Меню Рубрики

Индукционные токи в физиотерапии

Электролечением называется группа методов физиотерапии, в основе которых лежит дозированное электромагнитное воздействие на организм. Воздействие может быть оказано электрическим током напрямую или магнитным полем, в зависимости от цели процедуры.

Разные методы отличаются формой и параметрами применяемого тока: переменный или постоянный, какой силы ток, с каким напряжением, какой частоты — требуемый эффект достигается надлежащим сочетанием данных параметров.

Физическая основа механизма действия электротерапии заключается в том, что электрические токи служат раздражителями мышечной и нервной тканей, а также систем и органов пациента. В итоге, адекватное применение методов электротерапии оказывается целесообразным в случаях, когда патология еще не привела к значительным изменениям той или иной части организма, не нарушила способности органа, над которым проводится процедура, к функционированию.

Распространяющийся по организму электрический ток, вызывает требуемое изменение определенных биологических процессов, например: усиливает кровоток, улучшает лимфообращение, ускоряет восстановление тканей, активизирует ферментные системы, помогает выводить молочную кислоту, оказывает противовоспалительное и болеутоляющее действие.

По окончании курса электротерапии, самочувствие пациента обычно улучшается, его настроение поднимается, у человека нормализуется сон, улучшается тонус вегетативной нервной системы, стабилизируется частота сердечных сокращений и показатели артериального давления. Итак, давайте рассмотрим несколько популярных видов электролечения.

Черезкожная электронейростимуляция включает в себя группу методов, использующих слабые импульсные токи. Ключевой эффект данного направления — устранение боли.

Транскраниальная электростимуляция — терапевтическое воздействие импульсными токами на систему головного мозга, связанную со способностью неинвазивно, избирательно и строго дозировано активировать работу структур, продуцирующих эндогенные опиоидные пептиды.

Обычно процессы возбуждения и сокращения мышц в живом организме обусловлены нервными импульсами, которые поступают из нервных центров к мышечным волокнам. Аналогичным образом возбуждение может быть вызвано и с помощью электрического тока — при помощи электромиостимуляции.

Биорегулируемой электростимуляцией называется воздействие импульсными токами с изменяющимися параметрами — на участки кожи. Особенность метода заключается в возникновении биологической обратной связи, сопряженной с изменением электрической проводимости кожи.

Таким образом, каждый следующий действующий на организм импульс отличается параметрами от предыдущего, поскольку он как-бы отвечает адекватными параметрами на поступающую от организма реакцию. В итоге, соответствующее, более эффективное внешнее воздействие активизирует гораздо более обширную часть нервных волокон, охватывая даже тонкие С-волокна.

Электротерапия постоянным (непрерывным) либо импульсным электрическим током малой величины и низкого напряжения называется НЧ-электротерапией и подразделяется на два вида: электротерапия постоянным током и электротерапия импульсным током.

Непрерывный постоянный ток силой до 50мА и с напряжением от 30 до 80В используется в гальванотерапии. Метод получил название в честь Луиджи Гальвани — итальянского врача и исследователя электрических явлений.

На тело накладываются электроды, и в ходе процедуры через ткани организма пропускается постоянный ток, с тем чтобы вызвать в них конкретные физико-химические изменения, связанные с наличием в тканях растворов солей и коллоидов (белков, гликогена и других крупномолекулярных веществ).

Данные вещества, будучи составными частями мышечной и железистой тканей, а также жидкостей организма, распадаются на ионы. Путь движения тока в теле зависит от наличия или отсутствия проводников, причем жировая ткань плохо проводит ток, в результате ток идет отнюдь не по прямой.

Прежде всего раздражение приходится на рецепторы кожи, в силу изменения концентрации ионов, поэтому пациент ощущает под электродами покалывание и жжение. В центральную нервную систему при этом поступают нервные импульсы, вызывающие местные и общие реакции организма. Кровеносные сосуды расширяются, кровоток ускоряется, а в месте воздействия тока вырабатываются биологически активные вещества (гистамин, серотонин и др.).

В итоге действие постоянного тока нормализует функциональное состояние центральной нервной системы, повышает функциональность сердца, стимулирует железы внутренней секреции, и ускоряет процессы регенерации. При этом защитные способности организма повышаются.

Лекарственный электрофорез позволяет при воздействии на тело постоянным током, ввести в организм через кожу или слизистые оболочки частицы лекарственных препаратов.

В ходе процедуры изменяется общая реактивность организма, стимулируется защитная функция, повышается интенсивность обменно-трофических процессов. Фармакологический эффект вводимого препарата достигается при малой его дозе, но поскольку в кровь он поступает медленно, требуется больше времени.

Само лекарство наносят на одноразовую фильтровальную бумагу, располагаемую на той стороне электродной прокладки, которая прикладывается к телу пациента. Прокладки для электрофореза берутся индивидуально для каждого лекарства. Иногда для электрофореза используются ванны с раствором лекарства малой концентрации, в которую погружаются угольные электроды.

Для импульсных токов характерно временное отклонение напряжения или силы тока от постоянного значения. В медицинской практике импульсные токи низкой частоты используются для таких процедур как: электростимуляция, электросон, диадинамотерапия. Токи средней частоты применяются при интерференцтерапии и амплипульстерапии. Далее рассмотрим эти методы более предметно.

При электросонтерапии импульсами электрического тока воздействуют на структуры головного мозга. Токи проходят в черепную полость через глазницы, в результате максимальная плотность тока приходится на сосуды основания черепа, что воздействует на гипногенные центры ствола мозга (на гипофиз, гипоталямус, ретикулярную формацию, а также на внутреннюю область варолиева моста) и на сенсорные ядра черепно-мозговых нервов.

Частота импульсов синхронизирована с медленными ритмами биоэлектрической активности мозга. Таким образом угнетается импульсная активность аминергических нейронов голубого пятна и ретикулярной формации — снижаются восходящие активирующие влияния на кору головного мозга, внутреннее торможение усиливается.

Электростимуляцией называется импульсное воздействие на мышцы и прилежащие ткани токами, близкими по фазе к току мембран нервно-мышечных клеток. Данная процедура применяется как в общей физиотерапии, в спортивной и восстановительной медицине, так и в аппаратной косметологии. Она осуществляется посредством профессионального оборудования. Мышцы либо соответствующие иннервирующие нервы раздражаются импульсным током, что приводит к изменению биоэлектрической активности мышцы, к спайковым ответам и интенсивным сокращениям.

При диадинамотерапии используются полусинусоидальные чередующиеся или прерывающиеся импульсы с частотой 50 и 100Гц. Оказывается анальгезирующее, вазоактивное, трофическое и миостимулирующее действия.

Капилляры расширяются, кровообращение улучшается, повышается приток кислорода и питательных веществ к соответствующим тканям, а продукты обмена и распада удаляются из воспалительных очагов, благодаря чему осуществляется противовоспалительное действие, снижаются отеки.

Послетравматические кровоизлияния рассасываются, обмен веществ активизируется, оказывается трофическое действие токов на ткани. Мышцы ритмически сокращаются и расслаблаются, их функции восстанавливаются. Плюс оказывается гипеотензивное действие на организм.

В косметологии применяется интерференцтерапия, когда два и более токов средней частоты подаются через две пары электродов так, что данные токи взаимодействуют.

Интерферирующие токи проходят по пути наименьшего сопротивления, неприятных ощущений при этом не возникает, раздражения кожи нет, зато эффект проявляется в глубине тканей — получаемый в результате интерференции, ток низкой частоты ритмически сжимает гладкие мышечные волокна сосудов, что улучшает кровоснабжение и лимфоотток, повышает метаболизм в дерме и гиподерме.

Крупные узлы жировой ткани разрушаются, подкожного жира становится меньше. Воспаления снижаются за счет смещения рН тканей в сторону щелочи, плюс оказывается трофическое действие.

В амплипульстерапии используются модулированные синусоидальные токи величиной до 80мА. Действие — обезболивающее, снимаются спазмы сосудов, возрастает артериальный приток и венозный отток, улучшается транспортировка и усвоение полезных веществ в пораженных органах и тканях, активизируется метаболизм, рассасываются инфильтраты, ускоряется заживление.

Процедура улучшает тонус кишечника и желчевыводящих путей, мочеточника и мочевого пузыря. Дренажная функция и внешнее дыхание улучшаются, улучшается вентиляция легких, снимаются бронхоспазмы, происходит стимуляция секреторной функции поджелудочной железы.

Кроме того стимулируются секреторные функции желудка, улучшаются обменные процессы в печени. Функциональное состояние ЦНС улучшается, повышаются компенсаторно-приспособительне возможности организма.

источник

ИНДУКТОТЕРМИЯ (лат. inductio наведение, введение + греч, therme теплота) — метод электролечения, при к-ром на организм больного действует переменное высокочастотное магнитное поле. И. применяется как самостоятельный метод лечения или (чаще) как составная часть комплексной терапии.

Встречающееся иногда в литературе старое название метода «коротковолновая диатермия» неправомочно: хотя тепловой эффект при И. близок к такому же эффекту при диатермии (см.), длина волны при И. значительно короче, и на больного влияет наведенное магнитное поле, а не контактный переменный ток, как при диатермии.

