Меню Рубрики

В физиотерапии используется ультразвук частотой 800 кгц и интенсивностью

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц.

Верхним пределом ультразвуковых частот условно можно счи­тать 10 9 —10 10 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. § 12.7). Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень 1 из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. § 19.5) существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. § 6.4). Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и от­раженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано ис­пользование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

— микровибрации на клеточном и субклеточном уровне;

— перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 11);

— разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы, диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Это эх-энцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата

Обычно для терапевтических целей применяют ультразвук часто­той 800 кГц, средняя его интенсивность около 1 Вт/см 2 и меньше.

Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жид­кость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарствен­ных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» по­врежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы ис­пользуется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ори­ентир» можно обнаруживать предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биоло­гических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, напри­мер, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. § 19.8).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8423 — | 7326 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Ультразвук — (от лат. ultra — сверх, за пределами + звук) — не слышимые человеческим ухом механические колебания (упругие волны), частота которых превышает 20 кГц. Он занимает в диапазоне звуковых волн положение между звуком и гиперзвуком. Распространение ультразвука в среде представляет собой последовательное чередование участков сжатия и разрежения. Графически ультразвук может быть изображен в виде синусоиды, положительные части которой соответствуют сжатию в среде, а отрицательные — разрежению (рис. 2).
Важнейшей характеристикой ультразвука является его частота. Она показывает число полных колебаний в секунду и измеряется в герцах (Гц) или кратных единицах килогерцах (1 кГц = 103 Гц) и мегагерцах (1 МГц = 103 кГц = 106 Гц). В физиотерапии используется ультразвук определенных (фиксированных) частот: 880,2640,22,44 кГц и др.
Частота колебаний (f) связана с длиной волны (?) простым соотношением: ? = C/f, где С — скорость распространения ультразвуковых волн (м/с) в среде.
Важной физической характеристикой ультразвука является амплитуда волны, или амплитуда смещения. Она указывает на максимальное смещение (отклонение) колеблющихся частиц среды от положения равновесия. Чем выше амплитуда смещения, тем более глубоко будет распространяться ультразвук и большие изменения будет вызывать в тканях.
Сила, или интенсивность, ультразвука энергия, проходящая за 1 с через площадь в 1 см2. В физиотерапии ее обычно выражают во внесистемных единицах — в Вт/см2. С лечебно-профилактическими целями применяют ультразвук интенсивностью от 0,05 до 1,2 Вт/см2. В соответствии с режимом работы генератора ультразвук может быть непрерывным или импульсным. Для характеристики последнего часто пользуются величиной скважности. Скважность — отношение периода следования импульсов к длительности импульсов. В отечественных аппаратах для ультразвуковой терапии период следования импульсов равен 20 мс, а длительность импульса равна 2,4 и 10 мс, а следовательно, скважность равна соответственно 10, 5 и 2. Важно помнить, что чем выше скважность, тем меньше нагрузочность на организм больного.
Ультразвуковые волны в тканях организма распространяются с конечной скоростью, определяющейся упругими свойствами среды и ее плотностью. Скорость ультразвука в жидкостях и особенно в твердых телах значительно выше, чем в воздухе. В процессе распространения ультразвуковых волн в среде интенсивность ультразвука уменьшается по мере удаления от источника излучения.
Ультразвуковые колебания распространяются от источника излучения в упругой среде благодаря силам взаимодействия между частицами. В гомогенной среде ультразвук расходится коническим пучком с углом отверстия, обратным частоте.
