Меню Рубрики

Электрофорез ферментов в физиотерапии

С лечебной целью ферменты вводят различными путями. Для ЛОР-клиники особый интерес представляет введение ферментов физическими методами. Наиболее часто применяется лекарственный электрофорез в постоянном электрическом поле, а также ингаляции аэрозолей.

Метод электрофореза, в котором сочетается действие фермента и небольших дозировок постоянного тока, имеет ряд преимуществ по сравнению с применением ферментных препаратов парентерально. С помощью электрофореза фермент можно вводить непосредственно в ткань патологического участка с нарушенным кровообращением из-за некрозов, инфильтратов, тромбоза сосудов, а также создать более высокие концентрации фермента в пораженном участке при меньших суммарных его дозах. При их введении методом электрофореза обычно не возникает местных и общих аллергических реакций, которые часто наблюдаются при парентеральном введении ферментов, так как последние, являясь для организма чужеродными белками, обладают антигенными свойствами.

Ниже изложены главным образом биохимические обоснования для применения ферментов методом электрофореза. Имеющиеся в руководствах сведения по электрофорезу часто не учитывают физико-химических свойств ферментов — веществ белковой природы, которые очень чувствительны к влиянию рН среды, температуры, ионов тяжелых металлов и другим воздействиям. Поэтому при лечебном применении ферментов методом электрофореза следует учитывать их устойчивость в растворителе, подвижность и полярность, что важно для правильного выбора полюса, с которого будет вводиться фермент.

Для определения полярности необходимо помнить, что ферменты — амфотерные электролиты: в их молекулах имеются свободные карбоксильные группы (-СООН), обладающие кислыми свойствами, благодаря отщеплению ионовводорода, и аминогруппы (-NH2), способные присоединять ионы водорода, приобретая при этом положительный заряд и придавая молекуле фермента щелочные свойства. Степень ионизации этих групп зависит от рН среды: карбоксильные группы полностью диссоциируют в щелочной среде, а аминные — в кислой. Значение рН среды, при котором белковая молекула имеет одинаковое количество положительно и отрицательно заряженных групп, называется ИЭТ. В ИЭТ белки, будучи электронейтральными, неподвижны в электрическом поле постоянного тока. Белки, как и другие лекарственные вещества, могут быть введены методом электрофореза не в молекулярной форме, а в виде ионов. Поэтому электрофорез должен проводиться в растворах с рН, удаленных от ИЭТ вводимого фермента в более кислую или щелочную зону. При этом белок приобретает положительный либо отрицательный заряд. Так, при добавлении водородных ионов (подкисление) подавляется диссоциация карбоксильных групп, белок приобретает катионные свойства и движется к катоду. Подщелачивание среды ведет к диссоциации —NH+ групп, которые превращаются в недиссоциированную форму (—NH2), что приводит к преобладанию в белковой молекуле отрицательно заряженных групп. В этом случае белок находится в форме аниона и передвигается в электрическом поле к аноду. Таким образом, при варьировании рН среды один и тот же фермент можно вводить как с положительного, так и с отрицательного полюса.

ИЭТ белков-ферментов может находиться в кислой, нейтральной, щелочной и даже сильно щелочной среде. ИЭТ трипсина, альфа-химотрипсина, рибонуклеазы, лизоцима, трасилола (ингибитор протеолитических ферментов белковой природы) лежит в щелочной зоне, следовательно, в среде с рН ниже ИЭТ (в частности, рН 7) эти белки являются катионами и должны вводиться с положительного полюса. В более щелочной зоне, чем ИЭТ, они приобретают отрицательный заряд и полюсом их введения становится катод. Ферменты гиалуронидаза и дезоксирибонуклеаза, у которых ИЭТ находится в кислой среде, при рН 7 заряжаются отрицательно и должны вводиться с катода. При значениях рН среды ниже ИЭТ они будут иметь положительный заряд и поэтому их следует вводить с анода.

Трипсин и альфа-химотрипсин в нейтральной среде (рН 7) обладают свойствами катиона и передвигаются к катоду, причем быстрее мигрирует трипсин, ИЭТ которого по сравнению с альфа-химотрипсином (ИЭТ 8,3-9,1) сдвинута в более щелочную сторону (рН 10,1). При смешивании двух ферментов их электрофоретические свойства не изменяются.

Для ферментного электрофореза важно правильно выбрать растворитель, чтобы рН раствора был отдален от ИЭТ, при этом белковая молекула будет обладать более высокой электрофоретической подвижностью. Например, при введении трипсина с ИЭТ 10,1 в качестве растворителя можно использовать физиологический раствор или еще лучше буферный раствор с рН 4-5. С другой стороны, при выборе растворителя необходимо знать рН стабильности фермента, который часто не соответствует рН-оптимуму действия. Так, точка максимальной устойчивости для трипсина находится при рН 2,3 а для химотрипсина — при рН 3-3,5, а рН-оптимум действия для двух протеиназ лежит при рН 7-8.

При повышении рН среды происходит автолиз этих ферментов, которым особенно выражен при рН свыше 8, при этом белок денатурируется с потерей энзиматической активности.

В предварительных опытах, предшествующих электрофорезу, необходимо также проверить влияние гальванического тока на активность используемого энзима. Кроме того, нужно помнить, что ряд катионов и анионов влияют на биологическую активность ферментов. Например, активность дезоксирибонуклеазы тормозится хлористым натрием, а ионы магния или марганца активируют белковые соединения.

Таким образом, применению электрофореза ферментов должны предшествовать тщательные исследования, включающие установление полярности, выбор растворителя и концентрации фермента.

Важной и нерешенной проблемой электрофореза ферментов является выяснение возможности проникновения белковых молекул с молекулярной массой в тысячи раз большей, чем неорганических ионов, в пораженную ткань через кожу и слизистую оболочку. Лишь при воспалении (повышении сосудистой проницаемости) могут создаваться условия для проникновения ферментов с помощью гальванического тока. Трудную задачу представляет собой количественное определение в тканях вводимых с помощью постоянного тока ферментов, поскольку их концентрация при этом незначительна.

Необходимо учитывать также, что ферменты быстро связываются с белками тканей, которые резко снижают их энзиматическую активность.

Другая новая область энзимофизиотерапии — применение ингибиторов ферментов в отоларингологии. Ингибиторы протеолитических ферментов показаны при тех патологических процессах, в генезе которых лежит активация протеолиза и фибринолиза.

В ЛОР-клинике до настоящего времени практически используется только эпсилон-АКК в качестве препарата, тормозящего процессы фибринолиза, а также как антиаллергическое средство.

Большие перспективы открываются при применении природных ингибиторов, которые в отличие от синтетических обладают более широким спектром действия: они подавляют активность многих протеолитических ферментов, активирующихся при ряде воспалительных и аллергических процессов. В частности, при реакции антиген — антитело освобождаются протеолитические ферменты, которые катализируют образование кининов.

Так как ингибиторы имеют белковоподобную природу, перед введением необходимо выяснить их полярность и электрофоретическую подвижность в различных растворителях. Поскольку выпускаемые препараты содержат примеси других неактивных белковоподобных соединений, которые могут изменять электрофоретические свойства, клиническому применению предшествовали биохимические исследования ингибиторов протеиназ. При растворении ингибиторов в физиологическом растворе (рН 6) пантрипин электрофоретически гетерогенен, он состоит из нескольких фракций, движущихся в сторону как анода, так и катода. Контрикал разделяется при электрофорезе на две катодные фракции; трасилол передвигается к катоду в виде одной фракции. Возникает вопрос, где же находится активная фракция? Предлагается определять специфическую ингибиторную активность во всех фракциях по их способности тормозить активность протеиназ. Опыты показали, что основная часть ингибирующей активности (примерно 90%) содержится в быстрой катодной фракции, в анодной фракции активность ингибитора не обнаружена.

На основании этих опытов можно сделать вывод о том, что ингибитор следует растворять в физиологическом растворе и вводить с положительного полюса.