Поскольку ткани организма человека обладают электропроводностью, при воздействии высокочастотным переменным магнитным полем в них возникают индукционные (наведенные) токи, имеющие характер круговых замкнутых линий,— вихревые токи, или токи Фуко. Вихревые токи представляют собой направленные колебания заряженных частиц тканей, преимущественно внеклеточных и внутриклеточных ионов, около их среднего положения. Появление вихревых токов сопровождается образованием тепла, к-рое возникает вследствие столкновения колеблющихся ионов с окружающими их частицами среды.

Действие высокочастотного магнитного поля при одной и той же его напряженности приводит к неодинаковому теплообразованию в различных тканях в зависимости от их физ. характеристики. Наибольшее образование тепла отмечается в тканях, имеющих более высокую электропроводность,— жидких средах организма (кровь, лимфа), паренхиматозных органах (почках, легких, печени, селезенке), в органах малого таза, мышцах.

Помимо теплового действия, переменное магнитное поле оказывает и специфическое влияние на биол, объекты, обусловленное частотой колебаний магнитного поля, а следовательно, частотой колебаний внутритканевых ионов и называемое в физиотерапии нетепловым осцилляторным эффектом, который объясняется ионной теорией возбуждения П. П. Лазарева. Осцилляции (колебания) внутриклеточных ионов вызывают периодическое изменение концентрации их у клеточных оболочек. Это обусловливает возбужденное состояние клеток, в первую очередь нервных, как наиболее чувствительных ко всякого рода раздражениям, что и определяет степень той или иной ответной реакции на процедуру.

Под влиянием И. в организме возникают сложные физ.-хим. изменения. В зоне воздействия И. повышается температура тканей, снимается спазм капилляров, расширяются артериолы и более крупные сосуды, что подтверждается улучшением показателей плетизмограмм, реограмм.

При проведении И. в щадящих дозах (малые и средние тепловые воздействия) улучшается кровоснабжение, показатели гемодинамики (в т. ч. микроциркуляции), у больных гипертонической болезнью может снижаться или нормализоваться повышенное АД, повышаться сократительная способность миокарда. В адекватных дозировках И. способствует рассасыванию воспалительных очагов, повышению активности и интенсивности фагоцитоза, снижению повышенного тонуса поперечнополосатых и гладких мышц; стимулируются окислительно-восстановительные реакции, усиливаются обменно-трофические процессы в тканях. Процедуры И. влияют на нейрогуморальную систему, в частности на функцию надпочечников, что проявляется повышением синтеза глюкокортикоидов и высвобождением их из белково-связанных структур; воздействие на область печени, желчного пузыря сопровождается усилением желчеотделения, улучшением гликогенообразовательной функции печени. И. оказывает общее седативное и аналгезирующее действие, т. к. понижается возбудимость центральной и периферической нервной системы.

Показания: бронхит, пневмония, гепатит, холецистит (некалькулезный), язвенная болезнь желудка и двенадцатиперстной кишки, спастический колит (все перечисленные заболевания в подострых стадиях), бронхиальная астма (в стадии обострения и неполной ремиссии), заболевания опорно-двигательного аппарата травматического, воспалительного, обменно-дистрофического генеза (переломы костей после репозиции, ревматоидный артрит при минимальной и средней степени активности процесса, травматический и деформирующий артроз, радикулярный синдром межпозвонкового остеохондроза), последствия травматического повреждения периферических нервов, диабетический полиневрит (при болевом синдроме и для стимуляции процессов регенерации), хрон, аднексит, периметрит (в фазе инфильтративно-спаечных изменений), цистит, простатит (в подостром периоде), начальные стадии болезни Рейно, эндартериита, гипертоническая болезнь I и IIA стадий.

Противопоказания: острые гнойные заболевания, новообразования, острые нарушения мозгового и коронарного кровообращения, преходящие нарушения мозгового кровообращения, хрон, ишемическая болезнь сердца, сердечно-сосудистая недостаточность II и III стадии, гипертоническая болезнь выше IIА стадии, наклонность к кровотечениям, болезни органов кроветворения, активный туберкулез легких, беременность всех сроков.

Применяют отечественные аппараты ДКВ-1, ДКВ-2, ДКВ-2М и ИКВ-4. Аппарат ДКВ-2М, генерирующий частоту 13, 56 Мгц, представляет собой двухкаскадный высокочастотный генератор, сообщающий энергию колебаний выходному (терапевтическому) контуру. К выходным гнездам последнего подключают один из трех входящих в комплект индукторов: кабельный, малый или большой дисковый. Аппарат ИКВ-4 (рис. 1) работает на той же, что и ДКВ-2М, частоте. К выходным гнездам аппарата могут подключаться непосредственно сменные рабочие элементы: резонансный индуктор большой или малый, индуктор кабельный и гинекол, аппликаторы. Последние подключаются к аппарату через специальное устройство. Резонансные индукторы и гинекол. аппликаторы не требуют настройки в процессе эксплуатации, кабельный индуктор настраивается с помощью ручки настройки.

Процедуру И. больные принимают лежа на деревянной кушетке или сидя на специальном деревянном стуле (при урол, или гинекол, заболеваниях). Во время процедуры не раздеваются, все металлические предметы из одежды удаляют. В зависимости от заболевания воздействие проводится на зону проекции патол, очага (напр., при артрите, радикулите — на соответствующий участок конечности или позвоночника, при приступе бронхиальной астмы — на межлопаточную область) или на рефлексогенную зону (напр., при болезни Рейно или деформирующем остеоартрозе — на зону сегментарной иннервации в поясничном отделе позвоночника; на область проекции надпочечников с целью стимуляции их функции — при ревматоидном артрите, бронхиальной астме в межприступном периоде).

В зависимости от зоны воздействия используют индуктор-кабель или индуктор-диск (рис. 2). Из индуктора-кабеля можно сделать непосредственно перед процедурой несколько форм катушек, удобных для проведения И. на область грудной клетки, живота, на сустав (рис. 3), на область проекции различных органов (рис. 4). При изготовлении различных форм катушек необходимо соблюдать ряд правил: витки катушки должны отстоять друг от друга на 1 см, что обеспечивается разделительными гребенками, число витков катушки в зависимости от зоны воздействия от 1 до 3; свободные концы кабеля должны быть одинаковыми по длине и не менее 1 ж, между поверхностью тела и индуктором создается воздушный зазор 1 — 2 см.

Процедуры дозируют по тепловому ощущению больного, а в аппаратах типа ДКВ и по величине анодного тока генераторных ламп, что отражается показаниями миллиамперметра на панели управления. Применяют слабые (до 180 ма), средние (180—220 ма) и сильные (220—240 ма) тепловые дозы. Выбор дозы, продолжительность процедуры и периодичность ее проведения зависят от зоны воздействия, выраженности патол, процесса и возраста больного. Так, у детей и лиц пожилого возраста используют слабые и средние тепловые дозы. Средние и сильные тепловые дозы применяют в лечении хрон, воспалительных процессов органов малого таза, заболеваний суставов нижних конечностей. Процедуры продолжительностью 10—15—30 мин. назначают через день или ежедневно, на курс 10—15 процедур. И. совместима с леч. теплыми ваннами и душами, импульсными токами низкой частоты, массажем, ЛФК и несовместима с УВЧ- и СВЧ-терапией, светолечением, озокерито-, парафинолечением и грязелечением (если грязевые аппликации накладывают на большие участки тела).

В ряде случаев для усиления действия И. применяют в сочетании с другими методами физиотерапии — гальваноиндуктотермия (одновременное действие гальванического постоянного тока и П.), индуктоэлектрофорез (сочетанное действие И., постоянного тока и вводимого лекарственного вещества), грязеиндуктотермия (сочетанное действие грязи и И.), грязеиндуктофорез (сочетанное действие грязи, постоянного тока и индуктотермии).

Сочетанные методики применяют преимущественно при лечении хрон, аднексита, пери- и параметрита, простатита, деформирующего спондилеза, радикулита, плексита и др. для оказания более выраженного воздействия. При гальваноиндуктотермии на область воздействия накладывают гальванический электрод (гидрофильная прокладка и свинцовая пластинка), затем над активным электродом устанавливают индуктор-диск (напр., в области живота, поясницы). При воздействии на суставы гальванические электроды покрывают клеенкой, затем полотенцем, а поверх располагают индуктор-кабель. Если используется методика индуктофореза, то иод гидрофильную прокладку помещают фильтровальную бумагу, смоченную лекарственным р-ром. При грязеиндуктотермии на кожу накладывают грязевую массу, поверх нее помещают клеенку и полотенце, а затем устанавливают индуктор-диск (на туловище) или индуктор-кабель (на конечности). В методике грязеиндуктофореза на грязевую лепешку помещают гальванический электрод, поверх клеенку, полотенце и затем индуктор. Для проведения процедур необходимы аппарат гальванического тока и аппарат И. Сначала включают аппарат П., затем аппарат гальванического тока. Выключение проводится в обратном порядке.

Библиография: Вопросы высоко-, ультравы-соко- и сверхвысокочастотной электротерапии, под ред. Ю. Е. Данилова, с. 5, 25, М., 1971; Ливенцев H. М. иЛ flee неон А. Р. Электромедицинская аппаратура, М., 1974; Справочник по физиотерапии, под ред. А. Н. Оброеова, с. 67 и др., М., 1976; Шейна А. Н. Индуктотермия как лечебный метод, М., 1970.

