутствии детергента. Разновидностью метода электрофореза являются изоэлектрическое фокусирование и изотахофорез. В случае использования иммунологических методов для выявления разделённых белков говорят про иммуноэлектрофорез.

Электрофорез белков в полиакриламидном геле

Электрофорез белков в полиакриламидном геле — метод разделения смесей белков в полиакриламидном геле в соответствии с их электрофоретической подвижностью (функцией длины полипептидной цепочки или молекулярной массы, а также укладки белковой молекулы, посттрансляционных модификаций и других факторов). Данный способ фракционирования белков и пептидов широко применяют в современной молекулярной биологии, биохимии, генетике.

Разработано большое количество модификаций электрофореза белков в полиакриламидном геле для решения разных задач и для различных белков и пептидов. Наиболее распространённой разновидностью является электрофорез белков в полиакриламидом геле в присутствии додецилсульфата натрия по Лэммли.

В 1970 году Лэммли для изучения процесса сборки капсида бактериофага Т4 предложил метод электрофоретического разделения белков в полиакриламидном геле в зависимости от молекулярной массы. Для этого перед нанесением на гель образцы кипятили в присутствии додецилсульфата натрия (SDS) и 2-меркаптоэтанола. Под воздействием 2-меркаптоэтанола происходит восстановление дисульфидных связей, что предотвращает выпетливание денатурированных полипептидов и повышение их подвижности. SDS является сильным детергентом, его молекула состоит из двенадцатичленной алифатической неразветвленной цепи и ковалентно связанного с ним сульфата, имеющего в растворе отрицательный заряд.

При использовании описываемого метода исходят из следующих допущений:

— белки после обработки SDS находятся в полностью денатурированном состоянии;

— количество молекул SDS, связанных с полипептидом, пропорционально его длине, и, следовательно, молекулярной массе;

— собственный заряд полипептида несущественен в сравнении с зарядом связанного с ним SDS.

В данных условиях, все полипептиды имеют одинаковый удельный заряд и разделяются обратно пропорционально логарифму их молекулярной массы. Практика подтверждает верность данных предположений в подавляющем большинстве случаев.

Для проведения денатурирующего электрофореза в ПААГ используются различные буферные системы. Наиболее распространённая система, которая подразумевается по умолчанию — это буферная система Лэммли. Кроме того, в подавляющем числе работ используют, так называемый, disc-электрофорез то есть используют гель, состоящий из двух частей. Концентрирующий гель имеет pH 6,8 и концентрацию полиакриламида от 2 до 8 %. Разделяющий гель имеет рН в районе 8,5-9 и концентрацию полиакриламида от 5 до 20 %. Выбор плотности геля зависит от молекулярных масс исследуемых белков. Все буферы не содержат неорганических солей, основным переносчиком тока в них является глицин. При рН 6,8 суммарный заряд молекулы глицина близок к нулю. Вследствие этого для переноса определенного заряда (который определяется силой тока в электрофоретической ячейке), отрицательно заряженные комплексы полипептидов с SDS должны двигаться с большой скоростью. При рН 8,8 глицин приобретает отрицательный заряд, вследствие чего на границе концентрирующего и разделяющего гелей белки резко тормозятся (в переносе одинакового заряда через единицу площади теперь участвует гораздо больше заряженных молекул, следовательно, они двигаются с меньшей скоростью). Результатом этого является концентрирование белков на границе гелей, что очень сильно повышает разрешающую способность метода.

В разделяющем геле белки мигрируют в зависимости от длины полипептидной цепи, то есть обратно пропорционально молекулярной массе.

Электрофоретическая подвижность биополимеров в геле зависит от ряда параметров. Скорость миграции пропорциональна заряду молекулы, и в свободной жидкости молекулы с одинаковым удельным зарядом мигрируют с равной скоростью. В случае разделения в среде, имеющей жесткую пространственную матрицу, происходит сегрегация за счет трения о гель. Сила трения зависит от пространственной конфигурации молекулы, в том числе от её размера. Таким образом, в случае электрофоретического разделения нативных белков будет наблюдаться сложная картина их распределения в зависимости от вышеприведенных факторов.

Визуализация продуктов разделения

Для визуализации результатов электрофореза чаще всего используют окрашивание белков в гелях красителем Кумасси или серебром. Для проведения вестерн блоттинга белки переносят из геля на нитроцеллюлозную мембрану.

В большинстве случаев результаты электрофоретического разделения достаточно получить путем визуальной оценки геля. Однако, с целью получения достоверных данных и надлежащего документирования результатов, гель сканируют на просвет при помощи высокочувствительного денситометра. По сути, денситометр является сканером, который относится к контрольно-измерительным приборам и подлежит поверке с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям. Подобные требования к денситометру позволяют надежно определять не только положение белков в геле, но и оптическую плотность белкового пятна. Оцифрованное изображение геля обрабатывают при помощи специализированного программного обеспечения, которое позволяет достоверно определить такие параметры как электрофоретическая подвижность белка, его чистота, количество белка в пятне и др. Определение молекулярной массы исследуемого белка предполагает необходимость калибровки геля по молекулярным массам. Калибруют гель относительно молекулярных масс белков-маркеров, которые разделяют параллельно с исследуемым образцом. Смеси маркерных белков доступны в различном интервале масс. Калибрование предполагает построения зависимости относительной электрофоретической подвижности (Rf) каждого из маркерных белков от десятичного логарифма их молекулярной массы. Обычно зависимость имеет вид сигмообразной кривой. Расчет молекулярной массы исследуемого белка осуществляют относительно его Rf, используя при этом метод регрессионного анализа. Достоверными результаты считаются, в случае если длина пробега белков-маркеров составляет не менее 80% длины разделяющего геля, а зависимость их Rf от логарифма молекулярной массы является линейной (R2 > 0,95). Т.е. для расчетов используют лишь тот участок калибровочной кривой, который покрывает электрофоретическую подвижность исследуемого белка.