Ингибиторы можно применять для лечения ряда аллергических и воспалительных заболеваний ЛОР-органов путем назального электрофореза. Учитывая дефицит препаратов ингибиторов, а также необходимость использования больших дозировок при парентеральном введении, в терапии регионарных воспалительных и аллергических процессов более целесообразно и экономически выгодно вводить ингибиторы непосредственно в очаг поражения с помощью постоянного тока (гальванический ток не влияет на активность ингибиторов). Так могут быть созданы более высокие концентрации ингибиторов в пораженных тканях, особенно при повышенной проницаемости слизистых оболочек, наблюдающейся при воспалительных и аллергических реакциях.

Приведенные материалы показывают, что успех ферментной физиотерапии в существенной мере зависит от знания физико-химических свойств используемых энзимов, а также возможности проникновения экзогенных ферментов в очаг поражения, длительности их пребывания и выведения их организма. Здесь еще много неясных вопросов, которые могут быть разрешены клиницистами совместно с физиотерапевтами, биохимиками, фармакологами, физиологами. Необходимо внедрение новых методов количественного определения ферментов в тканях, включая применение флюорохромированных ферментов, флюорохромированных антител, а также радиоактивных индикаторов для прослеживания вхождения ферментов в клетки и определения их активности в пораженных тканях.

Среди физических методов терапии ферментами ЛОР-заболеваний наряду с электрофорезом важное значение имеет введение энзимов и их ингибиторов с помощью ингаляций их аэрозолей. Использование ферментов путем ингаляций аэрозолей основано на том, что они могут непосредственно взаимодействовать со специфическими субстратами очага повреждения и вызывать их расщепление.

Методы электрофореза и ингаляций аэрозолей ферментов нашли применение в терапии заболеваний ЛОР-органов — ларингитов, ринитов, воспалений полости рта и глотки, стенозирующих ларинготрахеитов, бронхитов у детей и т.д.

источник

Электрофорез – относится к физиотерапевтическим процедурам и больше других методов практикуется при разных заболеваниях у взрослых и детей. Во время процедуры на организм человека воздействуют электрические импульсы (постоянный ток), генерирующиеся специальным аппаратом и оказывающие терапевтический эффект на общем и местном уровнях. Одновременно осуществляется введение лекарственных препаратов через кожные покровы или слизистые оболочки.

Ведущий метод физиотерапии не был бы возможен без генератора непрерывного тока, который был создан физиком из Италии А. Вольта в 19 веке.

Первые разговоры об электроомосе, представляющем собой движение растворов через капилляры при воздействии электрического поля, имели место еще в 1809 г. Именно тогда ученый из Германии Фердинанд Рейс впервые упомянул об электрофорезе. Однако массового распространения его исследования не получили.

В 1926 году Арне Тиселиусом, шведским биохимиком, была описана первая трубка, необходимая для процедуры. Первый аппарат для электропроцедур был изобретен в 1936 году – ранее предложенные трубки трансформировались в более эффективные узкие ячейки, а чуть позже заменились на секции из стекла. Многолетние исследования, проводимые на лошадиной сыворотке, позволили раскрыть механизм действия электрофореза: молекулы, имеющие электрический заряд, под влиянием электротока в жидкой среде перемещаются в противоположную заряженному электроду зону.

Электрофорез выполняется с использованием разных аппаратов, но самым известным является «Поток», который более 50 лет применяется в физиотерапии. Строение аппарата простое: отверстия для электродов, имеющие маркировку + и -, кнопки для определения времени процедуры и регулятор силы тока.

Аппараты нового образца оснащаются цифровыми индикаторами и дисплеем («Элфор», «Элфор Проф» и др.)

  • Снижение выраженности воспалительного процесса;
  • Устранение отеков;
  • Уменьшение болевого синдрома;
  • Стимуляция выработки веществ с биологической активностью;
  • Расслабление мышц с устранением повышенного тонуса;
  • Успокаивающий эффект на ЦНС;
  • Улучшение микроциркуляции крови;
  • Ускорение регенерации тканей;
  • Активация защитных сил.

Действие электрического тока приводит к тому, что лекарственный препарат преобразуется в ионы, имеющие электрический заряд, которые и проникают в кожу. Именно в коже остается основная часть препарата, чуть меньшая часть через лимфу и кровь транспортируется по всему организму.

Ионы с разным зарядом по-разному действуют на организм. Так, отрицательно заряженные ионы оказывают:

  • секреторное воздействие, т.е. влияют на выработку веществ с биологической активностью и попаданию их в кровоток;
  • расслабляющее действие в отношении гладкой мышечной ткани;
  • сосудорасширяющий эффект;
  • нормализующее действие на обмен веществ.

Ионы с положительным зарядом оказывают противоотечное, противовоспалительное, успокаивающее и обезболивающее действие.

Участки кожи, участвующие в транспортировке лекарства:

  • выводные протоки потных и сальных желез;
  • межклеточные области;
  • волосяные фолликулы.

Эффективность элетрофореза напрямую зависит от полноты всасывания лекарственного средства, на которую оказывают влияние следующие факторы:

  • возраст человека;
  • сила подаваемого тока;
  • свойства растворителя, в котором растворяют лекарство;
  • концентрация и доза препарата;
  • размер иона и его заряд;
  • место постановки электродов;
  • длительность процедуры;
  • индивидуальные особенности организма, такие как переносимость и восприимчивость процедуры.

Электрофорез проводится в физиотерапевтическом кабинете, медицинским работником. Существуют аппараты для домашнего применения, для каждого из которых разрабатывается инструкция, которую следует строго соблюдать.

Классический чрезкожный метод. Медсестра осматривает участки тела, на которые будут поставлены электроды – кожа должна быть здоровой, без родинок, повреждений и воспалительных элементов. На одну прокладку, которая представляет собой стерильную марлю, наносят заранее подготовленный основной лекарственный препарат, на вторую, аналогичную, наносят другое лекарство, чаще всего 2 % эуфиллин, который улучшает кровообращение, расслабляет гладкие мышцы и оказывает легкий обезболивающий эффект. Первая прокладка подсоединяется к плюсу, а вторая — к минусу.

После подготовки прокладки накладывают на кожу, крепят к ним электроды и фиксируют грузом либо эластичными бинтами, после чего включают аппарат.

Сила тока и время процедуры подбираются индивидуально. Медсестра понемногу прибавляет ток во время процедуры и спрашивает, как пациент себя чувствует. Нормальные ощущения – это легкое покалывание в месте крепления электродов. А вот жжение, зуд и боль являются сигналом к немедленному прекращению процедуры.

Среднее время процедуры – 10-15 минут. Меньшей продолжительностью отличаются процедуры для маленьких детей. Длительность курса – 10-20 процедур, которые проводятся ежедневно или через день.

  • Ванночковый. Лекарственное средство и раствор наливают в ванночку со встроенными электродами. После подготовки пациент погружает в ванночку пораженную часть тела.
  • Полостной. Раствор с препаратом вводится в полость (влагалище, прямая кишка) и один из электродов подводится в эту же полость. Второй электрод крепят на коже. Применяют при заболеваниях толстого кишечника и органов малого таза.
  • Внутритканевой. Лекарство вводится традиционным способом, например, внутривенно либо перорально, а электроды накладывают на проекцию пораженного органа. Особенно эффективно такое введение при патологиях органов дыхания (бронхит, трахеит).
  • Введение не сопровождается болью;
  • Малая концентрация лекарственного вещества в растворе (до 10 %), которой достаточно для оказания высокого терапевтического эффекта;
  • Введение препарата прямо в очаг воспаления;
  • Минимум побочных и аллергических реакций;
  • Длительный терапевтический эффект введенного препарата (до 20 дней);
  • Минуется классический путь прохождения препаратов через ЖКТ при пероральном приеме, а значит, увеличивается биодоступность лекарственных средств.
  • Далеко не все препараты можно вводить в организм при помощи электрофореза;
  • Сама процедура имеет ряд строгих противопоказаний.
Читайте также:  Ситуационные задачи по физиотерапии для медицинских сестер

В зависимости от заряда препарат вводится через положительный или отрицательный полюс. При проведении процедуры допустимо использование только тех препаратов, которые проникают через кожу. Каждое лекарство имеет свои показания и оказывает определенный терапевтический эффект. Рассмотрим основные препараты, применяемые при электрофорезе:

Название препарата Показания Терапевтический эффект
Атропин
  • ЯБЖ и 12-перстной кишки;
  • воспалительные болезни органов зрения;
  • бронхиальная астма.
Уменьшается секреция желез и снижается тонус гладкой мышечной ткани. Устраняется боль.
Кальций
  • заболевания, ассоциированные с дефицитом кальция (переломы костей, дисплазия тазобедренных суставов);
  • воспалительные процессы в полости рта;
  • аллергические заболевания;

Электрофорез с кальцием хлоридом назначается при нарушении свертываемости крови.