А. Н. Шейна; В. А. Гаврилин (мед. техн.).

Читайте также:  Курс физиотерапии при простатите

источник

Дарсонвализация (в честь одного из основателей физиотерапии Д’Арсонваля) – метод воздействия на кожу или слизистые оболочки слабыми высокочастотными электрическими разрядами (рис. 13).

Рис. 13. Форма импульсов, используемых при дарсонвализации

Разряды возникают между специальным стеклянным электродом и кожей и оказывают на неё легкое раздражающее действие. Применяют синусоидальный ток частотой 110 кГц высокого напряжения. Сила его весьма мала (0,02 мА), и поэтому он почти не обладает тепловым действием.

Для глубокого прогревания тканей используют ряд методов высокочастотной физиотерапии, в которых применяют ток высокой частоты (0,2 – 30 МГц), ультравысокой частоты (30 – 300 МГц) и сверхвысокой частоты (свыше 300 МГц).

Диатермия – это метод глубокого прогревания тканей при помощи электрического тока высокой частоты. Эффект достигается пропусканием через тело пациента тока частотой 1 – 2 МГц, которые не оказывает на ткани какого-либо раздражающего действия. Благодаря применению металлических электродов без прокладок сила тока может достигать 1,0 – 1,5 А, что обеспечивает выделение большого количества теплоты. Однако непосредственный контакт с электродами не является в полной мере безопасным, и поэтому диатермия не применяется в настоящее время в качестве метода физиотерапии.

Диатермия сохранила свое значение как метод электрохирургии, при котором выделяющаяся теплота используется для рассечения и коагуляции тканей. Для обеспечения высокой плотности тока активный электрод имеет малую площадь. Пассивный электрод имеет большую площадь и служит лишь проводником тока. При электроэктомииактивный электрод имеет форму скальпеля. На его лезвии плотность тока настолько высока, что под его действием внутриклеточная жидкость испаряется, а ткани рассекаются. При этом происходит свёртывание крови в мелких сосудах. Если операция производится с целью удаления злокачественной опухоли, применение электроэктомии препятствует распространению злокачественных клеток. Электрокоагуляцию применяют для удаления избытка ткани, например, полипов. При этом используют активный электрод в форме петли или шарика.

Индуктотермия – это метод электрофизиотерапии, в ходе которого на тело пациента воздействуют высокочастотным или ультравысокочастотным электромагнитным полем. Преимущественное действие оказывает магнитное поле, которое возникает вокруг витков специальной катушки (индуктора) при прохождении через неё тока высокой частоты (рис. 14).

Рис. 14. Индуктор-кабель в виде цилиндрической катушки для воздействия на суставы конечностей

Этот метод не требует контакта электродов с телом пациента и благодаря своей безопасности и надёжности находит широкое применение. В основе метода индуктотермии лежит явление электромагнитной индукции. Переменное магнитное поле возбуждает в близлежащих тканях индукционные вихревые токи. Электрическая энергия рассеивается в тканях в виде тепла. Вихревые токи наиболее интенсивны в тканях, отличающихся значительной электропроводностью. Поэтому максимальное выделение тепла происходит в жидких средах организма и паренхиматозных органах (мышцы, печень и др.). Индуктотермия оказывает болеутоляющее, противовоспалительное, сосудорасширяющее влияние.

Ультравысокочастотная (УВЧ) — терапия также представляет собой метод воздействия на организм электромагнитным полем высокой или ультравысокой (40,68 МГц) частоты, но в отличие от индуктотермии действует, в основном, электрическое поле. При УВЧ-терапии соответствующая область тела помещается между плоскими электродами, которые образуют конденсатор (рис 15).

Рис 15. Битемпоральное воздействие электрического поля УВЧ на голову

К электродам подключен терапевтический колебательный контур аппарата, который с целью соблюдения мер безопасности полностью изолирован от частей прибора, связанных с цепью питания. Они действуют на него только благодаря индукционной связи между ними. Таким образом, УВЧ-терапия, как и индуктотермия, является бесконтактным методом.

Под влиянием электрического поля ультравысокой частоты в тканях, обладающих относительно высокой электропроводностью, возникает переменный электрический ток, обусловленный движением ионов. Его энергия рассеивается в виде тепла. Однако тепло выделяется и в тканях, обладающих высоким электрическим сопротивлением, которые близки к диэлектрикам (костная, жировая и др.). Это объясняется наличием в таких тканях большого числа молекул, обладающих дипольным моментом. Электрическое поле заставляет их ориентироваться по направлению своих силовых линий. Поскольку поле колеблется с высокой или ультравысокой частотой, молекулы – диполи совершают механические колебания с такой же частотой. Энергия механического колебательного движения преобразуется в тепловую энергию, в результате чего в костной и жировой тканях также происходит выделение значительного количества тепла.

Сверхвысокочастотная (СВЧ) — терапия представляет собой воздействие на организм электромагнитными волнами сверхвысокой частоты дециметрового (100 см – 10 см) или сантиметрового (10 см – 1 см) диапазона. Энергию электромагнитных волн подводят к пациенту и направляют при помощи специальных излучателей – волноводов, которые представляют собой трубки определённой формы и размеров.