Читайте также:  Электрофорез при лечении болезни пейрони

Чувствительность метода SDS-PAGE по Лэммли обратно пропорциональна молекулярной массе белка. Например, в интервале 10-20 кДа удается разделить белки, отличающиеся всего на 0,1 кДа (разница всего в один аминокислотный остаток). Однако, для получения удовлетворительных результатов следует выполнить несколько простых методических рекомендаций. Так, в связи с тем, что высокая электропроводность исследуемых образцов способна значительно исказить электрофоретическую подвижность белка, их ионная сила должна быть по возможности минимальной и приблизительно равной. Еще одним важным условием надежности определения молекулярной массы является оптимальная нагрузка белка на гель. При окраске Coomassie Blue R250 оптимальное содержание белка в пятне должно находиться в пределах 0,1-1 мкг и как минимум на порядок меньше при окраске серебром. В противном случае белки в геле сформируют широкие пятна, что в свою очередь затруднит определение их электрофоретической подвижности. Несмотря на высокую чувствительность и несложность метода молекулярная масса белков, определенная с использованием SDS-PAGE, часто отличается от истинного значения. Разница может составлять от нескольких кДа для низкомолекулярных белков до десятков кДа для высокомолекулярных белков.

Для электрофореза белков в полиакриламидном геле в качестве буферных растворов используют: Трис-HCl, Трис-трицин, TBE, TBE с мочевиной, Bis-Tris.

Электрофорез в агарозном геле

Наиболее просты и удобны в использовании гели агарозы, которая представляет собой линейный полисахарид. Образование геля идёт путём связывания в пространственную сетку пучков нитей, за счёт образования водородных связей между ними. Благодаря механической прочности и достаточно большому размеру пор, агарозные гели нашли широкое применение при разделении крупных макромолекул, таких как ДНК. Варьируя концентрацию агарозы, можно менять средний размер пор в геле, и при концентрации агарозы в геле свыше 2% в нем становится возможным разделять не только НК, но и крупные белковые молекулы. Средний размер пор 2%-ного геля агарозы примерно соответствует размеру биополимера с массой 50 млн. дальтон. Использовать гели более высокой концентрации не целесообразно, т.к. при электрофорезе поры геля должны быть легко проницаемы для молекул биополимеров, чтобы лишь тормозить их миграцию в электрическом поле за счёт трения. Поэтому обычно применяются гели с концентрацией 0.4 — 2%, а наиболее распространены форезы в гелях с концентрацией около 1 %.

Агароза растворяется в воде при нагревании в кипящей водяной бане. Растворять агарозу непосредственно на нагревателе следует при интенсивном помешивании, однако делать этого не рекомендуется, во избежание пригорания агарозы к перегретому дну сосуда. В качестве альтернативного способа, может использоваться нагрев раствора в микроволновой печи, что занимает всего несколько минут. В этом случае, однако, необходимо внимательно следить за тем, чтобы раствор не закипел, иначе он моментально «убежит». Рекомендуется нагревать раствор на малой или средней мощности, перемешивая каждые полминуты. После застывания гель можно плавить повторно, однако делать это нужно только на водяной бане или при аккуратном нагреве в микроволновой печи. Некоторые авторы рекомендуют при первом приготовлении геля выдерживать расплавленную агарозу на водяной бане или в термостате не менее двух часов, для получения истинного раствора полимера.

Процесс плавления/застывания агарозы обладает ярко выраженным гистерезисом. Плавление разных типов агарозы обычно происходит при температурах 85-95°, тогда как застывание наступает при температурах 38-40°. Во избежание значительных тепловых деформаций расплавленную агарозу заливают в форму охлаждённой до 50-55°. При проведении количественного анализа расплавленный гель перед заливкой можно выдерживать в термостате при температуре 50- 55° в течение двух часов. Это рекомендуется делать для того, чтобы после заливки в форму, гель застывал равномерно по всему объёму. Застывший гель чистой агарозы не вполне прозрачный и на вид немного опалесцирует. Со временем он несколько уплотняется, вытесняя из себя жидкость, по этой причине агарозные гели перед использованием рекомендуется выдерживать в буфере в течение 12 и более часов.

Миграция ДНК в агарозном геле.

Гели агарозы содержат отрицательно заряженные группы, преимущественно сульфатные, полное количество которых зависит от степени очистки агарозы. Вследствие этого, при электрофорезе положительно заряженных молекул может возникать их неспецифическое взаимодействие с волокнами геля, которое проявляться в виде растягивания зон, при обратимом связывании с отрицательными группами геля, или в виде задержки, если взаимодействие необратимое. Кроме того, присутствие отрицательно заряженных групп приводит к возникновению электроосмоса, который вызывает противоток жидкости внутри геля, что однако затрудняет расчёт их электрофоретической подвижности. По некоторым данным, при использовании различных типов агарозы дня разделения трёх форм плазмидной ДНК (суперспиральной, релаксированной кольцевой и линейной) наблюдаются сильные изменения скорости миграции молекул, и что ещё важнее, изменяется взаимное расположение полос, соответствующих разным формам ДНК, в геле. Для количественного описания величины электроосмоса в агарозных гелях используют коэффициент относительной миграции который равен отношению скоростей миграции незаряженного полимера (только за счёт электроосмоса) и аналогичного по структуре полианиона при электрофорезе в агарозном геле данного тина. Обычно выделяют три типа агарозы: с низкой, средней и высокой степенью электроосмоса.

Помимо учёта эффектов электроосмоса, важно также правильно подобрать размеры пор геля и напряжённость электрического поля, в зависимости от свойств исследуемого образца. Дня оптимального разделения ДНК в агарозном геле необходимо создать условия, при которых молекулы ДНК могут достаточно свободно мигрировать в геле, лишь изредка сталкиваясь с его волокнами. В этом случае подвижность линейных молекул ДНК оказывается обратно пропорциональной логарифму их молекулярной массы, а, следовательно, и размеру.