При распространении ультразвуковых волн возможны дифракция, интерференция и отражение. Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковых волн сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустических волн велико, то явления дифракции нет, а имеет место отражение. При одновременном движении в тканях нескольких ультразвуковых волн в определенной точке среды может происходить суперпозиция (наложение) этих волн. Такое наложение волн друг на друга носит общее название интерференции. Результат интерференции зависит от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Явление интерференции лежит в основе получения фокусированного ультразвука.
При гетерогенной структуре тканей возможно преломление и отражение ультразвука на границе сред с различными акустическими свойствами. Чем больше различаются среды по своему акустическому сопротивлению, тем сильнее будет преломление ультразвука при переходе из одной среды в другую.
Распространение ультразвука в биологических тканях сопровождается уменьшением его амплитуды вследствие поглощения. Поглощение ультразвуковых колебаний тканью при ее однородности зависит от частоты колебаний (оно пропорционально квадрату частоты), а также свойств ткани (плотности, вязкости). Чем вязкость выше, тем больше энергии колебаний затрачивается на преодоление сил сцепления между частицами среды и тем больше поглощается энергии, тем сильнее затухание ультразвука. Поглощение ультраакустической энергии и ее рассеяние увеличиваются с ростом гетерогенности ткани. При патологических процессах поглощение ультразвука изменяется. В случае отека ткани коэффициент поглощения уменьшается, а при инфильтрации клеточными тканями — увеличивается. Принято считать, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 — на уровне микроскопических тканевых структур.
Наименьшее поглощение имеют твердые тела, большее — жидкости и еще большее газы. Поэтому при высокой частоте ультразвуковые волны в воздухе практически не распространяются. Слой воздуха толщиной 0,01 мм уже является непреодолимым препятствием для ультразвука высокой (800-1000 кГц) частоты. Поглощение ультразвука обусловлено внутренним торможением, трением и соударением колеблющихся частиц среды.
Глубина проникновения ультразвука, как и его поглощение, зависит от частоты ультразвуковых колебаний и акустической плотности самих тканей. Обычно полагают, что в условиях целостного организма ультразвук частотой 800-1000 кГц распространяется на глубину 8-10 см, а при частоте 2500-3000 кГц на 1,0-3,0 см.
Известно много различных методов получения ультразвуковых колебаний. Устройства, обеспечивающие получение ультразвуковых колебаний, называются ультразвуковыми излучателями (генераторами), а приборы, служащие для регистрации ультразвука, — ультразвуковыми приемниками.
В зависимости от вида потребляемой энергии (механической либо электрической) излучатели подразделяют на две основные группы: механические и электромеханические. Механические излучатели получили применение в ультразвуковых свистках, жидкостных генераторах, гидродинамических излучателях, в газоструйных излучателях и сиренах. Используются они для создания ультразвуковых колебаний частотой от 20 до 500 кГц в жидкостях, воздухе и газообразных средах. Недостатком ультразвуковых механических излучателей является сложность их изготовления, требующая высокой точности обработки и большой прочности деталей. По этой причине такие излучатели не получили широкого применения ни в промышленности, ни в медицине. Электромеханические излучатели более устойчивы, чем механические. По принципу действия их делят на электродинамические, пьезоэлектрические и магнитострикционные. В медицине используются лишь два последних типа излучателей.
Магнитострикционные излучатели основаны на магнитострикционном эффекте, открытом в 1847 г. Джоулем (см. Магнитострикционный эффект). В ультразвуковых установках применяют прямой магнитострикционный эффект. Ультразвуковые генераторы, основанные на магнитострикционном эффекте, в медицине используются для получения мощного ультразвука сравнительно небольших частот. Получение ультразвука в терапевтических аппаратах основано на использовании пьезоэлектрического эффекта, открытого в 1880 г. братьями Ж. и П. Кюри (см. Пьезоэлектрический эффект). Раньше в ультразвуковых терапевтических аппаратах в качестве пьезоэлемента использовались кварцевые пластинки. В последнее время кварц все чаще заменяется пьезокерамикой из титаната бария, получаемой искусственно. Керамика из титаната бария имеет ряд преимуществ перед кварцевой пластинкой: а) генерирует ультразвуковые колебания при более низком напряжении тока; б) может быть любой формы; в) стоимость ее в 100 раз меньше; г) пьезоэффект в 150 раз выше. К недостаткам титаната бария можно отнести большие диэлектрические и механические потери, приводящие к перегреву, и низкую точку Кюри (около 90 °С). В последние годы разработана пьезокерамика из цирконата-титаната свинца, обладающая вдвое большим пьезоэффектом, чем пьезокерамика из титаната бария.