При данной частоте энергия электромагнитных волн избирательно поглощается дипольными молекулами связанной воды, а также боковыми группами белков и гликолипидов. Лишь они в состоянии воспроизводить столь высокую частоту колебаний, которая недоступна макромолекулам в целом. В результате происходят перестройки тонкой структуры клеточных мембран. Вследствие возникновения механических колебаний молекул-диполей происходит рассеяние энергии электромагнитных волн в виде тепла. Наибольшее поглощение энергии электромагнитных волн и, следовательно, выделение тепла происходит в тканях, богатых водой. Поэтому относительно лучше прогреваются мышцы и паренхиматозные органы и в меньшей степени – жировая ткань. Этим СВЧ-терапия отличается от УВЧ-терапии.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8368 — | 7999 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Индуктотермия (лат. inductio — возбуждение, наведение + греч. therme — жар, теплота), или высокочастотная магнитотерапия, — метод электролечения, в основе которого лежит воздействие на организм магнитным полем (точнее, преимущественно магнитной составляющей электромагнитного поля) высокой частоты (3-30 МГц). Суть метода заключается в том, что по расположенному на теле больного кабелю или специальной спирали, называемыми индуктором, протекает высокочастотный ток, в результате чего вокруг них образуется действующее на организм переменное магнитное поле высокой частоты. Индуктотермия проводится чаще в непрерывном режиме, но некоторые аппараты позволяют осуществлять ее и в импульсном режиме. В странах СНГ при индуктотермии на организм воздействуют переменным магнитным полем частотой 13,56 МГц, что соответствует длине волны 22,12 м.
Как известно, магнитные поля, пересекая проводники, наводят (индуктируют) в них электрический ток. В теле человека при действии высокочастотных магнитных полей возникают хаотические вихревые токи (токи Фуко). Одним из наиболее характерных свойств их является высокое теплообразование. Количество тепла, образующегося под действием высокочастотного магнитного поля, согласно закону Джоуля — Ленца, прямо пропорционально квадрату частоты колебаний, квадрату напряженности магнитного поля и удельной проводимости ткани. В связи с этим при индуктотермии больше тепла образуется в тканях с хорошей электропроводностью, т.е. в жидких средах (кровь, лимфа) и хорошо кровоснабжающихся тканях (мышцы, печень и др.). Под влиянием индуктотермии в зависимости от параметров и условий воздействия температура тканей повышается на 2-5 °С на глубину до 8-12 см, а температура тела пациента — на 0,3-0,9 °С. Для обеспечения более равномерного нагрева тканей при индуктотермии процедуры проводятся с воздушным зазором в 1-2 см. Неотъемлемым от теплового является осцилляторный компонент действия индуктотермии, который проявляется физико-химическими изменениями в клетках и тканях, субклеточных структурах. Максимальные магнитоиндуцированные механические эффекты возникают в жидкокристаллических фосфолипидных структурах мембран, надмолекулярных белковых комплексах, форменных элементах крови. Чем выше интенсивность воздействия, тем осцилляторный эффект проявляется слабее.
Повышение температуры тканей и физико-химические сдвиги в них, происходящие при индуктотермии, сопровождаются прежде всего раздражением нервной системы. При интенсивных воздействиях повышается возбудимость нервов, скорость проведения по ним возбуждения. При более продолжительных воздействиях отмечается усиление тормозных процессов в ЦНС, вследствие чего при индуктотермии наблюдается седативное и болеутоляющее действие, она вызывает сонливость и вялость.
В результате образования внутритканевого тепла и повышения температуры тканей происходит расширение кровеносных сосудов, усиление кровообращения и лимфооттока, увеличение числа функционирующих капилляров, небольшое снижение артериального давления и улучшение кровоснабжения внутренних органов в зоне воздействия, ускоряется формирование артериальных коллатералеи и анастомозов в микроциркуляторном русле.
Под влиянием индуктотермии повышается проницаемость гистогематических барьеров и клеточных мембран, увеличивается скорость метаболизма, что благоприятно сказывается на течении обменно-трофических процессов, приводит к обратному развитию дегенеративно-дистрофических изменений, определяет ее рассасывающее и противовоспалительное действие. При индуктотермии повышается синтез антител, увеличивается содержание в крови компонентов гуморального иммунитета, усиливается фагоцитарная способность лейкоцитов, активность фибробластов и макрофагов, подавляется активность местных иммунных реакций.
Индуктотермия нормализует деятельность внутренних органов, включая и их секреторную активность. Особенно благоприятно она влияет на вентиляционно-дренажную функцию бронхов, улучшает отделение мокроты, снижает ее вязкость, снимает бронхоспазм и ликвидирует воспалительные изменения в бронхолегочной системе. Индуктотермия стимулирует фильтрационную функцию почек, способствует выведению продуктов азотистого распада и увеличению диуреза. Она повышает желчеобразование и желчевыделение.
Применение индуктотермии на область надпочечников сопровождается усилением синтеза глюкокортикоидов, уменьшением уровня катехоламинов в плазме крови и моче. Одновременно увеличивается в крови уровень свободных кортикостероидов, а также использование их тканями. Она также стимулирует гормонсинтетические процессы в поджелудочной и щитовидной железах.
Индуктотермия может вызывать некоторое повышение активности свертывающей системы крови, особенно при сегментарнорефлекторных воздействиях. Высокочастотное магнитное поле стимулирует регенерацию костной ткани и ускоряет эпителизацию ран. Оно способствует расслаблению мышц, снятию их спазма, повышает функциональную активность суставов.
Таким образом, для лечебного применения индуктотермии наибольшее значение имеет ее противовоспалительное, сосудорасширяющее, болеутоляющее, антиспастическое, трофическое и миорелаксирующее действие.
В настоящее время в лечебной практике используют аппарат для индуктотермии ИКВ-4 со ступенчатой регулировкой мощности. Максимальная выходная мощность 200 Вт, рабочая частота 13,56 МГц ± 0,05 %. Аппарат снабжен 2 резонансными индукторамидисками (диаметром 22 и 12 см), 2 кабельными индукторами и может комплектоваться специальными гинекологическими индукторами, подключаемыми через согласующее устройство. За рубежом для индуктотермии используют аппараты Curapuls 670 (Нидерланды), KSF (Япония), Autoterm (США), Oncocare, Thermatur (Германия) и др. Процедуры проводят на деревянной кушетке (или стуле) в удобном для больного положении. Воздействовать можно через легкую одежду, сухие марлевые или гипсовые повязки. В области индуктотермии и на рядом расположенных участках тела не должно быть металлических предметов. На ткани, содержащие металл, индуктотермию не применяют.
Индуктор выбирают и зависимости от локализации и площади воздействия. Индуктор-диск обычно используют для проведения процедур на ровные участки тела. Устанавливают его с зазором в 1-2 см от кожной поверхности. При использовании индукторакабеля зазор в 1-2 см создают с помощью тонкого одеяла или махрового полотенца. Как правило, из кабеля формируют спираль (плоскую, цилиндрическую, коническую) из 2-3 витков, что повышает эффективность индукции. При приготовлении спирали витки не должны непосредственно пересекаться, а расстояние между ними желательно иметь в 1-2 см. Для воздействия по ходу нервов и сосудов индуктор-кабель применяют в виде петли. Во время процедуры пациент испытывает чувство приятного тепла в тканях. Ощущение тепла должно быть равномерным по всей площади воздействия. В соответствии с тепловыми ощущениями различают слаботепловую (малую), тепловую (среднюю) и сильнотепловую (большую) дозировки. На аппарате ИКВ-4 слабые ощущения тепла пациенты испытывают при положении переключателя мощности на 1-3-м делениях, средние — на 4-5-м и сильные — 6-8-м делениях. Продолжительность воздействий, проводимых ежедневно или через день, составляет от 15 до 30 мин. На курс лечения назначают 10-15 процедур. Повторный курс при необходимости может быть проведен через 8-12 недель.
Детям применяют слабые и средние дозировки, процедуры проводят продолжительностью 10-20 мин ежедневно или через день, на курс — 8-10 процедур. Индуктотермия детям назначается с 5 лет.
В лечебной практике широко применяют и особые методы индуктотермии — гальваноиндуктотермию, индуктотермоэлектрофорез (см.), грязьиндуктотермию (см.) и ультравысокочастотную индуктотермию (см. Индуктотермия ультравысокочастотная).
Основными показаниями для индуктотермии являются: подострые и хронические воспалительные процессы в различных органах и тканях, посттравматические состояния и заболевания опорно-двигательного аппарата, заболевания сердечно-сосудистой системы, травмы и воспалительные заболевания периферической нервной системы, спастические состояния, хронический бронхит, бронхиальная астма, язвенная болезнь желудка и двенадцатиперстной кишки, гиперкинетические дискинезии, мочекаменная болезнь, зудящие дерматозы, склеродермия, хроническая экзема и др.
Противопоказания для индуктотермии: лихорадочные состояния, острые гнойно-воспалительные заболевания, кровотечение или наклонность к нему, активный туберкулез, выраженная гипотензия, декомпенсация сердечно-сосудистой деятельности, нарушения температурной чувствительности, злокачественные и доброкачественные опухоли, беременность, наличие металлических предметов (осколки, штифты) и кардиостимуляторов в зоне воздействия, тяжелые органические заболевания нервной системы.

источник

В основе механизма лечебного действия индуктотермии наряду с биофизическими процессами(теплообразование) лежат рефлекторные ответные реакции, реализуемые нейрогуморальным путем. Индуктотермия вызывает раздражение большой рецепторной зоны не только кожи, но и глубоко расположенных органов и тканей, и потому приводит к генерализованным ответным реакциям, вызывая противовоспалительное, сосудорасширяющее, гипотензивное, болеутоляющее, бактериостатическое, рассасывающее, седативное, антиспастическое влияние при различных патологических процессах.

Показания: воспалительные заболевания в подострой и хронической стадии (бронхит, пневмония, бронхиальная астма, гастрит, гепатит, колит, заболевания женских половых органов, простатит, цистит, нефрит, ревматоидный артрит, неврит, радикулит, плексит), гипертоническая болезнь I-IIА стадии, болезнь Рейно, диабетическая ангиопатия, склеродермия, переломы, ушибы суставов, артрозы, остеохондроз позвоночника.

Противопоказания: острые гнойные процессы, новообразования, инфаркт миокарда, хроническая ишемическая болезнь с нарушением ритма, нестабильная стенокардия, недостаточность кровообращения II и III степени, гипертоническая болезнь III стадии, системные заболевания крови, активная фаза туберкулеза легких и других органов, тиреотоксикоз, декомпенсированная стадия сахарного диабета, беременность, наличие металлических тел в зоне воздействия индуктотермии.

Для проведения индуктотермии используют аппарат «ИКВ-4». Этот аппарат является передвижным, смонтированным в цельнометаллическом съемном корпусе. Его подключают к сети переменного тока напряжением 127 или 220 В. К аппарату придаются малый и большой резонансные индукторы-диски, индуктор-кабель, разделительные гребенки. По дополнительному заказу можно получить вагинальный аппликатор.

На верхней лицевой панели аппарата (рис. 128) расположены: 1 — ручка реле времени, 2 — ручка переключателя выходной мощности «Доза», 3 — клавиши (черная и красная) выключателя сети с указанием «Вкл.», 4 — неоновая лампа, сигнализирующая о включении питающего напряжения, 5 — неоновая лампа, отмечающая включение возбудителя. На левой стороне корпуса выведено коаксиальное гнездо для подключения резонансных индукторов и согласующего устройства, кронштейн для фиксации держателя индукторов, специальные винты для установки согласующего устройства. На задней стенке расположены скобы для крепления сетевого шнура.

Включение. 1. Подключить аппарат к питающей сети соответствующего напряжения. Нажать черную клавишу выключения сети. Свечение сигнальной лампы указывает на включение аппарата в сеть. 2. Установить индуктор на больного с зазором не более 2 см. 3. Ручку (2) «Доза» поставить в положение «1». 4. Реле времени (1) завести вращением ручки «Минуты» по часовой стрелке до упора, а затем поворотом ручки в противоположном направлении установить необходимую длительность процедуры (от 3 до 25 мин). Неоновая лампа (5) начинает светиться, сигнализируя о подаче высокочастотного напряжения на индуктор.

Выключение аппарата. 1. По истечении заданного времени отключить подачу высокочастотного напряжения на индуктор; 2) выключить аппарат нажатием красной клавиши выключателя (3); 3) все ручки управления перевести в крайнее левое положение до упора; 4) вынуть вилку из розетки сети.

Процедуры проводят в удобном положении больного на деревянной кушетке. Металлические предметы из зоны воздействия удаляют. Воздействия можно проводить через легкую одежду, а также сухую гипсовую повязку.

Индуктор-диск располагают на область воздействия без зазора, принимая во внимание, что между витками катушки, вложенными в корпус диска, и его внешней поверхностью создается зазор в 1-1,5 см (рис. 129).

Индуктор-кабель необходим для локального воздействия на различные участки тела с неровной поверхностью. Чаще всего применяют 4 формы катушек. Для продольного воздействия на руку, ногу, позвоночник применяют катушку в 1 виток (рис. 130). На грудную клетку, подреберье, проекцию почек используют плоскую продольную катушку в 2 витка (рис. 131).