Электрофорез ДНК — это аналитический метод, применяемый для разделения фрагментов ДНК по размеру (длине) и форме (в случае, если ДНК образует вторичные структуры, например шпильки). Силы электрического поля, прикладываемого к образцам, заставляют фрагменты ДНК мигрировать через гель. Сахарофосфатный остов молекул ДНК заряжен отрицательно и поэтому цепи ДНК двигаются от катода, заряженного отрицательно, к положительному аноду. Более длинные молекулы мигрируют медленнее, так как задерживаются в геле, более короткие молекулы двигаются быстрее.

К образцам обычно добавляют низкомолекулярный кислый краситель (например, динитрофенол, бромфеноловый синий), чтобы визуализировать ход электрофореза в процессе. Краситель также необходим для того, чтобы определить, когда стоит остановить процесс.

Электрофорез проводится в камере, заполненной буферным раствором. Чаще всего используются буферы, содержащие ЭДТА, трис и борную кислоту. Буфер необходим для повышения ионной силы раствора, в котором будет происходить разделение молекул ДНК под действием приложенного электрического поля.

После разделения (иногда краситель вносят в расплавленную агарозу) фрагменты ДНК разной длины визуализируют при помощи флюоресцентных красителей, специфично взаимодействующих с ДНК, например, агарозные гели обычно красят бромистым этидием, который интеркалирует между азотистыми основаниями дуплекса и флюоресцирует в УФ-лучах.

Определение размеров производят путем сравнения коммерчески доступных фрагментов ДНК, содержащий линейные фрагменты ДНК известной длины.

Для электрофоретического анализа ДНК обычно используют агарозные (для относительно длинных молекул ДНК) и полиакриламидные (для высокого разрешения коротких молекул ДНК, например, в случае секвенирования) гели.

Иммуноэлектрофорез (ИЭФ) — метод исследования антигенного состава биологических материалов, сочетающий электрофорез и иммунодиффузию. Впервые описан Грабаром и Уильямсом в 1953 году, в 1965 году метод был модифицирован Шейдеггером с целью минимизации.

Образец антигенного материала разделяют электрофорезом в геле (обычно агарозном), в результате чего формируются характерные зоны. Далее параллельно зонам электрофореза вносится преципитирующая антисыворотка, антигены и антисыворотка диффундируют навстречу друг к другу, и в месте встречи антисыворотки с антигеном появляются линии преципитации, имеющие форму дуги. После проведения иммунодиффузии и элюирования непреципитировавших молекул из геля гель окрашивают специальными красителями (например амидочёрным 10В, азокармином В и другими красителями, окрашивающими белки в случае белковых антигенов или суданом чёрным в случае липопротеиновых антигенов). Существует также ряд модификаций метода ИЭФ (при помощи чистого антигена, при помощи моноспецифической антисыворотки, метод ИЭФ по Оссерману, метод ИЭФ по Геремансу.

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

источник

Рубрика: Медицина и фармацевтика

Научный журнал «Студенческий форум» выпуск №4(4)

Применение электрофореза в медицине

На сегодняшний день современная медицинская физиотерапия широко использует множество эффективных физико-химических методов лечения. Из них более важную роль играет электрофорез.

«Лекарственный электрофорез не заствыший, а динамически развивающийся физиотерапевтический метод, пополняющийся не только новыми частными методиками, но и принципиально новыми и оригинальными технологиями, а поэтому с достижениями в этой области физиотерапии надо постоянно знакомить не только физиотерапевтов, но и врачей других клинических специальностей» [4, с.3].

Электрофорез в медицине имеет свою важную роль уже долгое время. Данный физиотерапевтический метод впервые был открыт и введен в клиническую практику русскими профессорами в 1809 году. Но, несмотря на такую многолетнюю историю электрофорез не теряет свою широкую применяемость в медицине. Также, с термином «электрофорез» в медицине существовали другие термины, такие как: «ионтофорез», «диэлектролиз», «ионотерапия», «электроионный метод лечения» и другие.

«Электрофорезом в широком смысле, как известно, называют направленное движение частиц дисперсной фазы в дисперсионной среде под действием внешнего электрического поля.» [1, с.114].

«Наиболее полно раскрывает суть метода следующее определение: лекарственный электрофорез – особый электрофармакотерапевтический метод, в основе которого лежит комплексное действие на организм электрического тока и вводимых с его помощью лекарственных средств» [4, с.7]. То есть, метод электрофореза, это – ещё один способ введения лекарственных средств и действия на человеческий организм.

Физиотерапевтический метод электрофорез имеет свой принцип.

«Под действием электрического поля заряженные частицы, растворенные или взвешенные в растворе электролита, мигрируют в направлении электрода, несущего противоположный заряд. При гель-электрофорезе движение частиц затруднено вследствие их взаимодействия с окружающей матрицей геля, действующей как молекулярное сито. Противоположные взаимодействия электрического поля и молекулярного сита проводят к дифференциации скоростей движения частиц в соответствии с их размерами, формами и зарядами. В процессе электрофореза макромолекулы смеси вследствие различия физико-химических свойств мигрируют с разной скоростью разделяясь таким образом на дискретные фракции. Электрическое разделение можно проводить в системах без носителей (например, свободное разделение раствора в капиллярном электрофорезе) и в стабилизированной среде такой как, например, тонкослойные пластинки, пленки или гели.

Прибор электрофореза состоит из:

· источник постоянного тока, напряжение которого можно контролировать и, желательно, стабилизировать;

· электрофоретической камеры. Обычно она представляет собой прямоугольную камеру, изготовленную из стекла или жесткого пластика. Камера состоит из двух изолированных отделений, анодного и катодного, заполненных электролитом. В каждое отделение погружают электрод, например, платиновый или графитовый. Их присоединяют изолированной цепью к соответствующим клеммам источника тока для разования анода и катода. Уровень жидкости в обоих и отделения должен быть одинаковым для предотвращения сифонного сброса.

Электрофоретическая камера снабжена герметической крышкой, которая поддерживает влажно-насыщенную атмосферу в течение всего процесса и уменьшает испарение растворителя. При снятии крышки срабатывает механизм безопасного отключения электроэнергии. Если напряжение, измеренное поперек полосы, превышает 10 В, то следует охладить носитель.