Современные ультразвуковые аппараты, применяемые в физиотерапии, состоят из генератора электрических колебаний ультразвуковой (обычно фиксированной) частоты, ультразвукового излучателя (вибратора) с пьезоэлементом, соединенным высоковольтовым кабелем с колебательным контуром генератора, элементов управления и источника питания. Отечественные аппараты питаются от сети переменного напряжения в 127 или 220 В. В них предусмотрена возможность работы в непрерывном и импульсном режимах. Частота следования импульсов в отечественных аппаратах равна 50 Гц, а длительность периода составляет 1/50 с, или 20 мс. Длительность импульсов можно варьировать (10, 4 и 2 мс), а форма их приближается к прямоугольной.
Основными аппаратами в физиотерапевтических кабинетах сегодня являются унифицированные специализированные аппараты трех серий: УЗТ-1 (УЗТ-1.01, УЗТ-1.03 и др.) — аппараты этой серии генерируют ультразвук частотой 880 кГц; УЗТ-3 (УЗТ-3.01, УЗТ-3.02, УЗТ-3.03 и др.) — рабочая частота 2640 кГц; УЗТ-13, или «Гамма» (УЗТ-13.01, УЗТ-13.02, УЗТ-13.03 и др.), — генерируют ультразвук частотой 880 и 2640 кГц.
Для низкочастотной ультразвуковой терапии используют преимущественно аппараты двух серий: УЗН-22/44, или «Барвинок» (УЗТН-22/44. 01У, УЗТН-22/44. 02Г и др.), генерирующих ультразвук частотой 22 и 44 кГц; аппараты серии «Тон» («Генетон-1», «Проктон-1», «Стоматон-1» и др.), частота генерируемого ими ультразвука равна 26,5 кГц.
Интенсивность генерируемого аппаратами ультразвука периодически (1 раз в 1-2 месяца) должна проверяться. Для этой цели выпускаются различного типа измерители мощности ультразвука. В практической физиотерапии контроль фактически генерируемой мощности ультразвука осуществляется с помощью измерителей ИМУ-2, ИМУ-3, ИМД-2 и др.
Основу физиологического и лечебного действия ультразвука на организм составляют вызываемые им механический, тепловой и физико-химический эффекты, соотношение между которыми зависит от интенсивности воздействия и условий его проведения. Важную роль во влиянии ультразвука на организм, в особенности на внутренние органы, играет и нервно-рефлекторный механизм. Механическое действие ультразвука обусловлено высокочастотными колебаниями, которые передаются тканям, контактирующим с излучателем ультразвука. В результате такого механического воздействия на ткань происходит микровибрация, своеобразный глубинный тканевый микромассаж на клеточном и субклеточном уровнях. Это стимулирует функции клеточных элементов и всей клетки, ведет к повышению проницаемости клеточных мембран, разрыву слабых связей, уменьшению вязкости цитозоля (тиксотропное действие), изменению микроциркуляции, разрыхлению соединительной ткани, ускорению диффузионных процессов, повышению чувствительности клеток к физическим и химическим агентам. Повышение проницаемости тканей и ускорение диффузионных процессов послужило толчком для использования ультразвука совместно с лекарственными веществами (см. Ультрафонофорез лекарственных веществ). Кавитации терапевтический ультразвук в биологических тканях не вызывает, но может приводить к микрокавитации, признаками которой являются ультразвуковое свечение, ионизация и др.
Тепловой эффект ультразвука обусловлен трансформацией части поглощенной энергии ультразвуковых волн в тепло. Происходящее при этом небольшое повышение температуры тканей (до 1 °С) сопровождается изменением активности ферментов, скорости биохимических реакций, диффузионных процессов и местного кровообращения. Характерным для ультразвука является то, что образование тепла происходит не равномерно во всей толще ткани, а преимущественно на границах раздела сред. Температурный градиент также может играть определенную роль в биологическом действии ультразвука.
Физико-химическое действие ультразвука проявляется многообразными фазно протекающими в тканях физико-химическими, биофизическими и биохимическими изменениями. Не случайно ультразвук часто называют физическим катализатором. Озвучивание тканей сопровождается образованием свободных радикалов, ионов и биологически активных веществ, стимуляцией окислительно-восстановительных процессов, изменением рН, ферментативной активности и активности митохондрий, повышением дисперсности коллоидов клетки. Ультразвук стимулирует тканевое дыхание и окислительные процессы в тканях, оказывает нормализирующее влияние на углеводный, жировой и минеральный обмен. Эти изменения во многом определяют стимулирующее влияние ультразвука на процессы физиологической и репаративной регенерации.