Противоаллергическое, кровеостанавливающее и противовоспалительное действие. Восполнение недостатка кальция.
Эуфиллин Электрофорез с эуфиллином показан при:
  • бронхиальной астме;
  • гипертонической болезни;
  • нарушении почечного и мозгового кровообращения;
  • остеоартрозе, остеохондрозе и межпозвоночной грыже.
Уменьшение спазма гладких мышц, снижение артериального давления, улучшение кровообращения и устранение бронхоспазма. Устранение болевого синдрома.
Витамин В1
  • патологии нервной системы (радикулит, неврит, парезы и параличи);
  • заболевания органов пищеварения (ЯБЖ и 12-перстной кишки, гепатиты);
  • заболевания кожи (псориаз, дерматиты);
  • состояния, сопровождающиеся дефицитом витамина В1.
Противовоспалительный, анальгезирующий и противоаллергический эффект. Нормализация обмена веществ и работы указанных органов и систем.
Карипазим
  • остеохондроз;
  • межпозвоночная грыжа;
  • артрозы, артриты. Электрофорез с карипазимом при грыже в комплексном лечении на ранних стадиях заболевания помогает избежать операции.
Размягчение хрящевой ткани межпозвоночных дисков. Рубцевание поврежденных коллагеновых волокон и восстановление их упругости. Противовоспалительное действие.
Димедрол
  • аллергические заболевания (крапивница, дерматит);
  • бессонница;
  • болевой синдром;
  • бронхиальная астма, гастрит и ЯБЖ (в качестве дополнительного лечения).
Успокаивающее, снотворное, обезболивающее и противоаллергическое действие. Расслабление гладкой мускулатуры.
Лидаза Электрофорез с лидазой проводится при:
  • поражениях кожи (раны, язвы и келоидные рубцы);
  • заболеваниях опорно-двигательной системы (остеохондроз, контрактуры);
  • болезнях глаз (ретинопатия, кератит).
Расщепление гиалуроновой кислоты, которая участвует в формировании рубцов. Уменьшение отечности тканей и замедление механизма формирования контрактур.
Магний
  • состояния, связанные с дефицитом магния;
  • заболевания сердца (гипертоническая б-нь, тахикардия);
  • раздражительность, депрессия.
Нормализация сердечного ритма, работы нервной системы и костно-мышечного аппарата.
Мумие
  • заболевания опорно-двигательной системы (переломы, радикулит);
  • болезни органов дыхания (бронхит, бронхиальная астма);
  • болезни органов пищеварения (ЯБЖ, колиты);
  • заболевания кожи (ожоги, язвы).
Более 80 биологически активных веществ оказывают комплексное воздействие на организм, включая регенерирующее, противовоспалительное и др.
Папаверин Состояния, которые сопровождаются спазмами (спазм мочевыводящих путей, бронхоспазм и др.). Устранение мышечного спазма, тонуса гладкой мышечной ткани внутренних органов. Сосудорасширяющий эффект. Снижение артериального давления.
Алоэ
  • заболевания глаз (кератит, конъюнктивит);
  • бронхиальная астма;
  • ЯБЖ и 12-перстной кишки;
  • поражения кожи (ожоги, трофические язвы).
Ускорение процессов регенерации тканей. Стимуляция иммунитета на местном уровне. Выраженный противовоспалительный эффект.
Новокаин Болевой синдром, сопровождающий заболевания. Местное обезболивающее действие.
Йод
  • заболевания кожи воспалительной природы, открытые раны;
  • гипертиреоз;
  • невралгии, невриты, атеросклероз.
Противовоспалительный эффект. Угнетение роста патогенных бактерий. Снижение уровня холестерина.
Ампициллин
  • инфекционно-воспалительные процессы органов дыхания (бронхит, пневмония, ангина);
  • отиты, синуситы;
  • инфекции кожи;
  • инфекции ЖКТ и мочеполовой системы (цистит, гонорея, холецистит).
Бактерицидное действие на широкий перечень инфекционных возбудителей.
Никотиновая кислота
  • заболевания ЖКТ (ЯБЖ и 12-перстной кишки);
  • атеросклероз, стенокардия;
  • длительно незаживающие раны, трофические язвы;
  • заболевания, которые протекают со спазмами сосудов.
Сосудорасширяющий эффект. Улучшение кровообращения. Уменьшения уровня холестерина крови.
Стрептоцид
  • инфекции кожи (рожа, фурункулы, акне);
  • ожоги, раны;
  • инфекционные заболевания ЛОР-органов (ангина, тонзиллит);
  • инфекции мочеполовой системы.
Угнетение роста патогенной флоры.
Гепарин
  • варикозная болезнь;
  • травмы, отеки тканей, ушибы;
  • профилактика тромбообразования.
Разжижение крови. Противовоспалительное и противоотечное действие. Улучшение микроциркуляции.
Гумизоль
  • заболевания суставов (артрит, полиартрит, артроз);
  • заболевания ЛОР-органов (синусит, ринит, средний отит, фарингит);
  • радикулит, миалгии.
Выраженное адаптогенное действие. Противовоспалите льный и обезболивающий эффекты. Повышение неспецифической резистентности организма.

Следующие препараты можно вводить как с анода, так и с катода):

Проще перечислить противопоказания к лечению, поскольку процедура показана при большинстве распространенных заболеваний практически всех органов и систем. Однако отсутствие массового применения доступной процедуры и интереса больных объясняется несколькими факторами:

  • не всегда врачи предлагают пациентам данный метод вспомогательного лечения;
  • поскольку процедуры проводят в физиотерапевтическом кабинете, то курс лечения является обременительным для некоторых пациентов;
  • не все люди доверяют подобным процедурам и относятся к ним с осторожностью.

Показания для процедуры у маленьких детей до 1 года:

  • гипер- или гипотонус мышц;
  • неврологические нарушения незначительной степени выраженности;
  • заболевания опорно-двигательного аппарата (в т.ч. дисплазия и незрелость тазобедренных суставов);
  • диатез;
  • ожоги;
  • заболевания ЛОР-органов.

Как и для любой другой физиопроцедуры, для электрофореза характерны показания и противопоказания. Противопоказания разделяют на абсолютные, при которых процедура запрещена, и относительные, при которых решение о возможности физиолечения принимает врач.

Электрофорез не проводится в острой стадии заболевания или при обострении хронических патологий – это абсолютное противопоказание для всех пациентов.

Противопоказания
Абсолютные Относительные
  • Общее тяжелое состояние пациента
  • Т 38 и более
  • Плохая свертываемость крови
  • Непереносимость электрического тока или лекарственного препарата, используемого для лечения
  • Туберкулез в активной форме
  • Тяжелые психические заболевания
  • Злокачественные опухоли
  • Почечная и печеночная недостаточность в острой стадии
  • Менструация у женщин
  • Наличие кардиостимулятора
  • Сердечно-сосудистая недостаточность тяжелой степени
  • Нарушение целостности кожных покровов в местах постановки электродов
  • Беременность
  • Гипертоническая болезнь в стадии обострения
  • Детский возраст до 2 лет

Даже при отсутствии прямых противопоказаний к процедуре врач всегда взвешивает все «за и против», оценивает общее состояние физического и психического здоровья перед тем, как назначить физиотерапевтическое лечение.