Читайте также:  Физиотерапия при болезни коленного сустава

На плечевые, тазобедренные суставы, проекцию почек, грудную клетку, живот назначают плоскую круглую катушку в 3 витка (рис. 132). На суставы рук, ног (локтевые, лучезапястные, коленные, голеностопные, кисти, стопы) применяют цилиндрическую катушку в 3 витка (рис. 133).

При выполнении указанных форм катушек пользуются разделительными гребенками. При этом между витками катушки создастся зазор в 1 см. Воздушный зазор 1-2 см между индуктором-кабелем и поверхностью кожи создастся или основаниями разделительных гребенок (например, при выполнении цилиндрической катушки в 3 витка), или сложенным в несколько слоев полотенцем. Пересечение витков кабеля изолируют клеенкой, сложенной в 3-4 слоя.

После наложения индукторов на ту или иную область включают аппарат. В зависимости от назначенной дозы больной ощущает тепло различной интенсивности. Необходимо следить за тем, чтобы не было ощущения жжения под индуктором или обильного потоотделения. По окончании процедуры аппарат отключают, а затем снимают индукторы с тела больного.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

источник

Электролов рыбы стал возможным в основном, благодаря использованию явления ориентированного движения рыбы в поле постоянного тока. Внешне это явление выражается в том, что рыба, попадая в поле постоянного тока, при известных значениях напряженности поля устремляется к положительному электроду. «Внутренние» причины такого направленного движения можно объяснить основными понятиями из раздела «Общей физиологии», где студенты знакомятся с вопросами физиологии возбудимых тканей: потенциал покоя, потенциал действия, фазовые изменения возбудимости и их оценка, лабильность возбудимых структур, проведение возбуждения по нервным волокнам и передача его в синапсах, механизмы мышечного сокращения . Особое внимание уделяется действию на них электрического тока и законам раздражения возбудимых тканей: закон силы, закон «все или ничего», закон физиологического электротона, полярный закон, закон «силы-длительности» (обеспечивает понимание основ электронейромиостимуляции, физиотерапевтических воздействий на нервную систему с использованием постоянного и импульсного электрического тока). Не даром авторы монографий по электролову, излагая его биологические или физиологические предпосылки сообщают не только данные специальных исследований на рыбах, но и широко обращаются к общим закономерностям нервно-мышечной физиологии, пытаясь применить их для объяснения особенностей реакций рыб в электрическом поле. Если кто желает подробнее ознакомиться с этими вопросами — может ознакомиться с ними в Интернете — было бы желание. Владимир однажды попытался на сайте Данилы-мастера объяснить эту проблему, используя, на мой взгляд, слишком «научный материал», где используется терминология, не привычная нашему уху и, при этом, не давая пояснения о значениях этих терминов. Чтобы понять, что же хотел сказать Владимир, мне пришлось «перелопатить» достаточно большой объем, как специальной медицинской, так и научно-популярной литературы. Наиболее приемлемый вариант, на мой взгляд, объясняющий то, что хотел сказать Владимир, изложенный в научно-популярном виде здесь: http://corncoolio.narod.ru/nashe/phisiology/posobie/01.htm . Кому покажется мало — смотрите список литературы. Но сейчас я не хочу копаться во «внутренних» причинах, объясняющих реакцию рыбы на раздражение электрическим током. Попытаюсь изложить как импульсы тока различной формы влияют на живой организм, т.е. «внешние» признаки.

Итак. Электрический ток — это направленное (упорядоченное) движение электрических зарядов. В металлах, т. е. в проводниках первого рода, он представляет собой упорядоченное движение свободных электронов, в электролитах — проводниках второго рода — движение ионов, т. е. электрически заряженных частиц. Именно такой механизм характерен для прохождения тока в биологических объектах.

Живая ткань обладает электровозбудимостью , т. е. свойством подвергаться изменениям под влиянием электрического тока. В основе возбуждения лежит сложный физико-химический процесс, обусловленный нарушением равновесия ионов и изменением степени набухания оболочек нерва и его волокон. Состояние возбуждения в нерве или мышцах проявляется токами действия.

Для исследования электровозбудимости применяют постоянный (гальванический) и импульсный токи (в том числе фарадический). Наиболее подробно изучена электровозбудимость нервно-мышечного аппарата. Порогом возбудимости принято называть ту силу тока, которая необходима, чтобы вызывать едва уловимые сокращения мышцы.

В основе биологического действия постоянного гальванического тока лежат процессы электролиза , изменения концентрации ионов в клетках и тканях и поляризационные процессы. Они обусловливают раздражение нервных рецепторов и возникновение рефлекторных реакций местного и общего характера.

В развитии ответных реакций существенную роль играют сила тока, длительность воздействия, полярность активного электрода, а также исходное функциональное состояние органов и систем организма.

При прохождении тока по нерву меняется возбудимость последнего. У катода возникает повышенная возбудимость к раздражителям, у анода — пониженная .

Возможно поэтому некоторые исследователи считают, что рыба поворачивает и движется к аноду, т.к. в этом положении она испытывает наименьшее раздражение.

Понижение возбудимости под анодом при воздействии постоянным током небольшой интенсивности используют в лечебной практике для уменьшения болей. При понижении функциональной способности ткани гальванизация катодом часто ведет к повышению возбудимости.

Изменения двигательной реакции могут быть не только количественными, но и качественными. С одной стороны, учитывают силу тока, вызывающую пороговое сокращение, с другой — характер и качество самого сокращения мышцы.

Нормальная мышца при исследовании реагирует молненосным сокращением, причем с катода на меньшую силу тока, чем с анода (закон Пфлюгера (Pfluger).При заболеваниях периферического нейрона эти реакции могут извращаться. Так, раздражение анодом вызывает сокращение мышцы при меньшей силе тока, чем катодом.

Замыканием и размыканием постоянного тока можно вызывать сокращение мышцы при раздражении как двигательного нерва, так и непосредственно мышц.

Раздражение постоянным током вызывает быструю двигательную реакцию (сокращение мышцы) только в момент замыкания тока , причем при раздражении катодом она выражена при меньшей силе тока чем при раздражении анодом.

При воздействии постоянного тока в тканях происходят два противоположных процесса: с одной стороны, повышение концентрации ионов на границах полупроницаемых клеточных мембран, с другой — отведение этих ионов диффузией. Диффузия, влияя на движение ионов, способствует выравниванию концентрации.

Процесс восстановления физиологического состояния в ткани путем диффузии развертывается во времени. Ток, дающий пологую кривую (например, пульсирующий постоянный), меньше раздражает , чем ток, кривая которого образует быстрый и крутой подъем. Это объясняют тем, что при медленном постепенном подъеме кривой тока диффузия успевает значительно ослабить концентрацию ионов.

Медленное увеличение силы постоянного тока вызывает постепенное изменение концентрации ионов в клетках, что приводит к нерезкому раздражению нервных окончаний. Сокращения мышц при этом не происходит; если же ток включают и выключают быстро, наблюдают сокращение мышц. Это можно объяснить некоторым смещением ионов и отставанием диффузионных процессов при кратковременных импульсах тока.

Под влиянием раздражения импульсным током волна возбуждения быстро распространяется по мышечным волокнам. Происходит пассивное сокращение мышцы.

При прохождении через ткани импульсных однонаправленных токов низкой частоты в тканях происходят те же физико-химические явления, что и при воздействии постоянным током. Однако процессы эти происходят дискретно в зависимости от частоты импульсов, а степень их выраженности и физиологический эффект зависят от частоты, формы, длительности импульсов, скважности и адекватности их функциональным возможностям тканей.

Основными параметрами импульсного тока являются: частота повторения импульсов, длительность импульса; скважность; форма импульсов, обусловленная крутизной переднего и заднего фронтов; амплитуда . В зависимости от этих характеристик они могут оказывать возбуждающее действие и использоваться для электростимуляции мышц или оказывать тормозящее действие , на чем основано их применение для электросна и электроаналгезии.

Современная электронная техника дает возможность получать импульсы тока, параметры которых изменяются в самых широких пределах, например частота от единиц до миллионов герц; длительность — от секунд до микросекунд; форма импульсов также может различаться в широких пределах, вплоть до возможности воспроизведения любой изображенной на бумаге формы импульса.

— фарадический ток в его классической форме (рис. а), получаемый от индукционной катушки, с частотой 60 — 80 Гц и длительностью размыкателыюго импульса 1—2 мСек. Фарадический ток способен вызывать в мышцах длительное («тетаническое») сокращение, которое продолжается в течение всего периода прохождения тока, ведущее к утомлению мышцы;

— тетанизирующий ток или импульсы, воспроизводящие размыкательные импульсы фарадического тока (рис. б). Треугольные, остроконечной формы, с длительностью импульса 1—1,5 мСек, частотой 100 Гц, применяется взамен фарадического тока в электродиагностике и электростимуляции;

конденсаторные разряды с экспоненциально-спадающим задним, фронтом (рис. в);

прямоугольные импульсы (рис. г) (ток Ледюка) с длительностью импульса от 0,1 до 1 мСек, частотой от 1 до 160 Гц. Этот вид тока усиливает тормозные процессы в центральной нервной системе и его используют для получения состояния, аналогичного физиологическому сну (электросон) С. А. Ледюк (1902) установил, что наиболее физиологическое действие ток оказывает при соотношении продолжительности импульса к паузе 1: 10;

экспоненциально-нарастающие импульсы (рис.д)

экспоненциально-нарастающие и спадающие импульсы (рис.е) (ток Лапика) имеет пологий подъем и спуск, длительность импульса — 1,6 — 60 мСек, различной частоты, напоминает форму токов действия нерва при его раздражении. Преимущество экспоненциальной формы тока заключается в том, что она может вызвать двигательную реакцию мышц, когда тетанизирующий ток этого не делает. Эту форму тока применяют для стимуляции мышц.