Столь многообразное первичное действие ультразвука вместе с нервно-гуморальным механизмом предопределяет разностороннее влияние его на отдельные органы и организм в целом, а также широкий спектр лечебных эффектов фактора (см. Ультразвуковая терапия).
Воздействие ультразвуком терапевтических дозировок на кожу сопровождается быстро проходящим слабо выраженным экссудативным воспалением (асептическим), гиперемией, стимуляцией обменных процессов, увеличением числа тучных клеток, усилением жизнедеятельности камбиальных клеток, возрастанием уровня кислых мукополисахаридов, повышением активности кожных желез, улучшением реактивных свойств кожи и др.
Нервная система отличается высокой чувствительностью к ультразвуку, что во многом определяет неврогенный механизм его действия на организм. Ультразвук, как правило, снижает чувствительность рецепторов, оказывает дозозависимое влияние на скорость проведения нервных импульсов. Как биохимические, так и электрофизиологические исследования свидетельствуют о нормализующе-стимулирующем влиянии на обмен веществ и функциональное состояние ЦНС, ее реактивность, а также о нормализации функционального состояния вегетативной нервной системы.
Воздействие ультразвуком (0,2-0,4 Вт/см2) на область накожных проекций эндокринных желез чаще всего вызывает следующие изменения: активацию гормонопоэза и выброс в кровь повышенных количеств свободных форм гормонов; усиление деятельности гормонально зависимых процессов на периферии; возрастание общей неспецифической резистентности организма.
Действие ультразвука на сердечно-сосудистую систему проявляется в улучшении периферического кровообращения и микроциркуляции, небольшом снижении артериального давления, некоторой стимуляции кардиогемодинамики, учащении сердечной деятельности. Одновременно ультразвук положительно влияет на макро- и микрореологию крови, функциональную активность эритроцитов и лейкоцитов.
Влияние ультразвука на другие органы и системы зависит от их исходного функционального состояния: при нормальной и сниженной функции озвучивание, как правило, сопровождается улучшением функционального состояния организма; если функция какого-либо органа усилена, то применение ультразвука терапевтических дозировок, наоборот, ведет к торможению его специфической деятельности.
Применение ультразвука сопровождается и рядом общих изменений. Одним из проявлений общего действия ультразвука на организм можно считать его влияние на резистентность организма, определяющую взаимодействие биологических систем с внешней средой. Ультразвук в терапевтических дозировках способствует включению многообразных неспецифических реакций, повышающих резистентность организма. Оказывает он положительное влияние и на специфическую (иммунологическую) реактивность.
В общем, ультразвук относится к числу активных физических факторов, оказывающих многостороннее влияние на различные органы и системы. Являясь адекватным физико-химическим раздражителем, ультразвук запускает разнообразные механизмы, приводящие внутреннюю среду организма в нормальные (физиологические) границы и способствующие развитию гомеостатических, компенсаторно-восстановительных и защитно-приспособительных реакций.
Трудно назвать область народного хозяйства, где бы не использовался ультразвук. Он с успехом применяется для дефектоскопии, навигации, подводной связи, для ускорения ряда химико-технологических процессов, получения эмульсий, сушки, очистки, сварки и др. Весьма широкое распространение ультразвук получил в медицине. Он с успехом применяется в диагностических исследованиях. С помощью направленного узкого пучка ультразвуковых волн диагностируют многие заболевания внутренних органов, определяют положение опухолей, местонахождение камней и инородных тел, участков кровоизлияний мозга, скорость кровообращения, состояние плода в утробе матери и др.
С помощью ультразвука стерилизуют жидкости, хирургические инструменты, руки хирурга и операционных сестер. В хирургии ультразвук применяется для сварки (соединения), наплавки (восстановления) и обработки биологических тканей, а также для разрушения тромбов в сосудах и др. Но, пожалуй, наиболее широкое распространение ультразвук получил в физиотерапии. Прежде всего ультразвук небольшой интенсивности (до 1,2 Вт/см2) эффективно используется при лечении многих заболеваний в различных областях медицины. Достаточно активно сегодня он применяется для распыления растворов лекарственных веществ в ингаляционной терапии (см. Ингаляционная терапия, Аэрозолътерапия).