Электрофорез на полоске. Каждый конец несущей полоски, предварительно смоченной тем же электролитом, погружают в электродную камеру, натягивают и закрепляют соответствующим держателем для предотвращения диффузии электролита. В качестве держателя может быть использована горизонтальная рамка, обратная V-образная подставка или однородная поверхность с точками контакта через определенные интервалы.

Гель-электрофорез. Прибор состоит, по существу, из стеклянной пластинки (например, предметное стекло микроскопа), на всей поверхности которой осажден прочно прикрепленный слой геля одинаковой толщины. Связь между гелем и электролитом осуществляется различными путями в зависимости от типа используемого прибора. Следует принять меры для предупреждения конденсации влаги или высыхания твердого слоя.

· измерительного прибора или регистрирующего средства.

Методика. Раствор электролита помещают в электродные отделения. Носитель, импрегнированный раствором электролита, помещают в электрофоретическую ячейку в соответствии с условиями, описанными для используемого типа прибора. Устанавливают стартовую линию и наносят образец. Подают электрический ток в течение указанного времени. После отключения электрического тока, носитель вынимают из ячейки, сушат и проявляют» [2, с.83-84].

Читайте также:  Перечень лекарства для электрофореза

Рисунок 1. Прибор электрофореза

В этом электрическом приборе электрофореза, который выполняется работа, используется электрический ток, это и является отличительной особенностью электрофореза.

Из курса «Теоритической и прикладной механики» нам известно, что электрический ток – упорядоченное движение электрических зарядов. «В зависимости от направления перемещения электрических зарядов в проводниках различают постоянный и переменный ток. Для лекарственного электрофореза, разумеется, могут использоваться только постоянные токи, т.е. токи, не меняющие своего направления и соответственно вызывающие однонаправленное перемещение заряженных частиц. Постоянные токи могут быть непрерывными или импульсивными» [4, с. 8].

Из вышеуказанных видов электрического тока для лекарственного электрофореза для лечения используются следующие виды постоянных токов, таких как (рис.2):

«А. Гальванический ток –вид постоянного тока, который имеет небольшую силу и небольшое напряжение;

Б. Пульсирующий ток –ток, который меняет свою величину периодически;

В. Импульсный ток –электрический ток, который действует в форме отдельных «толчков», т.е. импульсов, частоты и длительности;

Е. Полусинусоидальный ток.» [4, с.8–9].

Рисунок 2. График постоянных токов, используемых для лекарственного электрофореза

«Наиболее распространенной сферой применения электрофореза является выявление и выделение белков, липопротеинов, гликопротеинов, нуклеиновых кислот. В подавляющем большинстве исследования этого плана позволяют получить представления о биохимической и физиологической роли тех или иных биологических соединений или их фракций, установить связи с аномальными явлениями в живом организме. Так, например, протеины в лимфу и ткани попадают главным образом из циркулирующей плазмы. В обеих средах точные механизмы переноса протеинов из плазмы в настоящее время неизвестны. Однако фракционирование этих протеинов (как с помощью электрофореза, так и другими методами) приводит к большему пониманию этой проблемы. С другой стороны, содержание протеинов в лимфе и тканях может быть связано и с непосредственным массопереносом. Взаимное во отношение вклада обоих факторов в настоящее время неизвестно, однако методы электрофореза позволяют существенно расширить представления о переносе протеинов, связав его не только с ультраструктурой стенок сосудов, но и гидродинамическими условиями как на уровне макроциркуляции, так и микроциркуляции. В целом ряде случаев электрофоретический анализ плазмы и сыворотки крови, других биологических жидкостей позволяет определить происхождение протеинов и липопротеинов, делать достаточно надежные диагностические выводы относительно различных нейрологических и других патологий у человека и животных.

В последние два десятилетия появился ряд работ по исследованию методом электрофореза белка и его фракций, содержащихся в жидкости мозга – ликворе (иногда неправильно называемой спинномозговой). Такая методика практически не отличается от разделения белков в сыворотке или плазме крови. Ввиду того, что ликвор значительно беднее белковыми фракциями каким-либо из известных способов сгустить (обогатить) жидкость мозга (нередко в 100–200 раз). Это в определенной степени приводит к искажению и неоднозначной интерпретации экспериментального материала. Электрофоретический анализ ликвора разными авторами дает большой разброс данных по содержанию белковых фракций. Это заставляет признать, что «. при множестве описанных в литературе методов электрофореза ликвора невозможно сделать сравнение нормальных величин белковых фракций». Тем более следует признать неудовлетворительной и нерешенной методику электрофореза в диагностических целях. Даже при минимальных требованиях к ней в настоящее время в литературе отсутствуют указания на достоверные электрофоретические различия ликвора при злокачественных и доброкачественных опухолях мозга, церебральных и спинальных образованиях. Напротив, при туберкулезном и гнойном минингитах наблюдаются большие различия в биохимическом составе ликвора, вполне обнаруживаемые обычным методом электрофореза на бумаге или на агар-агаровом студне. Отмечают повышение содержания гамма-глобулинов при рассеянном склерозе и ряде других воспалительных процессах. Эти и другие результаты не следует рассматривать как твердо установленные. В фундаментальной монографии о ликворе это мнение выражено еще более категорично: «диагностическое значение этих факторов еще спорно . ». Вместе с тем электрофореограммы ликвора, взятого у здоровых объектов, дают определенную информацию о процессах обмена протеинами между плазмой, тканями и ливором. Результаты, полученные в настоящее время методами электрофореза, в основном свидетельствуют о том, что протеины плазмы обнаруживаются и в ликворе. Некоторые протеины плазмы очень высокого молекулярного веса, вероятно отсутствуют в жидкости мозга или присутствуют в таких количествах в которых могут быть обнаружены только после значительного концентрирования» [3, с.301–302].