Если полностью соблюдается техника проведения процедуры, никаких побочных эффектов не возникает. Возможно развитие аллергических реакций на препарат, используемый для лечения. Часто на месте наложения прокладки остается гиперемия, которая быстро проходит после снятия электродов.

источник

Гальванический ток используется также для введения в организм ионов различных лекарственных веществ. Такой метод называется электрофорезом.

Если матерчатую прокладку одного из электродов смочить раствором лекарственного вещества, наложить на кожу и соединить с аппаратом для гальванизации, то находящиеся в растворе ионы придут в движение. По закону физики, согласно которому одноименные заряды отталкиваются, а разноименные притягиваются, положительные ионы пойдут в сторону катода, отрицательные — в сторону анода.

Физиологическое действие электрофореза различных лекарственных ионов складывается из действия самого гальванического тока и фармакологического действия вводимых с его помощью ионов. В коже под электродом, прокладка которого смочена лекарственным веществом, образуется скопление ионов, так называемое кожное депо. Из этого «депо» лекарственные ионы очень медленно и равномерно поступают в общий кровоток и достаточно медленно выводятся из организма (медленнее, чем при внут- рикожном или подкожном введении), оказывая присущее им специфическое действие, хотя концентрация их в ткани невелика. Это объясняется, в частности, тем, что под влиянием самого тока повышается чувствительность организма к вводимым током лекарственным веществам.

Если одна из прокладок, пропитанная лекарственным раствором, соединена с положительным полюсом, то только положительные лекарственные ионы при прохождении электрического тока начнут проникать в кожу. Если одна из прокладок, пропитанная лекарственным раствором, соединена с отрицательным полюсом, то в кожу будут поступать отрицательно заряженные ионы. Чтобы решить, с какого полюса следует вводить ион нужного лекарственного вещества, необходимо помнить правилолекарственное вещество вводят с того полюса, зарядом которого оно обладает, или «ион вводится с одноименного полюса, а именно: положительный — с плюса, отрицательный — с минуса, или, как говорят «металлы идут вместе с

Рис. 11. Электрод для электрофореза антибиотиков:

  • 1 — фильтровальная бумага, смоченная раствором антибиотика;
  • 2 — гидрофильная прокладка; 3 — фильтровальная бумага, смоченная в 5% растворе глюкозы; 4 — гидрофильная прокладка; 5 — свинцовый электрод (по Е.И. Пасынкову)

током». Так, анионы (отрицательный заряд) вводят с катода, катионы (положительный заряд) — с анода.

Полярность белков и других аморфных соединений зависит от pH раствора: в кислых растворах они приобретают положительный заряд, а в щелочных — отрицательный. Наиболее часто употребляемые ионы лекарственных веществ приведены в таблице 1.

При электрофорезе раствором соответствующего лекарственного вещества смачивают либо гидрофильную прокладку электрода, либо слой фильтровальной бумаги, соответствующий по площади прокладки. В последнем случае поверх фильтровальной бумаги помещают смоченную теплой водопроводной водой гидрофильную прокладку. Электрод с лекарственным веществом принято называть активным.

Методом электрофореза можно вводить одновременно два лекарственных вещества различной полярности, смачивая ими гидрофильные прокладки, соединенные через электроды с различными полюсами аппарата. Иногда одновременно вводят два лекарственных вещества одинаковой полярности, применяя для этого две прокладки с двумя электродами, соединенные сдвоенным проводом с одним полюсом тока (обе прокладки смачиваются разными лекарственными растворами).

Сегодня получает все большее распространение внутритканевой электрофорез. Суть метода состоит в том, что одним из общепринятых способов (внутривенно, подкожно, ингаляционным путем) вводится лекарственное вещество, а затем, когда его концентрация в крови будет максимальной, проводят поперечную гальванизацию на область патологического очага или вовлеченного в процесс органа. Важным достоинством этого варианта электрофореза является использование всей терапевтической дозы лекарственного вещества.

Лекарственные растворы, применяемые для электрофореза, готовятся на дистиллированной воде и хранятся в физиотерапевтическом кабинете в специальном шкафу или на полке. Если лекарственное средство плохо растворимо в воде, то при его электрофорезе в качестве растворителя можно использовать спирты и димексид (диметилсульфок- сид, ДМСО). Не должны использоваться для приготовления рабочих лекарственных растворов неполярные растворители, а также растворы электролитов.

Лекарственные вещества для электрофореза должны быть максимально чистыми, свободными от примесей. Поэтому нельзя использовать для лекарственного электрофореза

Лекарственные вещества, наиболее часто используемые для электрофореза

Концентрация раствора или количество вещества

источник

Обычная гальванизация в настоящее время постепенно уступает место методу

лекарственного электрофореза — введению в организм лекарственных веществ с помощью постоянного тока. В этом случае на организм действует два фактора — лекарственный препарат и гальванический ток.

В растворе, как и в тканевой жидкости, многие лекарственные вещества распадаются на ионы и в зависимости от их заряда вводятся при электрофорезе с того или иного электрода.

Проникая при прохождении тока в толщу кожи под электродами, лекарственные вещества образуют так называемые кожные депо, из которых они медленно поступают, в организм.

Лекарственные вещества могут находиться в коже от 1—2 до 15—20 дней. Продолжительность депонирования во многом определяется физико-химическими свойствами веществ и их взаимодействием с белками кожи. Находящиеся в коже лекарственные ионы являются источником длительной нервной импуль-сации, что также способствует более длительному действию лекарственных веществ.

Однако не все лекарственные вещества могут быть использованы для электрофореза.

Некоторые лекарственные средства под действием тока изменяют фармакологические свойства, могут распадаться или образовывать соединения, оказывающие вредное действие.

Поэтому при необходимости использования для лекарственного электрофореза какого-либо вещества следует изучить его способность проникать через кожу под действием гальванического тока, определить оптимальную концентрацию раствора лекарственного вещества для электрофореза, особенности растворителя. Концентрация большинства лекарственных растворов, применяемых для электрофореза, составляет 1—5 %.

С прокладки положительного электрода (анода) в ткани организма вводятся ионы металлов, а также положительно заряженные частицы более сложных веществ, например кальций, магний, натрий, новокаин, хинин, витамин Biz,. лидаза, дикаин, димедрол и др. С прокладки отрицатель- \ ного электрода (катода) вводят кислотные радикалы и отрицательно заряженные частицы сложных соединений, например хлор, бром, йод, пенициллин, салицилат, эуфиллйн, гидрокортизон, никотиновую кислоту. При применении сложных. химических соединений, содержащих несколько ионов разноименного заряда (минеральная вода, лечебная грязь и грязевой раствор), активными являются оба электрода, т. е. ионы этих соединений вводятся одновременно с двух полюсов. Введение лекарственных веществ методом электрофореза имеет ряд преимуществ по сравнению с обычными способами их использования:

1) лекарственное вещество действует на фоне измененного под влиянием гальванического тока электрохимического режима клеток и тканей;

2) лекарственное вещество поступает в виде ионов, что повышает его фармакологическую активность;

3) образование «кожного депо» увеличивает продолжительность действия лекарственного средства;

4) высокая концентрация лекарственного вещества. создается непосредственно в патологическом очаге;

5) не раздражается слизистая оболочка желудочно-кишечного тракта;

6) обеспечивается возможность одновременного введения нескольких (с разных полюсов) лекарственных веществ.

Благодаря этим преимуществам лекарственный электрофорез находит все большее применение, в том числепри лечении заболеваний сердечно-сосудистой системы, в онкологической практике, при лечении туберкулеза. Возникают новые перспективные разработки этого лечебного метода, например электрофорез лекарственных веществ из растворов, предварительно введенных в полостные органы.

Однако имеются и ограничения для использования электрофореза, обусловленные прежде всего особенностями самих лекарственных веществ. Многие из них являются электрически нейтральными, имеют низкую электро-форетическую подвижность либо теряют свою активность под действием электрического тока.