Читайте также:  Физиотерапия при травме глаза

источник

Распространение ультразвука в средах (тканях) происходит в виде потока волновой энергии, который оказывает определенное давление на частицы среды.

Величина этого давления характеризуется как мощность ультразвука и обозначается количеством ватт (Вт) в единицу времени (с).

В физиотерапии принято пользоваться понятием интенсивности ультразвуковой энергии, проходящей через 1 см2 площади излучателя в течение одной секунды. Она выражается в Вт/см2.

Величина интенсивности тесно связана с общей выходной мощностью ультразвука, и этот показатель должен особо учитываться при работе с аппаратами, имеющими излучатели различной площади и особенно большой (10 см2). Для выбора интенсивности имеет значение локализация воздействия, площадь озвучания, выраженность подкожного жирового слоя, возраст и т. д. В современной физиотерапии утвердилось подразделение интенсивностей ультразвука на малые (0,05-0,2-0,4 Вт/см2), средние (0,6-0,8 Вт/см2) и большие (1,0-1,2 Вт/см2).

Пьезоэлемент, заложенный в основании головки ультразвукового излучателя, со временем меняет свои свойства, изнашивается. Поэтому выходная мощность ультразвуковой энергии в аппарате тоже может изменятся, и ее следует подвергать проверке. Для этой цели разработай специальный прибор — измеритель ультразвуковой мощности («ИМУ-3»), часто называемый «ультразвуковые весы».

Проверка прибором «ИМУ-3» осуществляется техником. Медицинская сестра ежедневно, до начала проведения процедур, производит проверку наличия ультразвуковых колебаний одним из двух способов.

При первом способе ультразвуковой излучатель погружают в стакан с водой. При работе аппарата в непрерывном режиме с интенсивностью 0,4-0,6 Вт/см2 ультразвук вызывает дегазацию воды. В стакане наблюдается появление пузырьков воздуха, направляющихся к излучающей поверхности вибратора и оседающих на ней. При втором способе на рабочую поверхность излучателя наносят несколько капель воды или вазелинового масла. При исправном аппарате наблюдается «кипение», подпрыгивание этих капель.

Выбор ультразвукового аппарата для проведения процедуры зависит от глубины расположения органов и тканей, подлежащих лечению. Аппараты, работающие на частоте 880 кГц, относятся к аппаратам глубинного воздействия и предназначены для озвучивания органов и тканей до глубины 4-6 см. Аппараты, генерирующие ультразвуковые колебания частотой 2640 кГц, относятся к аппаратам поверхностного действия и предназначены для озвучивания тканей, расположенных на глубине 1,5-2 см.