Говоря о применении электрофореза в медицине, можно сказать что данный метод очень важен для лечения многих заболеваний. Особую потребность он имеет в лечении неврологических болезней. Например, для лечения детей с детским церебральным параличом. Электрофорез очень удобен тем, что лекарственный препарат вводится в организм безболезненно, а это в свою очередь, эффективно для лечения детей. Благодаря развитию современной медицины, сегодня электрофорез используется во многих лечебно-профилактических и санаторно-курортных медицинских учреждениях. Радует тот факт, что электрофорез применяется и в Казахстане.

источник

Белки представляют собой ключевые элементы всех клеток и тканей организма. Они образуются за счет цепей аминокислот. В организме человека присутствует больше 100 видов молекул белка. Все они реализуют разнообразные функции. Среди молекул выделяют фибриноген, трансферрин, иммуноглобулины, липопротеины, альбумины и прочие. Выделение фракций белков осуществляется различными способами, но наибольшую популярность приобрел электрофорез. Рассмотрим его особенности подробнее.

Суммарно белки крови формируют «общий белок». Он, в свою очередь, включает в себя такие компоненты, как глобулины и альбумины. Электрофорез белков крови разделяет их на эти элементы. Этот способ разделения позволил вывести диагностику на совершенно новый уровень.

Молекулы приобретают отрицательный либо положительный заряд, который зависит от среды, в которой выполняется электрофорез белковых фракций крови . На их перемещение влияет величина заряда. Характер движения определяется и формой, и размером самих молекул, их веса. Элементы с положительным зарядом обладают лучшей адсорбцией, чем с отрицательным.

Они считаются самыми большими белковыми молекулами среди всех фракций в сыворотке. Число альбуминов отражает протеиновый статус многих внутренних органов. В качестве одной из ключевых задач молекул выступает сохранение осмотического коллоидного давления. Оно способствует удержанию жидкой системы в кровеносном русле. В соответствии с этим, можно объяснить развитие таких патологических состояний, как легочные отеки, асцит и пр.

Они подразделяются на несколько групп. Метод электрофореза белков позволяет провести их количественное разделение в лаборатории. Среди составляющих глобулинов выделяют:

  1. Альфа-1. Они содержат элементы альфа-1-антитрипсина, а также тироксинсвязывающего глобулина.
  2. Альфа-2. В них присутствуют части церулоплазмина, гаптоглобина и пр.
  3. Бета-элементы. Среди них выделяют компоненты комплемента, трансферрина, бета-липопротеидов.
  4. Гамма-часть. В ней присутствуют иммуноглобулины А, Е, М, G, D.

Электрофорез белков с увеличением частей альфа-1 и альфа-2 указывает на начало воспалительного процесса.

Электрофорез белков здорового организма отражают следующие показатели (в г/дл):

  1. Альбумин 3.4-5.
  2. Альфа-1 глобулин — от 0.1 до 0.3.
  3. Альфа-2 – от 0.6 до 1.
  4. Бета-глобулин – от 0.7 до 1.2.
  5. Гамма-глобулин – от 0.7 до 1.6.
  6. Общие показатели – от 6.4 до 8.3.

Как выше было сказано, в медицине используется достаточно много способов разделения протеиновых молекул по тем или иным критериям. Однако наиболее распространенным является электрофорез белков. Белковые фракции, содержащиеся в определенных биологических средах, могут выделяться только этим способом. В частности, он позволяет обнаружить парапротеины. Электрофорез белка – специальный клинический способ анализа. Он дает возможность выявить любые изменения в молекулах, которые могут выступать в качестве признаков тех или иных патологий. Электрофорез белковых фракций – доступный способ диагностики. Он выполняется во всех лабораториях. В качестве несомненных его преимуществ стоит назвать точность и быстроту получения результата. Электрофорез белков сыворотки позволяет выявить изменения:

Капиллярный электрофорез позволяет выявить некоторые виды протеинов. Однако некоторые молекулы нельзя обнаружить этим способом. Исключение составляет альбумин. Для более глубокого анализа используется электрофорез фракций. Уровень тех или иных групп можно измерить по количеству общего показателя протеинов, умноженному на относительный % доли каждой из них.

Электрофорез белков обязательно должен выполняться одновременно с измерением содержания иммуноглобулинов М, А и G. Варианты с большей концентрацией первых двух, которые не могут отдельно исследоваться, необходимо направить на повторный анализ. Это необходимо для исключения иммунофиксации незначительных парапротеиновых групп.

Электрофорез белков позволяет обнаружить начало течения патологий почек и печени, генетические деформации, формирование опухолей злокачественного характера, активацию хронических и острых инфекций. На практике выделен ряд «синдромов», которые показывает расшифровка анализа:

    Повышенная доля альфа-1 и альфа-2 глобулинов, фибриногена, С-реактивного белка, а также ряда острофазных протеинов указывает на начало острого воспалительного процесса с активацией системы комплемента. При проведении простого гематологического анализа в такой ситуации будет выявлено только повышение СОЭ и лейкоцитоз.

Он диагностируется, если расшифровка исследования указывает на повышение уровня фильтрации белковых молекул почечных канальцев и селективную протеинурию. Последняя представляет собой выведение большого числа альбуминов и незначительного количества низкомолекулярных глобулинов с мочой. Вместе с прогрессированием синдрома обнаруживается интенсивный синтез больших молекул группы альфа-2-глобулина в печени. Они скапливаются в кровяной жидкости. В связи с этим формируется такая картина. Снижается содержание альбумина, и повышается количество альфа-2-глобулина.

Значительные белковые потери характерны не только для нефротического синдрома. Они отмечаются и при болезни Лаэлла, обширных ожогах, патологиях системы пищеварения и пр. При нарушениях в ЖКТ расшифровка протеинограммы указывает на снижение содержания альбумина и одновременном увеличении процента всех групп глобулинов. Регулировать уровень протеина можно путем регулярного выполнения электрофореза. При этом целесообразно вводить препараты, заменяющие протеиновые элементы. При выраженном снижении гамма-глобулинов диагностируется тяжелый иммунодефицит приобретенного либо врожденного характера. В таких случаях для выявления полной клинической картины рекомендуется дополнительно определить содержание иммуноглобулинов М, А, G.