К этому следует прибавить близкие по форме к синусоидальным импульсы диадинамических токов Бернара (диадинамические ) — полусинусоидальной формы с задним фронтом, затянутым по экспоненте, с частотой 50 и 100 Гц. и длительностью 10 мСек. Это импульсы, полученные путем однополупериодного выпрямления переменного тока сети, у которых с помощью соответствующим образом включенного в цепь конденсатора с постоянной времени разрядной цепи, равной 4 мСек , нисходящая часть снижается по экспоненциальной кривой (рис.а). При частоте 100 гц аналогичные импульсы получаются путем двух-полупериодного выпрямления сетевого переменного тока и имеют форму, показанную на рис.б.

Различное их сочетание вызывает ту или иную реакцию:

a) «Однотактный непрерывный» ток обладает выраженным раздражающим, возбуждающим действием: резко выражено сокращение мышц.

b) Ритм «синкопа» характеризуется кратковременными сильными сокращениями мышц и последующим их расслаблением и предназначен для электростимуляции мышц.

c) Ток «короткий период», при котором «однотактный непрерывный» ток с длительностью периода 1 секунда чередуется с «двухтактным непрерывным» той же длительности периода, вызывает ритмическую гимнастику скелетных мышц.

Применяя импульсный и особенно переменный ток для воздействия на ткани организма, следует учитывать, что электропроводность последних имеет также емкостную составляющую, обусловленную поляризационными явлениями в тканях. В общем виде эквивалентная электрическая схема для цепи, содержащей ткани организма, при воздействии постоянным и особенно импульсным током может быть представлена в виде нескольких последовательно включенных омических резисторов, шунтированных каждый некоторой емкостью.

Следствием емкостных свойств тканей является то, что форма импульсов тока, проходящего через них, может отличаться от формы импульсов приложенного напряжения. С этим необходимо считаться при точных исследованиях. В качестве примера на следующем рисунке показана схематически форма импульсов тока, получающихся при действии на ткани организма импульсов напряжения прямоугольной формы.

А в заключении немного о том, как сами рыбы ловят рыбу при помощи электричества.
Разряды излучаются сериями залпов, форма, продолжительность и последовательность которых зависят от степени возбуждения и вида рыбы. Частота следования импульсов связана с их назначением (например, электрический скат излучает 10—12 «оборонных» и от 14 до 562 «охотничьих» импульсов в сек в зависимости от размера жертвы). Величина напряжения в разряде колеблется от 20 (электрические скаты ) до 600 В (электрические угри ), сила тока — от 0,1 (электрический сом ) до 50 А (электрические скаты ).

Напряжение и сила тока в отдельных импульсах разряда электрического сома длиной свыше 80 см могут достигать 250 В и 0,5 А.

Характерна и сама разрядная деятельность сома во время охоты. Количество импульсов в «охотничьих» залпах у электрического сома зависит от размера жертвы. Длительность серии разрядов и число составляющих их импульсов повышаются с увеличением размеров объекта охоты. Так, например, сом длиной 20см при захвате 6-сантиметровом рыбы (в нашем случае это была верховка) генерировал в залпе до 290 импульсов при средней продолжительности залпа 21с . Жертва впадает в электрический шок, обездвижиаается, и сом заглатывает ее. Во время охоты двигательная активность сома почти не увеличивается — он продолжает медленно передвигаться. Правда, эти передвижения уже носят направленный характер — в сторону жертвы. Из-за своей медлительности сом частенько упускает свою добычу. Обездвиженная рыбка успевает прийти в себя и пытается скрыться от сома. Тогда следует новая серия разрядов. В серии разрядов амплитуды напряжения и силы тока импульсов идут по убывающей.

1. Клиническая физиотерапия.
2. Общая физиотерапия. Е.И.Пасынков. Изд-во «Медицина», 1969.
3. Физиотерапия. Л.М.Клячкин, М.Н.Виноградова. Изд-во «Медицина», 1968.
4. Электромедицинская аппаратура. Н.М.Ливенцев, А.Р.Ливенсон. Изд-во «Медицина», 1974.
5. http://corncoolio.narod.ru/nashe/phisiology/posobie/01.htm.
6. http://newasp.omskreg.ru/intellect/f19.htm
7. http://www.pereplet.ru/obrazovanie/stsoros/163.html
8. http://www.issep.rssi.ru/sej_str/ST143.htm
9. http://www.aquaria.ru/cgi/aart/a.cgi?index=798зарегистрироваться .

Сегодня существует множество уникальных методик лечения различных заболеваний, при которых идет прямое воздействие на организм человека магнитными полями, импульсами тока, лазером и т.д.

Одна из наиболее популярных методик — это магнитная терапия, эффективная и показанная при многих болезнях и патологиях.

Для терапии разных патологических заболеваний, врачи применяют импульсные токи в физиотерапии. Воздействие токами происходит в определенном ритме, который задается на специальном медицинском приборе, соответствующем ритмам работы любой внутренней системы или органа человеческого организма, также меняется и частота подаваемых импульсов.

Назначениями для применения в лечебных целях импульсов низкочастотного тока может быть ряд следующих заболеваний и проявлений:

  • электростимуляция мышечной ткани;
  • снятие болевых ощущений;
  • антиспастическое воздействие;
  • действие, оказывающее сосудорасширяющий эффект;
  • ожирение;
  • сахарный диабет;
  • поражения нервно-мышечного аппарата;
  • гипертиреоз;
  • прочие заболевания эндокринной системы;
  • косметологические проблемы с кожей;
  • нарушения перистальтики кишечника;
  • болезни органов малого таза (мочеполовой системы).

В процессе проведения процедуры, воздействие на мышцы импульсных токов сменяется так называемыми фазами отдыха. При каждом последующем действии амплитуда импульсного тока и его ритм плавно увеличиваются и, достигая, таким образом, наивысшей точки, а затем, также плавно уменьшают свое значение до нуля.

Электроды, через которые подается электрический импульс тока, размещаются на определенные точки на теле пациента, через которые и проводится воздействие на определенную группу мышц. Сила тока рассчитывается врачом таким образом, чтобы визуально видеть сокращения мышц, но в то же время не вызывать у больного ощущения дискомфорта во время проведения процедуры. Обычно сила тока может быть от 10 до 15 мА. Как правило, курс лечения состоит от 15 до 20 процедур, каждая из которых, длится по 15 или 30 минут.

Применяются импульсные токи в разных видах физиотерапии:

  • Электросон . При таком типе физиотерапии, происходит воздействие мало интенсивных порций импульсов тока, нормализуя, таким образом, функциональность центральной нервной системы. Такое воздействие осуществляется через головные рецепторы. Классический электросон применяет импульсы в частоте от 1 до 150 Гц, при длительности от 0.2 до 0.3 мс. При такой процедуре на оба глаза больного, а также на область сосцевидного отростка прикладываются электроды раздвоенного образца. Как результат такой манипуляции, отмечается нормализация мозговой деятельности, улучшение кровообращения, работы всех внутренних органов и систем.
  • Диадинамотерапия . Проводится с применением низкочастотных импульсов полисинусоидной формы, с частотой от 50 до 100 Гц. Применяются импульсы раздельно или в процессе с непрерывным чередованием короткими и длинными периодами. Воздействию такого тока сопротивляется эпидермис, вызывая гиперемию, расширение стенок сосудов и усиление кровообращения. Параллельно возбуждаются и мышечные ткани, нервная система, оказывается общий лечебный эффект. Таким образом, происходит активация работы системы кровообращения, в частности, периферической, улучшаются все обменные процессы в организме, уменьшаются болевые ощущения. Такой метод импульсной терапии применяется для лечения периферической нервной системы, опорно-двигательного аппарата.
  • Интерференция . Используются низкочастотные импульсные токи (от 1 до 150 Гц), с постоянной или изменчивой частотой. Такая методика способствует улучшению работы двигательных мышц, усиливает кровообращение, уменьшает боль, активирует обменные процессы. Более эффективно лечение при терапии подострых стадий заболеваний периферической нервной системы.
  • Амплипульстерапия . Электротерапия проводится при помощи синусоидальных моделируемых токов с низкой частотой (от 10 до 150 Гц), а также среднечастотных (от 2000 до 5000 Гц). Такой синусоидальный ток отлично проникает через кожные покровы не вызывая раздражения, при этом оказывается возбуждающее действие на мышечные волокна, нервные, улучшает кровообращение, обменные процессы. Лечение назначается при заболеваниях опорно-двигательного аппарата, травматических повреждениях, проблемах нервной системы и многих других патологических состояниях.
  • Электростимуляция используется для того, чтобы возбудить или значительно усилить функциональность определенных внутренних органов и систем. Сегодня наиболее распространенными видами электростимуляции стали стимуляция сердечной деятельности, нервной системы и двигательных мышц. Также терапия показана для поддержания жизнедеятельности мышечной ткани и ее питания, предупреждения такого явления, как атрофия мышц, в период вынужденного бездействия, для укрепления мышц в период восстановления и реабилитации.
  • Флюктуоризация . Используются токи частично или полностью выпрямленного переменного тока, низкой частоты (от 10 до 2000 Гц). При воздействии таких токов происходит раздражение и возбуждение тканей, усиливается лимфо- и кровообращение, активируется движение лейкоцитов, стимулируется работа мышечной ткани.
Читайте также:  Эуфиллин в физиотерапии новорожденным

Противопоказаниями к использованию терапии импульсными токами могут быть:

  • индивидуальная непереносимость;
  • опухоли;
  • второй триместр беременности, при котором очень осторожно используется импульсная терапия;
  • кровотечения;
  • свежий гемартроз.