Назначение ультразвука производится с обязательным указанием режима работы. Режим подачи ультразвуковой энергии в современных аппаратах может быть непрерывным и импульсным, когда поток энергии чередуется с паузами.

Импульсные режимы различаются по длительности импульса и пауз. Чем короче импульс, тем больше пауза и тем мягче действие ультразвука. Обычно воздействия ультразвуком производятся на ограниченные части тела (поля).

Площадь одного поля в среднем не более 150-250 см2. При необходимости назначить ультразвук на сравнительно большую поверхность (например, па паравертебральные зоны и область распространения болей при радикулите) всю площадь делят на отдельные поля. В течение одной процедуры можно подвергать воздействию 4-5, редко 6 полей.

Различают воздействие ультразвуком местное — непосредственно на область патологического процесса (пораженный сустав) и сегментарное — на рефлексогенные зоны, обычно парапертебрально в области соответствующих сегментов. Не следует воздействовать ультразвуком на область сердца, выступающие костные поверхности (например, остистые отростки позвонков), сильно отечные ткани, зоны роста у детей, область беременной матки.

Время воздействия ультразвуком на одно поле не должно превышать 5-10 мин при общей продолжительности процедуры 11с более 15 мин. Воздействия производят через день или ежедневно. Общий курс лечения составляет 6-12 процедур, редко 15-20. Курсы ультразвуковой терапии повторяют с промежутками не менее 3 месяцев.

В связи с тем, что ультразвуковые колебания полностью отражаются даже от очень тонкого слоя воздуха, подведение их к телу больного осуществляется через безвоздушные плотные среды — вазелиновое или другие виды масла, воду. Масло (предварительно слегка подогретое) тонким слоем наносят на кожную поверхность участка тела, подвергающегося воздействию, с помощью шпателя, пипетки или ватного тампона.

По окончании процедуры также ватным тампоном его снимают с поверхности излучателя и кожи с последующей обработкой этих поверхностей раствором 96% спирта. За рубежом выпускают специальные контактные среды. В России специально разработана контактная среда — гель «Репак-Т», которая обеспечивает 100% контакт между датчиком ультразвуковых колебаний и озвучиваемой поверхностью, не растекается па поверхности воздействия, легко снимается салфеткой, не образует пленок. Гель может быть использован для контакта со слизистой.

Отражение ультразвуковой энергии зависит и от угла падения (оно увеличивается при его увеличении). Поэтому необходимо, чтобы во время проведения процедуры излучатель располагался перпендикулярно к озвучиваемой поверхности.

Способ проведения ультразвуковой процедуры может быть контактным (когда через вазелиновое масло воздействуют непосредственно на кожу) или неконтактным (через воду). При контактном способе пользуются лабильной (подвижной) методикой. При этом соблюдают плотное прилегание излучающей поверхности излучателя к коже. Передвижение его совершают медленными поглаживающими (массирующими) круговыми движениями со скоростью 1-1,5 см в с. В случае необходимости произвести перемещение излучателя с одного поля на другое, требующее отрыва его от поверхности кожи, ручку переключателя интенсивности переводят в пулевое положение.

Реже при контактном способе применяют стабильную методику, когда излучатель фиксируют неподвижно на ограниченном участке.

Воздействие ультразвуком через воду применяют в случаях, когда невозможно использовать контактный способ, чаще при поражениях конечностей (кисть, стопа). Вода температурой 32-36 °С наливается в фаянсовую или фарфоровую ванночку. Для уменьшения содержания в воде воздушных пузырьков применяют кипяченую воду или наполняют ванночку простой водопроводной водой. В воду погружают конечность больного и ультразвуковой излучатель.