Показания к применению лекарственного электрофореза складываются из показаний к гальванизации и переносимости назначенных препаратов. Противопоказания аналогичны таковым: для гальванизации с учетом индивидуальной переносимости лекарственного вещества.

Интенсивность воздействия при гальванизации и лекарственном электрофорезе

определяются используемой силой тока, выражаемой в миллиамперах (мА). Расчет максимально допустимой силы тока производят по показателю плотности тока, т. е. силе тока, приходящейся на 1 см2 площади активного электрода (мА/см2). Чтобы рассчитать максимальную силу тока, следует значение его плотности умножить на площадь электрода, т.е. величину поверхности прокладки. Выбор значения плотности тока зависит от площади

активного электрода, места воздействия, индивидуальной чувствительности к току, возраста и пола больного. Чем больше площадь электрода, тем меньше должна быть плотность тока.

Читайте также:  Вакансии заведующий отделением физиотерапии

Если используются электроды разной площади, то для расчета силы тока учитывают площадь меньшего электрода. В случаях, когда катод или анод представлены сдвоенным электродом, для расчета берут сумму площадей этих электродов. Плотность тока при общих и сегментарных воздействиях не должна превышать 0,01—0,05 мА/см2, а при местных процедурах — 0,05—0,1 мА/см2, для детей дошкольного возраста — 0,03 мА/см2, школьного — 0,05 мА/см2.

При дозировании постоянного тока необходимо учитывать ощущения больного. Во время процедуры больной должен испытывать легкое покалывание в области наложения электродов. Продолжительность процедуры может быть различной: 10—15 мин при общих и рефлекторно-сегментарных методиках воздействия и 30—40 мин — при местных. Курс лечения 10—20 процедур, ежедневно или через день.

Источником постоянного тока при гальванизации служат аппараты, в которых

переменный ток промышленно-осветительной сети выпрямляется и сглаживается, затем по гибким изолированным проводам, на концах которых закреплены зажимы, соединенные с электродами, подводится к больному. Сила тока контролируется миллиамперметром, предусматривающим переключение используемой силы тока до 5 или 50 мА.

Правила эксплуатации аппаратов для гальванизации одинаковы. В качестве примера приводим описание одного из аппаратов «Поток-1». Портативный аппарат «Поток-1» работает от сети переменного тока частотой 50 Гц при напряжении 127 иди 220 В. Аппарат изготовлен по II классу защиты и не требует заземления. К аппарату может прилагаться приставка, позволяющая использовать его для гальванизации конечностей с помощью камерных ванн. При назначении врачом процедуры гальванизации или лекарственного электрофореза должны быть указаны название метода, наименование препарата, концентрация раствора, полюс введения, место воздействия, методика, сила тока (мА), продолжительность (мин), интервалы (ежедневно или через день), число процедур на курс лечения.

Ознакомившись с назначением врача-физиотерапевта, медицинская сестра должна подготовить больного к процедуре.

Гальванизацию и лекарственный электрофорез проводят в положении больного лежа или сидя в зависимости от назначения. Медицинской сестре необходимо осмотреть поверхность кожи в месте наложения электродов. На коже не должно быть ссадин, царапин и других повреждений. Загрязненную сальную кожу перед процедурой необходимо обмыть теплой водой с мылом или очистить и обезжирить ватой, смоченной спиртом. На соответствующем участке тела больного размещают электроды, состоящие из металлической пластинки, обычно свинцовой, и влажной матерчатой гидрофильной прокладки.

Свинцовые пластинки должны быть ровными и гладкими (для этого их разглаживают металлическим валиком), края должны быть закруглены, толщина пластинок должна составлять 0,3—1 мм. Со временем пластины покрываются налетом оксида свинца, что ухудшает электропроводность, в связи с чем их следует периодически чистить наждачной бумагой. В настоящее время все большее распространение получают электроды из токопроводящей (графитизированной) ткани разной формы и размеров. Чаще используют прямоугольные электроды, а также электроды в виде полумаски, воротника или специальные для полостных процедур (вагинальные, ректальные и др.). Гидрофильные прокладки должны соответствовать форме пластин и выступать за их края на 1—2 см со всех сторон. Они предохраняют кожу от повреждающего влияния продуктов электролиза, повышают ее электропроводность, обеспечивают хороший контакт электродов с телом больного. Прокладки изготавливают из белой фланели, байки, бязи и другой гидрофильной ткани. Они имеют вид тетради, составленной из 8—16 слоев ткани.

Для проведения процедуры прокладки смачивают теплой водой, отжимают, вкладывают в них электроды, помещают на соответствующие участки кожи и фиксируют с помощью резиновых бинтов, мешочков с песком либо тяжестью тела больного. После наложения электродов больного, лежащего на кушетке, накрывают простыней или легким одеялом. При этом электропровода, идущие от больного к аппарату, не должны провисать и натягиваться.

Электрические провода, соединенные с электродами, подсоединяют к аппарату соответственно полярности, указанной в назначении врача.

Перед включением аппарата переключатель напряжения следует установить в положение, соответствующее напряжению в сети (127 или 220 В), ручку регулятора силы тока — в положение «О», переключатель шунта миллиамперметра — в положение «5» или «50» соответственно силе тока, указанной в назначении врача. Для включения аппарата необходимо вставить штепсельную вилку в сетевую розетку, повернуть выключатель в положение «Вкл.», после чего на панели аппарата загорается сигнальная лампочка. Затем,

медленно и плавно поворачивая ручку регулятора силы тока, наблюдая за показаниями миллиамперметра и ориентируясь на ощущения больного, устанавливают необходимую для процедуры силу тока. Во время процедуры больной должен ощущать в области наложения электродов легкое жжение, покалывание, о чем он должен быть предупрежден. При появлении сильного жжения, болезненного ощущения под электродами силу тока следует уменьшить, а если эти явления не исчезают, то следует прервать процедуру и-вызвать врача или направить к нему больного. В зависимости от места наложения электродов различают поперечную и продольную методики. При поперечной методике электроды располагаются друг против друга на противоположных участках тела, при этом ток воздействует на глубоколежащие ткани, при продольной — электроды находятся на одной стороне тела, воздействию подвергаются поверхностно расположенные ткани.

Специальную методику представляет воздействие гальваническим током в камерных ваннах. В этом случае больной помещает конечности в фаянсовые ванночки, которые заполняют водой. В офтальмологической практике для гальванизации и электрофореза используют глазные ванночки.

После окончания процедуры ручку регулятора силы тока медленно и плавно

поворачивают против часовой стрелки до нулевого положения стрелки потенциометра, переводят переключатель в положение «Выкл.», снимают с больного электроды. У детей под влиянием гальванического тока на месте расположения электродов кожа грубеет и становится сухой, могут образоваться трещины, поэтому после каждой процедуры ее следует смазывать питательным кремом или глицерином, разведенным наполовину водой. После каждой процедуры гидрофильные прокладки необходимо промыть под струёй воды, в конце дня стерилизовать кипячением. Причем прокладки для гальванизации и лекарственного электрофореза в зависимости от заряда иона стерилизуют раздельно.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8805 — | 7522 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Для подведения постоянного тока к пациенту используют электроды из металлических пластин (свинца, станиоля) или токопроводящей графитизированной ткани и гидрофильных матерчатых прокладок.

Последние имеют толщину 1-1,5 см и выступают за края металлической пластаны или токопроводящей ткани на 1,5-2 см.

Существуют другие виды электродов: стеклянные ванночки для глаз, полостные — в гинекологии, урологии. Гидрофильные прокладки предназначены для исключения возможности контакта продуктов электролиза (кислоты, щелочи) с кожей и изготавливаются из белой ткани (фланели, байки, бумазеи).

Нельзя пользоваться прокладками из шерстяной или окрашенной ткани. Гидрофильные прокладки сшивают из 5-6 слоев материн (для удобства прополаскивания в воде, кипячения и сушки), пришивают карман из одного слоя фланели, в который вкладывают свинцовую пластинку, соединенную с токонесущим проводом, металлическим зажимом или припаянную непосредственно к проводу.