Действие импульсов тока на организм вызывает раздражающие, возбуждающие и стимулирующие эффекты, которые способны помогать при терапии разнообразных заболеваний, патологий и осложнений.

Когда ток проходит через ткани организма, он вызывает напряжение тканей, усиливает работу клеточных мембран.

Таким образом он активирует их функциональность, возбуждает клетки и улучшает их жизнедеятельность, питает мышцы, восстанавливает работу нервных волокон, сосудов, суставов. Поддается эффективному лечению импульсными токами и такое заболевание, как простатит.

При применении терапии пациент получает следующие результаты:

  • Улучшается приток крови, соответственно и вещества лекарственных препаратов , применяемых для лечения простатита, быстрее проникают в ткани предстательной железы.
  • Уменьшаются застойные процессы в тазу.
  • Улучшается обмен веществ, что укрепляет весь организм.
  • Улучшается синтез секреции простаты.
  • Повышается проницаемость клеточных мембран.

Для эффективной терапии простатита, можно применять электролечение с разными видами импульсных токов. Гальванизация позволяет воздействовать на предстательную железу токами низкой частоты при непрерывном действии, это снимает воспаление, снимает болевые ощущения. Электрофорез лекарственный помогает усилить действие медикаментов, так как увеличивается проницаемость тканей на клеточном уровне.

При электростимуляции происходит повышение функции мышечной ткани таза, что помогает при терапии патологий мочеполовой системы. Благодаря такой методике многие пациенты с проблемами предстательной железы, получают качественное и эффективное лечение. Отзывы, как от врачей, так и от пациентов, свидетельствуют о том, что комплексная терапия с импульсами тока — это один из наиболее эффективных методов лечения и профилактики простатита и многих других заболеваний.

Импульсные токи широко применяются для лечения различных патологических состояний, так как импульсные воздействия в оп­ределенном заданном ритме соответствуют физиологическим рит­мам функционирующих органов и систем.

Импульсный ток представляет собой отдельные «порции, толч­ки» тока. Если этот ток постоянный, то и импульсный ток будет иметь одно направление; а если этот ток переменный, импульсный ток тоже будет менять свое направление.

Каждый отдельный импульс постоянного тока представляет со­бой быстронарастающий и быстропадающий по напряжению по­стоянный ток со следующей за ним паузой.

При прохождении каждого импульса постоянного тока в меж­электродном пространстве (ткани пациента) происходит перемеще­ние внутритканевых, внутриклеточных ионов . Это перемещение ионов более быстрое, чем при воздействии непрерывным постоян­ным током. Более быстрое перемещение ионов ведет к быстрому накоплению их на межклеточных мембранах. Во время паузы ионы удаляются от мембран, а при последующем импульсе вновь быстро направляются к мембранам. Таким образом, при воздействии по­стоянным током в импульсном режиме клетки во время прохожде­ния импульса будут возбуждаться, а во время паузы возвращаться всостояние покоя. Физиологической реакцией на прохождение каждого импульса будет сокращение мышц под электродами.

Действие импульсного постоянного тока зависит от формы им­пульсов (рис. 2.10), продолжительности и интенсивности импуль­сов, частоты подачи импульсов.

Рис. 2.10. Графическое изображение импульсного постоянного тока

Электросон — метод воздействия на центральную нервную сис­тему импульсным током низкой частоты и малой силы — был пред­ложен в 1948 г. Ливенцовым, Гиляровским, Кирилловой и Сегаль.

В процедуре электросна не важен сам сон, а важно добиться нор­мализации процессов возбуждения и торможения, улучшения вли­яния головного мозга на все процессы в организме.

Аппаратура: Электросон-2, Электросон-3, Электросон-4 Т, Электросон ЭС-10-5 и др.

Для получения слабого ритмического раздражителя, вызываю­щего в коре головного мозга торможение, переходящее в сонливость и сон, авторы метода использовали импульсный постоянный ток с импульсами прямоугольной формы, низкой частоты, малой силы, постоянной полярности. Длительность импульса 0,2-2 миллисе­кунды (мс). Частота импульсов 1-130 Герц (Гц).

Первый электрод (раздвоенный) накладывают на кожу век за­крытых глаз, а второй, тоже раздвоенный, на кожу в области сос­цевидных отростков позади ушных раковин. Глазничный элект­род подсоединяют к катоду, а затылочный к аноду.

Частота импульса от 1 до 130 Гц (низкие частоты), сила тока индивидуальна: до появления вибрации в области век (но не более 0,5 мА). Длительность импульса 0,2-0,5 мс. Экспозиция: первая процедура — 10 мин, последующие — до 60 мин. Курс лечения 15-20 раз, ежедневно или через день.

Механизм действия электросна связывают с рефлекторным дей­ствием переменного тока через кожные рецепторы век на кору го­ловного мозга.

Электросон способствует: нормализации высшей нервной деятельности, повышению порога болевой чувствительно­сти, улучшению функций головного мозга, улучшает сосудистую реактивность, кровоснабжение головного мозга, способствует восстановлению функционального состояния головного мозга. При электросне улучшается насыщение крови О 2 до 98% , нормализу­ется работа свертывающей и антисвертывающей систем крови кис­лородом, нормализуется дыхание, давление.

Показания: неврозы, неврастения, шизофрения, отдаленные последствия травмы головного мозга, склероз мозговых сосудов (начальный период), гипертоническая болезнь I — II стадии, гипо­тоническая болезнь, язвенная болезнь желудка и двенадцатиперст­ной кишки, бронхиальная астма, экземы, дерматозы, нейродерми­ты, фантомные боли , облитерирующие заболевания сосудов конеч­ностей, токсикозы беременности, ревматическая хорея, ревмато­идный артрит, парадонтоз.

Противопоказания: индивидуальная непереносимость тока, вос­палительные заболевания глаз, мокнущие дерматиты лица, истерия, тяжелые степени нарушения кровообращения, арахноидит, миопия.

Виды реабилитации: физиотерапия, лечебная физкульту­ра, массаж: учеб. пособие / Т.Ю. Быковская [и др.]; под общ. ред. Б.В. Кабарухина. — Ростов н/Д: Феникс, 2010. — 557, с.: ил. — (Медицина). С. 47-48.

В современной физиотерапии следует считать весьма перспективным дальнейшее совершенствование импульсных ритмических воздействий при лечении различных патологических состояний, так как импульсное воздействия в определенном заданном режиме соответствуют физиологическим ритмам функционирующих органов и систем.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

  1. Виды импульсного тока.
  2. Электросон.
  3. Электродиагностика.
  4. Электростимуляция.
  5. ДДТ и СМТ.
  6. Методика и техника.
  7. Аппараты.
  8. Показания и противопоказанияю

Импульсный ток – отдельные «порции» и толчки тока

ДДТ – диадинамические токи

Ток Ледюка – частота импульсов 1-130 Гц,

продолжительности импульса 0,2 – 2 мс

Тетанизирующий ток – частота пульса – 100 Гц

Ток Лапика – частота импульсов 8100 Гц,

Клячкин Л.М. Физиотерапия. – 1995 – 33-64 стр.

Тема: Импульсные токи низкой частоты и низкого напряжения

В современной физиотерапии следует считать весьма перспективным дальнейшее совершенствование импульсных ритмических воздействий при лечении различных патологических состояний, так как импульсное воздействия в определенном заданном режиме соответствуют физиологическим ритмам функционирующих органов и систем .

Импульсный ток – представляет собой отдельные «порции», «толчки» тока, имеющего одно направление при прохождении импульсов постоянного тока и меняющееся направлении при прохождении импульсов переменного тока.

Специфика импульсов постоянного тока заключается в том, что каждый отдельный импульс представляет собой более или менее быстро нарастающий и спадающий по напряжению постоянный ток со следующей за ним паузой. При прохождении каждого импульса постоянного тока в межэлектродном пространстве происходит перемещение внутритканевых, внутриклеточных ионов. При действии постоянного импульсного тока клетки возбуждаются. А во время пауз – возвращаются в состояние покоя. Физиологической реакцией на прохождение каждого импульса будет сокращение мышц под электродом.

Действие импульсного постоянного тока зависит от формы импульсов, их продолжительности, интенсивности (тока) и частоты подачи импульсов (длительность пауз между импульсами).

По виду различают 3 вида импульсных токов.

  1. Импульсный ток прямоугольной формы

Частота импульсов 1-130 Гц

продолжительность каждого импульса

Этот ток усиливает процесс торможения в коре головного мозга, и его применяют для получения состояния, аналогичного физиологическому сну (э л е к т р о с о н).