Читайте также:  Водный метод физиотерапии 3 буквы

Излучатель либо закрепляют на одной из стенок ванночки, — и тогда необходимо больному самому делать вращательные движения конечностью перед вибратором, либо медицинская сестра перемещает излучатель вокруг фиксированной конечности. В этом случае для защиты от влияния ультразвуковых колебаний медицинская сестра надевает на руку хлопчатобумажную, а поверх нее резиновую перчатку. Расстояние излучателя от поверхности кожи должно составлять 1-2 см (неконтактный способ воздействия).

В практике ультразвуковой терапии имеют место специальные частные способы воздействия, когда контактная среда (вода или масло) помещается в приспособления определенной формы (глазные ванночки, тубусы для методики фонофореза и др.). Широкое распространение приобретает способ введения с помощью ультразвука лекарственных препаратов. Данный способ воздействия ультразвуком получил название ультрафонофореза или фонофореза. Для фонофореза используют небольшое количество лекарственных веществ, которые, в основном, представлены в табл. 6.

Обычно применяют контактную методику воздействия. На подлежащую воздействию поверхность тела наносят тонким слоем с помощью шпателя соответствующую мазь. При использовании сильнодействующего или гормонального препарата учитывают его разовую дозу и содержание в 1 г мази. В этом случае расход мази на процедуру часто составляет от 0,5 до 2-3 г. Вместо обычного нанесения мази на кожу часто ее втирают в озвучиваемый участок, так как это усиливает проникновение лекарства в организм. Медицинскому персоналу при этом необходимо пользоваться резиновыми перчатками или напальчниками во избежание попадания в их организм применяемых лекарств.

Лекарственные растворы наносят на кожу шприцем или пипеткой, затем растирают стеклянной палочкой или пальцем, покрывая данный участок тела тонким слоем глицерина или вазелинового масла для создания полного контакта излучателя с озвучаемой поверхностью.

При фонофорезе, как правило, используют лабильную методику воздействия. В области выраженных болевых точек излучатель задерживается на 1-2 с. Наряду с контактной методикой фонофореза возможно воздействие через воду. При этом ванночки или другие сосуды заполняют лекарственным веществом (температура 28-32 °С). Данный способ фонофореза применяют в лечебной практике, в основном, в специализированных клиниках (офтальмология, стоматология и др.).

В последние годы начинают применяться полостные методики фонофореза (внутрипузырный, ректальный фонофорез антибиотиков, гидрокортизона). Все параметры ультразвукового воздействия устанавливает врач, и процедура выполняется в соответствии с ними.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

источник

Что такое клинические исследования и зачем они нужны? Это исследования, в которых принимают участие люди (добровольцы) и в ходе которых учёные выясняют, является ли новый препарат, способ лечения или медицинский прибор более эффективным и безопасным для здоровья человека, чем уже существующие.

Главная цель клинического исследования — найти лучший способ профилактики, диагностики и лечения того или иного заболевания. Проводить клинические исследования необходимо, чтобы развивать медицину, повышать качество жизни людей и чтобы новое лечение стало доступным для каждого человека.

У каждого исследования бывает четыре этапа (фазы):

I фаза — исследователи впервые тестируют препарат или метод лечения с участием небольшой группы людей (20—80 человек). Цель этого этапа — узнать, насколько препарат или способ лечения безопасен, и выявить побочные эффекты. На этом этапе могут участвуют как здоровые люди, так и люди с подходящим заболеванием. Чтобы приступить к I фазе клинического исследования, учёные несколько лет проводили сотни других тестов, в том числе на безопасность, с участием лабораторных животных, чей обмен веществ максимально приближен к человеческому;

II фаза — исследователи назначают препарат или метод лечения большей группе людей (100—300 человек), чтобы определить его эффективность и продолжать изучать безопасность. На этом этапе участвуют люди с подходящим заболеванием;

III фаза — исследователи предоставляют препарат или метод лечения значительным группам людей (1000—3000 человек), чтобы подтвердить его эффективность, сравнить с золотым стандартом (или плацебо) и собрать дополнительную информацию, которая позволит его безопасно использовать. Иногда на этом этапе выявляют другие, редко возникающие побочные эффекты. Здесь также участвуют люди с подходящим заболеванием. Если III фаза проходит успешно, препарат регистрируют в Минздраве и врачи получают возможность назначать его;

IV фаза — исследователи продолжают отслеживать информацию о безопасности, эффективности, побочных эффектах и оптимальном использовании препарата после того, как его зарегистрировали и он стал доступен всем пациентам.