Электрофорез считается единственным способом, позволяющим ее выявить. Парапротеинемия – симптом, сопровождающий прогрессивный рост опухолей добро- и злокачественного характера. Накопление в крови моноклональных иммуноглобулинов, а также фрагментов их связей свойственно миеломной болезни и ряду лейкозов. Для дифференциации парапротеинов и установления белковых цепей рекомендуется выполнять модифицированный электрофорез – иммунофиксацию. Для проведения исследования используются гелиевые пластины с антисывороткой.

  1. Транстиретин (преальбумин). Представляет собой почечный белок. Он располагается под альбумином, отличается непродолжительным периодом полувыведения. Преальбумин связывает гормоны щитовидки, транспортный белок для А-витамина. Его содержание позволяет проанализировать обеспеченность протеинами периферических тканей. При дефиците питания и печеночных патологиях отмечается снижение его доли.
  2. Альфа-1-липопротеины. Представляют собой слабоокрашенную однородную область между альфа-1-глобулином и альбумином. Размеры зоны первого определяются по уровню других элементов. В частности, это альфа-1- антитрипсин, -фетопротеин, -микроглобулин. При остром воспалении отмечается видимое затемнение.

Моноклональные иммуноглобулины обнаруживаются только при наличии патологии.

источник

Основный белок

+ NH 3 — белок — COO – + ОН – + NH 3 — белок — COO – + ОН – NH 2 — белок –СОО –

Водный раствор рН = р I pH > pI

Основный белок белок заряженотрицательно

В кислой среде заряжен положительно

+ NH 3 — белок — COO – + Н + + NH 3 — белок – COOН

рН 10 ) белки заряжены отрицательно, нейтральный заряд имеет белок в изоэлектрической точке, которая у каждого белка своя. Наименьшей устойчивостью обладают растворы белков в изоэлектрической точке. Белки, объединяются в более крупные частицы, начинается седиментация( осаждение) под действием собственной силы тяжести.

Значение рН крови равно 7,4, в крови присутствуют, в основном, кислые белки

При наличии заряда белки перемещаются в электрическом поле. Смеси белков можно разделять методом электрофореза – направленного движения белков от одного электрода к другому под действием постоянного электрического тока. Скорость движения зависит от массы белка и величины его заряда.

Метод электрофореза широко применяется в медицине, биохимии, биологии для изучения ферментов, тканевых и плазменных белков , при изготовлении лекарственных препаратов белковой природы.

8.4.2. Денатурация белка

Макроструктура белка является весьма чуткой к изменению условий среды, в которой существует белок.

В белковой молекуле существует постоянное равновесие между силами, формирующими третичную( четвертичную) и силами отталкивания. которые возникают внутри самой молекулы и при взаимодействии с окружающей средой. При нарушении этого равновесия изменяются четвертичная, третичная и даже вторичная структура( кроме первичной! ).

Возникает потеря природных свойств белка- денатурация.

Денатурация может быть обратимой и необратимой.

Часто видимым следствием денатурации белка является осаждение белка из раствора.

Общими факторами денатурации являются :

а) изменение температуры. Повышение температуры приводит к необратимой денатурации, большинство белков организма человека теряют свою активность при температуре выше 50 0 С, а белки крови- даже при 43 – 45 0 С. На этом основаны стерилизация медицинских препаратов и пастеризация пищевых продуктов.

Читайте также:  Как делать электрофорез грудничку дома

При снижении температуры денатурация является обратимой.

Биологический белковый материал можно сохранять долго при низких температурах

( кровь, образцы тканей, растворы белковых гормонов , защитных γ-глобулинов,

б) изменение рН среды. При изменении рН среды изменяется характер ионизации кислотных и основных групп в радикалах, изменяется характер ионного взаимодействия и количество водородных связей — изменяется пространственное строение белка и организация его активных участков. В организме человека поддерживается кислотно-основный гомеостаз. Значение рН крови равное 7,4 обеспечивает необходимую организму биологическую активность всех белковых молекул.

в) действие окислителей и восстановителей. Изменяется соотношение восстановленных тиольных групп и дисульфидных связей, что вызывает изменение третичной структуры белка. Свободные тиольные группы белков содержатся и в активных участках ферментов, участвуют в химических реакциях( образование тиополуацеталей происходит в процессе окисления биоактивных альдегидов в карбоновые кислоты . См тему «Механизмы реакций. Реакции нуклеофильного присоединения»)

Лекарственные препараты, обладающие свойствами восстановителей. используются в медицине для поддержания структуры белка( аскорбиновая кислота- витамин С, раствор тиосульфата натрия ). Для химической завивки используют препараты, создающие дополнительные дисульфидные связи ; волосы после фиксации на круглой палочке( бигуди) становятся кудрявыми.

г) ионы тяжелых металлов( свинца, меди, ртути , цинка ), которые образуют соли с тиольными группами на поверхности белковой молекулы. Попадание в желудочно-кишечный тракт солей тяжелых металлов и затем всасывание их в кровь вызывает тяжелые последствия. Различают хроническое воздействие и острое отравление. Заболевание « сатурнизм», связанное с накоплением ионов свинца в организме человека, сопровождается тяжелыми патологическими изменениями со стороны центральной нервной и кровеносной системы. Отравление ионами ртути сопровождается ранним старением организма, и приводит быстро к смерти ( в древние времена было характерно для иконописцев, которые использовали красную краску киноварь HgS, а для тонкого точного мазка обязательно брали кисточку в рот, чтобы получился острый кончик кисти).

В связи с аналогичным токсическим действие свинца запрещено этилирование бензина.

д) присутствие различных поверхностно-активных веществ, детергентов, которые влияют на гидрофобное взаимодействие в молекуле белка. Гидролиз фосфолипидов в составе мембраны сопровождается образованием солей высших карбоновых кислот- поверхностно-активных веществ, и это вызывает потерю эластических свойств мембраны ( изменение «текучести» мембраны).