2. Импульсный ток остроконечной формы

(тетанизирующий – тонизирующий?- сон)

Частота импульсов – 100 Гц

Этот ток вызывает сокращение мышц, и его применяют для упражнения мышц при ослабленной их функции (электростимуляция, электродиагностика, электроанальгезия).

3. Импульсный ток экспоненциальной формы

Частота импульсов – 8-100 Гц

Продолжительность – 2-60 мс

Этот ток применяется для электрогимнастики, электродиагностики, электроаналгезии. Причем частота и длительность импульсов зависит от степени поражения мышцы.

Электросон – это метод воздействия на центральную нервную систему импульсным током низкой и малой силы. Этот метод был предложен в 1943 году советскими учеными Ливенцевым, Гиляровским, Кирилловым.

Механизм лечебного действия электросна представляет собой сложный процесс, включающий прямое и рефлекторное влияние импульсного тока в качестве слабого ритмического раздражения подкорковых образований и коры головного мозга.

Метод электросна вызывает сон, близкий естественному, физиологическому сну. Однако исследования последних лет говорят о том, что электросон, в отличие от физиологического, протекает с увеличением минутного объема дыхания с повышенным насыщением крови кислородом.

Способствует снижению эмоциональной активности,

Способствует нормализации функционального состояния системы свертывания и антисвертывания крови,

Усиливает вагусное влияние – как при обычном сне (при бронхиальной астме),

Снижает внутриглазное давление у больных глаукомойЮ

Действует болеутоляюще при болевых синдромах, связанных с язвенной болезнью, ожогами, при кардиалгии и др.,

Улучшает вегетативные функции,

Нормализует основной обмен,

Снижает уровень сахара в крови,

Способствует нормализации основных процессов высшей нервной деятельности,

Повышает эффективность снотворных веществ при комбинированном лечении,

Улучшает кровоснабжение головного мозга,

Усиливает регуляторную роль ЦНС по отношению к другим органам и системам организма.

Методика и техника проведения электросна

При отпуске процедур электросна используется глазнично-затылочная методика расположения электродов. В набор электродов входят две пары электродов: глазничный и затылочный.

Перед процедурой в металлические чашечки электродов закладывают ватные тампоны, смоченные водой. Глазничный электрод накладывают на кожу век закрытых глаз, а второй – на кожу в области сосцевидных отростков позади ушных раковин. Оба электрода фиксируются с помощью ремешков к резиновой повязке, которая закреплена на голове: под подбородком, на затылке и темени. К электродам привязаны концы раздвоенного мягкого провода, с помощью которого затылочный электрод присоединяют к положительной клемме аппарата, а глазничный – отрицательной (катод).

Процедуры проводят в отдельной тихой, хорошо проветренной полузатемненной комнате. Больной должен раздеться и лечь в спокойной, непринужденной позе. После наложения электродов и присоединения к аппарату – включают ток.

Частота подачи импульсов в методе электросна зависит от: особенностей функционального состояния нервной системы больного, от тяжести и фазы заболевания, от возраста и других факторов. Поэтому при различных заболеваниях индивидуально подбирают такую частотную характеристику, при которой у больных наступает дремотное состояние, сонливость, сон. Силу тока регулируют в зависимости от ощущения больного (чувство ползания мурашек под электродами, легкая вибрация в области век, слабые ритмичные толчки).

По окончании процедуры м\с включает аппарат, а больной может спать до самостоятельного пробуждения.

Продолжительность процедур колеблется от 30 мин до 1-2 часов – в зависимости от особенностей нервной системы больного и от характера заболевания. Процедуры проводят ежедневно. На курс лечения – 10-15 процедур – в зависимости от характера заболевания, переносимости процедур.

Аппараты: ЭС-1, ЭС-2, ЭС-3, ЭС-4Т.

Показания к назначению электросна

Заболевания со стороны нервной системы:

Галлюцинаторная форма шизофрении,

Отдаленные последствия травматической болезни головного мозга (посттравматические энцефалопатии),

Атеросклероз сосудов головного мозга (начальный период),

Заболевания со стороны внутренних органов:

Гипертоническая болезнь I — II ст.,

Язвенная болезнь желудка и 12-перстной кишки,

Экземы, дерматозы, нейродермиты,

  1. Непереносимость тока.
  2. Воспалительные заболевания глаз.
  3. Мокнущие дерматиты лица.
  4. Истерия.
  5. Арахноидит.
  6. Тяжелые степени нарушения кровообращения.
  7. Лихорадочные состояния.
  8. Острый период инфаркта миокарда.
  9. Острый период церебрального инсульта.
  10. Отрицательное отношение больного к электрическому току.

Электродиагностика – это исследование возбудимости нервно-мышечного аппарата путем электрического раздражения. В зависимости от функционального состояния нерва и мышцы их реакции на электрическое раздражение различны, поэтому по ним можно судить о характере и глубине поражения нервно-мышечного аппарата.

Исследование проводят на аппаратах КЭД-5, АСМ-3, УЭИ-1, Стимул-1 по двигательным точкам нервов и мышц. Двигательная точка нерва – это участок, где ствол нерва наиболее поверхностно расположен и доступен исследованию. Двигательная точка мышцы – это проекция зоны внедрения и разветвления нерва в мышце. Наиболее типичное расположение двигательных точек дано в специальных таблицах Эрба.

Для правильной оценки данных, полученных при исследовании, необходимо исходить из нормальной реакции нервно-мышечного аппратаа на электрический ток.

Техника проведения диагностики

Чаще всего используется 1-полюсная методика при помощи пуговчатого электрода с кнопочным прерывателем и обычного пластинчатого электрода гидрофизической прокладки.

Электростимуляция – это метод, основанный на применении импульсного или прерывистого гальванического тока для вызывания ритмических сокращений мышц (то есть воздействие на нервно-мышечный аппарат).

В настоящее время электростимуляцию можно проводить на серийно выпускаемых аппаратах УЭИ-1, СНИМ-1, Амплипульс-3, Амплипульс-3Т.

Механизм действия электростимуляции

Электростимуляция регулирует мышечный тонус, улучшает кровообращение и обмен веществ в пораженных мышцах, поддерживает их сократительную способность и замедляет атрофию.

Показания для электростимуляции

  1. Вялые параличи и парезы мышц лица, туловища, конечностей.
  2. Атония гладкой мускулатуры внутренних органов.
  3. Парезы и параличи мышц гортани.
  4. Некоторые формы тугоухости.
  5. Сексуальные неврозы.
  6. Нарушения сердечного ритма и дыхания.
  7. Парезы кишечника (недержание кала).
  8. Недержание мочи (для стимуляции сфинктера мочевого пузыря).
  1. Воздействие на мышцы внутренних органов при желчно- и почечнокаменной болезни.
  2. Склонность к кровотечению
  3. Острые гнойные процессы органов брюшной полости.
  4. Воздействие на мышцы при переломах костей до момента их консолидации.
  5. Вывихи.
  6. Трофические длительно не заживающие язвы конечностей.
  7. Тромбофлебиты.
  8. Первый месяц после операции наложения шва на нерв (при травме нерва).

1. Одноактный непрерывный: ОН – ощущение покалывания

обладает раздражающим, возбуждающим действием.

2. Двуактный непрерывный: ДН – легкое покалывание, при

Усилении – чувство вибрации,

3. Ритм синкопа – вызывает сокращение мышц с

применяется при электростимуляции).

4. Ток, модулированный короткими периодами:

К.П. – больной ощущает сильное, болезненное сокращение, своеобразная вибрация, массаж мышц, — усиление кровообращения,

активизируется обмен веществ.

5. Ток, модулированный длинными периодами:

Уменьшает эффект возбуждения, меняя тормозным болеутоляющим.

6. Однотактный волновой – усиливает обезболивающий эффект.

Аппараты: СНИМ-1, Тонус-1, Модель – 717, Диадинамик-1

Воздействие СМ-токов, благодаря которым обеспечивается хорошая их проходимость через кожу, исключается раздражающее их действие их на кожу и ее рецепторы.

Различают следующие виды СМТ:

  1. Исходный немодулируемый ток.
  2. Ток «постоянная модуляция» ПМ (1р. р.)
  1. Ток модулированных и немодулированных колебаний ПН (3 р. р.)
  1. Ток перемежающейся частоты ПЧ (4 р.р.)

СМТ обладают следующим действием:

  1. болеутоляющим;
  2. способствуют улучшению периферического кровообращения и функционального состояния нервно-мышечного аппарата.

Техника и методика отпуска процедур такая же, как и ДД-терапии.

Показания к назначению ДДТ и СМТ:

  1. Ушибы мышц.
  2. Растяжение связок.
  3. Периартриты.
  4. Заболевания периферической нервной системы с наличием болевого синдрома (радикулиты, невриты), особенно в остром периоде.
  5. Облитерирующий эндартериит.
  6. Парезы и паралич мышц конечностей, туловища, лица.
  7. Дискинезия толстой кишки с преобладанием атонического компонента.
  1. Общие физиотерапевтические.
  2. Острые воспалительные заболевания в полостях.
  3. Инфекционные лихорадочные состояния.
  4. Активный туберкулез в фазе интоксикации.
  5. Недостаточность кровообращения 2-3 степени.
  6. Беременности (область живота и поясницы).
  7. Психоз.

Другие похожие работы, которые могут вас заинтересовать.вшм>

источник