В кабинете целесообразно иметь набор свинцовых пластин различной площади от 4 до 800-1200 см2 или такой же площади углеграфитовых. В последние годы выпускают одноразовые электроды. Используют электроды специальной формы (в виде полумаски для лица, «воротника» для верхней части спины и надплечий, двухлопастные, круглые на область глаз и др.).

Следует знать, что ионы свинца вредно действуют на организм, поэтому медицинские сестры, постоянно работающие в этом кабинете, должны получать пектин или мармелад. Свинцовые пластины периодически необходимо чистить наждачной бумагой и протирать спиртом для снятия налета окиси свинца, а также тщательно разглаживать металлическим валиком перед процедурой. Электроды фиксируют с помощью эластичных бинтов, мешочков с песком или тяжестью тела больного.

Перед процедурой медицинская сестра должна ознакомить больного с характером ощущений под электродами: равномерное покалывание и легкое жжение. При появлении неприятных болезненных ощущений или неравномерного жжения на определенном участке кожи больной, не двигаясь и не меняя положения, должен вызвать сестру. Не рекомендуется во время процедуры читать, разговаривать, спать. После процедуры необходим отдых в течение 20-30 мин.

Перед процедурой следует убедиться в отсутствии царапин, ссадин, мацерации, сыпи на коже. Гидрофильные матерчатые прокладки хорошо смачивают теплой водопроводной водой и располагают на коже пациента, свинцовая пластина с токонесущим проводом находится при этом в кармашке. Желательно под матерчатый электрод положить на кожу фильтровальную бумагу, чтобы предохранить прокладку от загрязнения.

Расположение электродов на теле больного определяется локализацией, остротой и характером патологического процесса. Различают поперечную, продольную и поперечно-диагональную методики. При поперечном расположении электроды помещают на противоположных поверхностях тела — один против другого (живот и спина, наружная и внутренняя поверхности коленного сустава и т. д.), что обеспечивает более глубокое воздействие. При продольной методике электроды лежат на одной поверхности тела: один — более проксимально, другой — дистально (продольно по позвоночнику, по ходу нерва, мышцы).

В этом случае оказывается влияние на более поверхностные ткани. Для поперечно-диагональной методики характерно расположение электродов на разных поверхностях тела, но один -в проксимальных его отделах, другой — в дистальных. При близком расположении расстояние между электродами должно быть не меньше половины их диаметра.

Методом электрофореза в организм чаще всего вводят лекарства-электролиты, диссоциирующие в растворах на ионы. Положительно заряженные ионы (+) вводят с положительного полюса (анода), отрицательно заряженные (-) — с отрицательного полюса (катода). При лекарственном электрофорезе можно использовать различные растворители, универсальным и лучшим из них является дистиллированная вода. При плохой растворимости лекарства в воде в качестве растворителя применяют димексид, который также оказывает и противовоспалительное действие.

Для электрофореза сложных органических соединений (белки, аминокислоты, сульфаниламиды) используют буферные растворы. Лекарственные вещества, например, лидаза или ронидаза, растворенные в кислом (ацетатном) буферном растворе с рН = 5,2, вводят с положительного полюса. Пропись его: ацетат (или цитрат) натрия И,4 г, ледяной уксусной кислоты 0,91 мл, дистиллированной воды 1000 мл, 64 единицы лидазы (0,1 г сухого вещества). 0,5-1 г ронидазы растворяют в 15 или 30 мл ацетатного буфера.

Для электрофореза трипсина и химотрипсина используют боратный буфер с рН = 8,0-9,0 (щелочная среда), который вводят с отрицательного полюса. Его состав: борной кислоты 6,2 г, калия хлорида 7,4 г, натрия (или калия) гидроксида 3 г, дистиллированной воды 500 мл. 10 мг трипсина или химотрипсина растворяют в 15-20 мл боратного буфера. Учитывая сложность приготовления указанных буферов, B.C. Улащик и Д.К. Данусевич (1975) предложили пользоваться дистиллированной водой, подкисляемой 5-10% раствором соляной кислоты до рН = 5,2 (для введения с анода) или подщелачиваемой 5-10% раствором едкой щелочи до рН = 8,0 (для введения с катода).

Приводим табл. 1, где указывается необходимое количество едкой щелочи или соляной кислоты в различных разведениях для подщелачивания и подкисления. Например: берем 10 мл 0,5 раствора глютаминовой кислоты и добавляем 0,16 мл едкой щелочи, получаем раствор с рН — 8,0 и вводим с отрицательного полюса. При добавлении соляной кислоты создается рН = 5,0.

Концентрация растворов лекарственных веществ, применяемых для электрофореза, колеблется чаще всего в пределах от 0,5 до 5,0%, так как доказано, что большие количества вводить не следует. Расход лекарства на каждые 100 см2 площади прокладки составляет ориентировочно от 10-15 до 30 мл раствора. Сильнодействующие средства (адреналин, атропин, платифиллин и др.) вводятся из растворов в концентрации 1:1000 или наносятся на прокладку в количестве, равном высшей разовой дозе.

Лекарственные вещества готовятся не более, чем на неделю, сильнодействующие — непосредственно перед введением. С целью экономии лекарственные препараты наносятся на фильтровальную бумагу, которую располагают на коже пациента, а сверху располагают матерчатую прокладку, смоченную теплой водой. Лекарственные вещества, используемые для электрофореза, приведены в табл. 2.











При электрофорезе одного лекарственного препарата его раствором смачивают одну гидрофильную прокладку соответствующей полярности. При одновременном введении двух веществ различной полярности («биполярный» электрофорез) ими смачивают обе прокладки (анод и катод). При необходимости введения двух лекарств одинаковой полярности используют две прокладки, соединенные сдвоенным проводом с одним полюсом тока. При этом одну прокладку смачивают одним, вторую — другим лекарством.

Для электрофореза антибиотиков и ферментов, чтобы избегать инактивации их продуктами электролиза, применяют специальные многослойные прокладки, в середине которых помещают 3-4 слоя фильтровальной бумаги, смоченной «предохранительным» раствором глюкозы (5%) или гликоколя (1%). Можно пользоваться и обычными гидрофильными прокладками, но толщина их должна составлять не менее 3 см.

После каждой процедуры необходимо тщательно промывать прокладки проточной водой из расчета 8-10 л на одну, для удаления из них лекарственных веществ. В «кухне» должно быть 2 раковины: одна для индифферентных прокладок, другая — для активных, т. е. смоченных лекарственным веществом. Для сильнодействующих препаратов целесообразнее иметь отдельные прокладки, на которых можно вышить название лекарства.

Промывать и кипятить прокладки, смоченные различными лекарственными веществами следует раздельно, чтобы избежать загрязнения их вредными для организма ионами. В конце рабочего дня гидрофильные прокладки кипятят, отжимают и оставляют в сушильном шкафу.

Введение лекарственных веществ на димексидс с помощью тока называется суперэлектрофорезом. Диметилсульфоксиду (ДМСО) присуща способность усиливать действие многих лекарств и повышать устойчивость организма к повреждающему действию низких температур и радиации. ДМСО обладает выраженным транспортирующим свойством. ДМСО считается биполярным, однако более выражен перенос в сторону катода.

Можно применять димсксид в виде аппликаций на кожу, так как при этом он обнаруживается в крови уже через 5 мин. Максимальная концентрация наблюдается через 4-6 час, удерживается препарат в организме не более 36-72 часов. Выраженное действие оказывают 70-90% растворы, однако они редко применяются из-за выраженной аллергической реакции. Чистый димсксид лучше применять в виде компрессов, а при электрофорезе использовать как растворитель.

Читайте также:  Институт физиотерапии и курортного лечения

Труднорастворимыс лекарственные вещества, приготовленные на ДМСО, проникают в большем количестве и на большую глубину (дерма и подкожножировая клетчатка). При этом они быстрее поступают в кровь, а их фармакологический эффект значительно возрастает.