е) действие веществ, которые конкурируют за образование водородных связей, например, мочевины. Высокое и низкое содержание мочевины в крови способствует изменению свойств белков крови и внутриклеточных белков, особенно в составе белков мембран нейронов.

ж) действие электролитов, которые разрушают гидратную оболочку белка( процесс «высаливания»). На этом основаны рекомендации полоскать горло солевыми растворами во время заболевания и в профилактических целях. Уже в древние времена знали, что засыпание солью( сильнейшая боль ! ) огнестрельной или резаной раны в условиях боя предотвращает развитие гангрены.

з) физические воздействия ( ультразвук, лазерное воздействие, электрокоагуляция. ). Используется в медицинских целях в косметологии, лечении кожных, стоматологических болезней, в хирургии для остановки кровотечения. В современных медицинских технологиях используют лазерный луч.

8.5.Качественные реакции обнаружения белков в биологических объектах.

Биуретовая реакция – обнаруживает пептидные связи. При добавлении иона Си(+2) в щелочной среде сопровождается развитием цветной фиолетовой окраски. Интенсивность окраски пропорциональна количеству пептидных связей( содержанию белка в биологической жидкости). В биохимической лабораторной диагностике на основе биуретовой реакции используют методики Фолина или Лоури.

Ксантопротеиновая реакция- при действии азотной кислоты и последующем нагревании смеси получается осадок желтого цвета. Обнаруживает ароматические аминокислоты в составе белка ( фенилаланин и тирозин)

Подробно методики приведены в «Практикуме по биоорганической химии»

авторы Каминская Л.А., Перевалов С.Г.

8. 6. Приложение. История развития химии белков

Термин белковый ( albumineise) был впервые применен французским химиком Ф. Кене в 1747 г. Так стали называть все биологические жидкости организма по аналогии с яичным белком. «Энциклопедия» Д. Дидро и Ж. Д ‘ Аламбера в 1751 году именно так объясняла этот термин. В дальнейшем начались систематические исследования белков.В 1759г. А.Кессель-Майер выделил клейковину из растений, в 1762г. А. Халлер изучал процесс образования и свертывания казеина молока, в 1777г. А. Тувенеель, работавший в С-Петербурге, назвал творог белковой частью молока. В тот же период французский химик А. Фуркруа доказал единую химическую природу белков растительного и животного происхождения.

В 1803 г. физик и химик Дж. Дальтон( ему принадлежит формулировка закона кратных отношений, исследование газовых законов и описание дефекта цветового зрения) отнес белки к азотсодержащим соединениям. В 1810г. известный всем школьникам Ж. Гей-Люссак провел химический анализ фибрина крови. Предполагают, что первым провел гидролиз белков А. Браконно в 1820 г. и получил аминокислоты, в том числе глицин и лейцин.

Первая теория строения белков принадлежит химику Г. Мульдеру, он сформулировал ее в 1836г.Он предположил, что существует минимальная структурная единица, из которой простроены все белки , состав ( 2 С8 Н12 N2 + S0) и назвал ее протеином.

Позднее теория была опровергнута, но термин остался и прочно вошел не только в научный язык химиков.

В 1882г. В.Даль в «Толковом словаре русского языка» объясняет слово протеин- вещество, найденное в животных тканях.

В книге Д.И.Меделева( 2-е изд. СанктПетербург, Изд. Товарищества «Общественная польза» 1863г.), упоминаются термины белки и протеиновые вещества :

« Из органическихъ веществъ общи всемъ организмамъ протеновыи или белковыя вещества, отличающиеся сложным составомъ, способностью легко изменяться и даже способствовать измененiю других веществъ. Белковое вещество, производящее эти изменения, называется ферментомъ»( сохранено правописание).

Близок к открытию структуры белка был российский биохимик А.В. Данилевский

( 1838 – 1923), который много занимался изучением ферментов и проблемой питания.

В 1902 г. работы Т. Курциуса по синтезу пептидов привели к созданию пептидной гипотезы : « все белки состоят из аминокислот, соединенных между собой связью

Окончательно «пептидную теорию» сформулировали Э.Фишер и В. Гофмейстер( Нобелевская премия Э. Фишера 1902 г.)

ь Успешное изучение состава белков началось благодаря работам английского биохимика Ф.Сэнгера, который в 1945 разработал метод определения аминокислотной последовательности( лауреат Нобелевских премий 1958, 1980) и С. Мура, который сконструировал в 1958 г. автоматический аминокислотный анализатор.( Нобелевская премия 1972)

Строение пептидной группы стало возможным изучить после открытия метода рентгеноструктурного анализа.

Теорию строения а- спирали — и термин »вторичная структура» белка создал Л.Полинг ( 1951г. совместно с Р. Кори). Л. Полинг- лауреат Нобелевских премий ( по химии 1954, мира 1962).

Структура « складчатый» лист исторически была открыта раньше , У. Астбери в

1941 г. при рентгеноструктурных исследованиях белка кератина

Термин « четвертичная» структура был введен в 1958 г. английским кристаллографом Дж. Берналом в дополнение к принятым понятиям первичной, вторичной, и третичной структуры, а в 1965г. Ж. Моно ввел понятие «протомер» для названия наименьшей структурной единицы сложной белковой молекулы( чаще теперь называют «субъединица»)

Метод рентгеноструктурного анализа долгое время оставался самым точным для расшифровки пространственного строения белка: в 1936г Дороти Ходжкин исследовала и предложила пространственную структуру инсулина, в 1960Д.К.Кендрью – пространственное строение миоглобина. Сейчас используются компьютерное моделирование и приборные методы исследования: методы ЯМР

( ядерного магнитного резонанса) , ПМР протонного магнитного резонанса).

Для проверки усвоения темы рекомендуем ответить на вопросы:

1. Анализ дипептида показал, что он состоит из двух различных аминокислот : глицина и аланина. Сколько различных дипептидов можно составить?

2. Трипептид состоит из двух аминокислот: глицина и аланина. Запишите все возможные варианты строения этого трипептида.

3. Последовательность аминокислот в трипептиде: ала – глу — вал. Определите среду его водного раствора и заряд пептида в растворе.

4. Последовательность аминокислот в пептиде гли – лиз – сер. Этот пептид находится в растворе кислоты, рН= 3, 5. Определите величину заряда пептида.

5. Пептид состава асп – арг – фен находится в растворе в изоэлектрической точке.

Составьте формулу трипептида и определите область значения изоэлектрической точки ( кислая, нейтральная, щелочная). Какую надо создать среду, чтобы этот трипептид при электрофорезе двигался к катоду ?

6.Трипептид глутатион — антиоксидант крови и тканей – состоит из последовательно соединенных аминокислот : γ –глутамат- цистеин –аланин. Запишите формулу соединения и реакцию окисления этого соединения пероксидом водорода . .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8983 — | 7233 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Этот анализ является исследованием, которое позволяет определить их количественные и качественные показатели по тому, как белки распределяются в электрическом поле. Исследование основано на том, что белковые молекулы несут заряды, положительные или отрицательные в зависимости от того, какой кислотностью будет обладать среда, в которой будет проводиться непосредственно электрофорез. Молекулы, которые окажутся положительно заряженными, будут адсорбироваться лучше, нежели чем те, которые несут отрицательный заряд.

Носителями, которые будут применяться для электрофореза, могут быть хроматографическая бумага, агаровый гель, полиакриловой гель, ацетатцеллюлозная бумага или акриловый гель. Значительно реже применяется капиллярный электрофорез.

Во время анализа белки разделяют на 5 или 6 фракций, в зависимости от применяемого метода. Это будут гамма-глобулины, которые делятся на бета-1 и бета-2, альбумины — альфа-1 и альфа-2, а также бета-глобулины.

Имеются установленные нормы белковых фракций, которые должны присутствовать в крови. Отклонение их от показателей является признаком нарушения в организме, что требует проведения обследования для выявления причины.

Фракция Норма в г/л
Альбумин 35-44
Глобулин альфа-1 1-3
Глобулин альфа-2 5-8
Бета-глобулин 4-10
Гамма-глобулин 5-12

Значения показателей, в зависимости от того какие реактивы применяются в конкретной лаборатории, могут несколько изменяться. Поэтому в бланке результатов исследования в каждом медицинском учреждении обязательно указываются значения нормы, которые приняты в нем. На них будет ориентироваться врач при расшифровке анализа.

Электрофорез белков крови назначают не очень часто, так как сегодня современные лабораторные исследования позволяют провести анализ на определенный белок, что ускоряет процесс диагностики. Абсолютным показанием к электрофорезу является наличие монолокальной гаммапатии. Также иногда анализ может быть показан в таких случаях:

  • чрезмерно высокая скорость оседания эритроцитов, когда она превышает 50 мм/ч;
  • значительно повышенный уровень гамма-глобулинов;
  • скрининговое обследование для контроля эффективности лечения миеломной болезни;
  • чрезмерно высокий общий белок в крови;
  • ряд аутоиммунных заболеваний, поражающих печень и почки;
  • слабость, для которой нет выраженной причины;
  • развитие патологических переломов костей и постоянные боли в костях;
  • частые рецидивы инфекционных заболеваний;
  • нарушения, обнаруженные в прочих анализах, указывающие на то, что у человека могут развиваться анемии, лейкемии, гиперкальциемия или гипоальбуминемия.

При общей диспансеризации и получении медицинских справок для трудоустройства данное исследование крови не осуществляется. Не требуется оно и в процессе подготовки человека к хирургическому вмешательству.

Для получения наиболее точных результатов рекомендуется соблюдение правил подготовки к анализу. Они включают в себя голодную диету в течение 15 часов до того как будет взята кровь, когда пациент может употреблять только чистую не газированную воду. За 90 минут до проведения исследования необходимо полностью исключить нагрузки как эмоциональные, так и физические, и курение в активной или пассивной форме. Чтобы не допустить искажение данных, забор материала не проводят сразу после того, как был осуществлен гемодиализ или проведена процедура, при которой использовались радиоконтрастные составы. Важно также, чтобы за несколько дней до исследования полностью было исключено лечение пенициллином, так как он вызывает расщепление амбулина, что исказит результат.

Фракция Повышение Понижение
Амбулин Злоупотребление алкоголем, период вынашивания ребёнка, дегидрация Холецистит в острой форме, лейкоз, миелома, саркоидоз, пневмония, остеомиелит, системная красная волчанка, лимфома
Глобулин альфа-1 Цирроз печени, стрессовые состояния, лимфогранулематоз, период вынашивания ребёнка, язва желудка, острое или хроническое воспаление Гепатит вирусной природы в острой форме
Глобулин альфа-2 Сахарный диабет, остеомиелит, гломерулонефрит в острой форме, стрессовые состояния, системная красная волчанка, узловатый полиартрит, цирроз Гипертиреоз, гепатит вирусной природы в острой форме, гемолиз интраваскулярный
Бета-глобулин Сахарный диабет, саркоидоз, ревматоидный артрит, беременность, гломерулонефрит, желтуха подпеченочная, нефротический синдром Лейкоз, цирроз, склеродермия имеющая системный характер, лимфома, системная красная волчанка
Гамма-глобулин Цирроз, склеродермия системного характера, ревматоидный артрит, лимфолейкоз в хронической форме, муковисцидоз, синдром Шегрена Лейкоз, склеродермия, гепатит вирусной природы в острой форме, лимфома, гломерулонефрит

Исказить показатели, кроме неправильной подготовки к проведению анализа, могут 2 фактора: недавно проведенная процедура гемодиализа, из-за которой произошло разрушение эритроцитов в крови, и повышенный уровень билирубина в организме. В любом из этих случаев потребуется пересдача анализа через некоторое время, которое определит врач.

источник