Для электрофореза водорастворимых лекарств рекомендуется использовать 20-25% водные растворы димексида, а для трудно- и водонерастворимых препаратов — 30-50% водные растворы. Для приготовления последних лекарство сначала растворяют в концентрированном растворе ДМСО, а затем при постоянном взбалтывании добавляют до нужной концентрации дистиллированную воду.

Для электрофореза из среды ДМСО используют 5-10% раствор аспирина в 50% ДМСО, 5-10% раствор анальгина в 25% ДМСО, 1-2% раствор трипсина в 25% ДМСО, 32-64 ЕД лидазы в 25% растворе ДМСО, 2-5% раствор адебита в 25% ДМСО. Все перечисленные препараты вводятся биполярно. Димсксид у некоторых пациентов вызывает аллергическую реакцию, поэтому перед первой процедурой следует нанести на небольшой участок кожи 25% раствор препарата и посмотреть реакцию через 30-40 мин. Если на коже появилась отечность, краснота, зуд, то ДМСО применять не следует.

Порядок назначения. В назначении указывают название метода (гальванизация или электрофорез с обозначением концентрации раствора и полярности иона), место воздействия, применяемую методику (продольная, поперечная и др.), силу тока в миллиамперах, продолжительность в мин, последовательность (ежедневно или через день), число процедур на курс лечения.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

источник

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp» , которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Лекарственный электрофорез — сочетанное воздействие на организм постоянного электрического тока и вводимого с его помощью лекарственного вещества.
При использовании данного метода к перечисленным выше механизмам биологического действия постоянного тока добавляются лечебные эффекты введенного им конкретного лекарственного вещества Они определяются форетической подвижностью вещества в электромагнитном поле, способом его введения, количеством лекарственного вещества поступающего в организм, а также областью его введения.
Лекарственные вещества в растворе диссоциируют на ионы, образующие в дальнейшем заряженные гидрофильные комплексы. При помещении таких растворов в электрическое поле содержащиеся в них ионы будут перемещаться по направлению к противоположным полюсам. Феномен движения дисперсных частиц относительно жидкой фазы под действием сил электрического, поля называется электрофорезом (рис. 1). Если на их пути находятся биологические ткани, то ионы лекарственных веществ будут проникать в глубину тканей и оказывать лечебное воздействие.

Рис. 1. Схема электрофореза лекарственных веществ в биологических тканях (А) и пути проникновения форетируемых лекарственных веществ (Б). 1- интрацеллюлярно; 2 — трансцеллюлярно, 3 — через проток потовой железы; 4 — через волосяной фолликул.
Форетическая активность ионов лекарственных веществ зависит как от их структуры, так и от степени электролитической диссоциации. Она неодинакова в различных растворителях и определяется диэлектрической проницаемостью (е) последних. Наибольшей подвижностью в электрическом поле обладают лекарственные вещества, растворенные в воде (е=81). Для диссоциации веществ, не растворимых в воде, используют водные растворы диметилсульфоксида (ДМСО, t,=49>, глицерина (f:=43) и этилового спирта (t;=26). Необходимо подчеркнуть, что введение лекарственных веществ в ионизированной форме существенно увеличивает их подвижность и фармакологический эффект. С усложнением структуры лекарственного вещества его форе-тическая подвижность существенно уменьшается.
Форетируемые лекарственные препараты проникают в эпидермис и верхние слои дермы. Их слабая васкуляризация приводит к накоплению лекарственных веществ в коже, из которой они диффундируют в интерстиций, фенестрированный эндотелий сосудов микроциркуляторного русла и лимфатические сосуды. Период выведения лекарственного вещества из кожного депо составляет от 3 часов до 15-20 суток. Следовательно, образование кожного депо обусловливает продолжительное пребывание лекарственных веществ в организме и их пролонгированное лечебное действие.
Некоторые из поступающих в кожу веществ способны изменить функциональные свойства немиелинизированных кожных афферентов, принадлежащих С-волокнам. В связи с тем, что такие волокна составляют большинство афферентных проводников болевой чувствительности, сочетанное воздействие электрического тока и местных анестетиков вызывает уменьшение импульсного потока из болевого очага и потенцирует анальгетический эффект постоянного тока. Такое купирование локального болевого очага особенно эффективно под катодом, который активирует потенциалзависимые ионные каналы нейролеммы. С помощью электродов малой площади удается можно вводить лекарственные вещества в паравертебральные, двигательные и биологически активные точки, сегментарные и рефлексогенные зоны (микроэлектрофорез).
Многочисленными исследованиями установлено, что доля лекарственного вещества, проникающего в организм при помощи электрофореза, составляет 5-10% от используемого при проведении процедуры. Попытки увеличения количества вводимых в организм лекарственных веществ за счет применения больших концентраций их растворов (свыше 5%) себя не оправдали. При таком повышении концентрации вследствие электростатического взаимодействия ионов возникают электрофоретические и релаксационные силы торможения (феномен Дебая-Хюккеля).
С учетом незначительного количества поступающего в организм лекарственного вещества фармакологические эффекты проявляются наиболее значимо при введении сильнодействующих лекарств и ионов металлов. В этом случае, наряду с локальным действием лекарств на подэлектродные ткани, вводимые препараты могут оказывать выраженное сегментарно-рефлекторное воздействие на ткани и органы соответствующих метамеров. Кроме того, некоторые препараты усиливают кровоток в тканях, расположенных в межэлектродном пространстве и стимулируют репа-ративную регенерацию в тканях. Так, например, форетируемые в организм ионы йода увеличивают дисперсность соединительной ткани и повышают степень гидрофильное белков; ионы лития растворяют литиевые соли мочевой кислоты; ионы меди и кобальта активируют метаболизм половых гормонов и участвуют в их образовании; ионы магния оказывают выраженное гипотензивное действие, а ионы цинка стимулируют процессы заживления язв и обладают фунгицидным действием.

Постоянный электрический ток обусловливает не только существенные особенности введения лекарственных веществ, но и значимо влияет на их фармакокинетику и фармакодинамику. В результате сочетанного действия лечебные эффекты большинства форетируемых лекарств (за исключением некоторых антикоагулянтов, ферментных и антигистамин-ных препаратов) потенцируются и реализуются при достаточно низких концентрациях. Поступающие в организм препараты накапливаются локально, что позволяет создавать их значительные концентрации в зоне поражения или патологического очага. При таком методе отсутствуют также побочные эффекты перорального и парентерального введения лекарственных веществ и значительно реже возникают аллергические реакции. Кроме указанных особенностей при лекарственном электрофорезе слабо ‘выражено действие балластных ингредиентов и применяемые растворы не требуют стерилизации, что позволяет использовать их при проведении процедур в полевых условиях.

N/N п/п Вводимый ион или частица Используемый лекарственный препарат С какого полюса вводится
Адреналин Р-р адреналина гидрохлорид 0.1% +
Алоэ Экстракт алоэ жидкий
Амидопирин Р-р амидопирина 1-3% +
Аминазин Р-р аминазина 0.5-1% +
Аммония роданид Р-р аммония роданида 2-5%
Анальгин Р-р анальгина 2-5%
Апрофен Р-р апрофена 0.5-1% +
Атропин Р-р атропина сульфата 0.1% +
Ацетилхолин Р-р ацетилхолина хлорид0.1-0.5% ex tempore +
Аминокапро-новая к-та Р-р аминокапроновой к-ты смешивают с 2 мл изотонического р-ра хлорида натрия
Бром Р-р натрия или калия бромида 2-5%
Бензогексо-ний Р-р бензогексония 1-2% +
Барбамил Р-р барбамила 3-5% +
Витамин С Р-р аскорбиновой к-ты 0.5-1%
Витамин В1 Р-р тиамина бромида 2-5% +
Витамин В12 100-200 мкг цианкобаламина в 2 мл дист. воды
Галанамин Р-р галантамина гидробромида 0.25-0.5% +
Ганглерон Р-р ганглерона 0.2-0.5% +
Гепарин 5-10 тыс. ЕД растворяются в 30 мл дист.воды
Гидрокорти-зон Гидрокортизона сукцинат 25 или 50 мг в 30 мл 0.2% раствора натрия хлорида рН 9.0
Гистамин Р-р гистамина гидрохлорид 0.01% +
Гистидин Р-р гистидина гидрохлорид 1-2% + —
Глютаминовая к-та Р-р глютаминовой к-ты 0.5-2% в подщелоченной до рН 8.0 среде
Гумизоль Гумизоль + —
Дибазол Р-р дибазола 0.5-2% +
Дикаин Р-р дикаина 0.5-1% +
Димедрол Р-р димедрола 0.5-2% +
Дионин Р-р дионина 0.1-1% +
Дипразин Р-р дипразина 1% +
Йод Р-р калия или натрия йодида 2-5%
Ихтиол Р-р ихтиола 2,5,10%
Имизин Р-р имизина 1,25% +
Кофеин Р-р кофеина бензоата натрия 1% в растворе натрия гидрокарбоната 5%
Кальций Р-р кальция хлорида 1-2-5% +
Калий Р-р калия хлорида 1-5% +
Кватерон Р-р кватерона 0,5% +
Кобальт Р-р кобальта хлорида (нитрата) 0,5-1% +
Кодеин Р-р кодеина фосфата 0,1-0,5% +
Кокаин Р-р кокаина гидрохлорида 2-10% +
Лидаза 64 ЕД лидазы в 30 мл ацетатколобуфера или в дистиллированной воде подкисленной до рН 5-5,2 + —
Литий Р-р лития хлорида (Бромида, сульфата, бромида, салицилата, йодида) 1-2- 5% +
Лобелин Р-р лобелина гидрохлорид 1% +
Лидокаин Р-р лидокаина 0,25-0,5% +
Магний Р-р магния сульфата 2-5-10% +
Медь Р-р меди сульфат 0,5-1-2% +
Мезатон Р-р мезатона 1% +
Мономицин 500 ЕД мономицина в 1 мл изотонического р-ра хлорида натрия +
Метионин 1. Р-р метионина 0,5-2% в подкисленной до рН 3,6 дистиллированной воде 2. Р-р метионина 0,5-2% в подщелоченной до рН 8,2 дистиллированной воде
Марганец Р-р марганца сульфат 2-5% +
Никотиновая к-та Р-р никотиновой к-ты 0,25-1-2%
Натрий Р-р натрия хлорида 2-5% +
Новокаин Р-р новокаина гидрохлорида 0,5-10% +
Новокаинамид Р-р новокаинамида 5% +
Но-шпа Р-р Но-шпы 1% +
Панангин Р-р панангина (аспарагината калия, магния 1-2%)
Папаин Р-р 0.5 — 2% +
Пенициллин 5-10 т.ед пенициллина в 1 мл изотонического р-ра натрия хлорида
Папаверин Р-р папаверина гидрохлорид 0,5-1% +
Пентамин Р-р пентамина 5% +
Пилокарпин Р-р пилокарпина гидрохлорид 0,1-0,5% +
Пирилен Р-р пирилена 0,1-0,5% +
Платифиллин Р-р платифиллина гидротартр. 0,03-0,05% +
Прозерин Р-р прозерина 0,1% +
Резерпин Р-р резерпина 0,1% +
Ронидаза Ронидазы 0,5 г растворяют в 30 мл ацетатного буфера +
Салициловая к-та Р-р натрия салицилата 1-5-10%
Сера Р-р натрия гипосульфита 2-5%
Сульфадимезин Р-р сульфадимезина 1-2% в дистиллир. воде с добавлением HCL до растворения +
Серебро Р-р серебра нитрат 0,5-1% +
Спазмолитин Р-р спазмолитина 0,5% +
Сульфацил Na Р-р сульфацила натрия 1-2%
Строфантин Р-р строфантина 0,05% +
Теофиллин Р-р теофиллина 1-2% на подщелоченной до рН 7,8-8,8 дистиллированной воде
Террамицин 0,1-1 г порошка окситетрациклина дегид рата в 30 мл физраствора +
Тетрациклин 100 т.ед тетрациклина растворить в 5-7 мл дистиллированной воды +
Тизерцин Р-р тизерцина 0,25%-2-3 мл растворяют в 30 мл дист. воды +
Тримекаин Р-р тримекаина 0,25-0,5% +
Трипсин 1. Р-р трипсина 0,5-1% в р-ре гидрокарбоната Na 2% 2. 5-10 мл на прокладку (готовится на подкисленной дист. воде до рН 3-5 +
Унитиол Р-р унитиола 2-5%
Фосфор Р-р натрия фосфата 2-5%
Фтор Р-р натрия фторида 1%
Фурадонин Р-р фурадонина 1% +
Фенобарбитал Р-р фенобарбитала 1-2% +
Фурациллин Р-р фурациллина 0,02% +
Фенамин Р-р фенамина 0,2% +
Хлор Р-р натрия хлорида 2-5%
Цинк Р-р цинка сульфата 0,5-2% +
Цистеин Р-р цистеина 2-5%
Эфедрин Р-р эфедрина гидрохлорида 0,1-1% +
Эуфиллин Р-р эуфиллина 0,1-0,5% + —
Эрготамин Р-р эрготамина гидротартрата 0,02-0,05% +

г . Кроме объективных показателей, для дозиметрии используют и субъективные ощущения больного.
Во время процедуры он должен чувствовать легкое покалывание (пощипывание) под электродами. Появление чувства жжения служит сигналом к снижению плотности подводимого тока. Онемение участка кожи при электрофорезе местных анестетиков не является причиной увеличения плотности используемого тока. Продолжительность процедур и длительность курса не превышают аналогичных величин для гальванизации. Их определяют с учетом фармакодинамики вводимого вещества.

Техника и методика проведения процедур

Техника проведения наиболее распространенного (чрескожного) способа электрофореза отличается от техники гальванизации тем, что между кожей и гидрофильной прокладкой помещают дополнительную, смоченную раствором лекарственного вещества, прокладку. Эта так называемая лекарственная прокладка готовится из 1-2 слоев фильтровальной бумаги или 2-4 слоев марли и по площади должна полностью соответствовать гидрофильной прокладке. Ее помещают под активным электродом или под обоими (при одновременном введении двух лекарств, имеющих различную полярность) электродами.
Весьма важную роль при электрофорезе играет выбор растворителя. Наилучшим растворителем является вода, способствующая хорошей диссоциации большинства лекарств. В случае их плохой растворимости в воде в качестве растворителя можно применять димексид (ДМСО) и спирты. При электрофорезе отдельных лекарств растворителем служат буферные растворы. Для электрофореза обычно используют растворы малых и средних концентраций (до 2-5%). Дозируется лекарственный электрофорез так же, как и гальванизация.
Электрофорез может проводиться также из растворов, которыми заполняют электродные сосуды различной конструкции (четырехкамерные ванны, глазные ванночки и др.). Лекарственный электрофорез возможен из растворов, вводимых в некоторые полостные органы человека (желудок, прямая кишка, мочевой пузырь и т.д.). При этом полость органа заполняется раствором лекарственного вещества, затем в нее вводится электрод, соединяемый с соответствующим полюсом аппарата для гальванизации, а второй электрод противоположного знака помещают по отношению к нему поперечно.
Другим вариантом проведения процедуры, при котором исключается влияние кожи как барьера на транспорт веществ и в то же самое время сохраняются достоинства электрофармакотерапии, можно считать так называемый внутритканевой электрофорез. Суть метода заключается в том, что больному вводят лекарственное вещество одним из известных способов (внутривенно, внутримышечно, подкожно, перорально и др.), а затем после достижения максимальной концентрации его в крови осуществляют поперечную гальванизацию при расположении патологического очага (пораженного органа) в межэлектродном пространстве. В основе этого способа электрофореза лежит элиминирующая способность постоянного тока, что позволяет, варьируя расположение электродов, создавать в патологическом очаге высокую концентрацию лекарства. Кроме того, постоянный ток повышает проницаемость гисто-гематических барьеров и адсорбционную активность тканей в зоне воздействия.
и т.д.

* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.

источник