Считается, что наиболее точные результаты дает метод исследования, когда ни врач, ни участник не знают, какой препарат — новый или существующий — принимает пациент. Такое исследование называют «двойным слепым». Так делают, чтобы врачи интуитивно не влияли на распределение пациентов. Если о препарате не знает только участник, исследование называется «простым слепым».

Чтобы провести клиническое исследование (особенно это касается «слепого» исследования), врачи могут использовать такой приём, как рандомизация — случайное распределение участников исследования по группам (новый препарат и существующий или плацебо). Такой метод необходим, что минимизировать субъективность при распределении пациентов. Поэтому обычно эту процедуру проводят с помощью специальной компьютерной программы.

  • бесплатный доступ к новым методам лечения прежде, чем они начнут широко применяться;
  • качественный уход, который, как правило, значительно превосходит тот, что доступен в рутинной практике;
  • участие в развитии медицины и поиске новых эффективных методов лечения, что может оказаться полезным не только для вас, но и для других пациентов, среди которых могут оказаться члены семьи;
  • иногда врачи продолжают наблюдать и оказывать помощь и после окончания исследования.
  • новый препарат или метод лечения не всегда лучше, чем уже существующий;
  • даже если новый препарат или метод лечения эффективен для других участников, он может не подойти лично вам;
  • новый препарат или метод лечения может иметь неожиданные побочные эффекты.

Главные отличия клинических исследований от некоторых других научных методов: добровольность и безопасность. Люди самостоятельно (в отличие от кроликов) решают вопрос об участии. Каждый потенциальный участник узнаёт о процессе клинического исследования во всех подробностях из информационного листка — документа, который описывает задачи, методологию, процедуры и другие детали исследования. Более того, в любой момент можно отказаться от участия в исследовании, вне зависимости от причин.

Обычно участники клинических исследований защищены лучше, чем обычные пациенты. Побочные эффекты могут проявиться и во время исследования, и во время стандартного лечения. Но в первом случае человек получает дополнительную страховку и, как правило, более качественные процедуры, чем в обычной практике.

Клинические исследования — это далеко не первые тестирования нового препарата или метода лечения. Перед ними идёт этап серьёзных доклинических, лабораторных испытаний. Средства, которые успешно его прошли, то есть показали высокую эффективность и безопасность, идут дальше — на проверку к людям. Но и это не всё.

Сначала компания должна пройти этическую экспертизу и получить разрешение Минздрава РФ на проведение клинических исследований. Комитет по этике — куда входят независимые эксперты — проверяет, соответствует ли протокол исследования этическим нормам, выясняет, достаточно ли защищены участники исследования, оценивает квалификацию врачей, которые будут его проводить. Во время самого исследования состояние здоровья пациентов тщательно контролируют врачи, и если оно ухудшится, человек прекратит своё участие, и ему окажут медицинскую помощь. Несмотря на важность исследований для развития медицины и поиска эффективных средств для лечения заболеваний, для врачей и организаторов состояние и безопасность пациентов — самое важное.

Потому что проверить его эффективность и безопасность по-другому, увы, нельзя. Моделирование и исследования на животных не дают полную информацию: например, препарат может влиять на животное и человека по-разному. Все использующиеся научные методы, доклинические испытания и клинические исследования направлены на то, чтобы выявить самый эффективный и самый безопасный препарат или метод. И почти все лекарства, которыми люди пользуются, особенно в течение последних 20 лет, прошли точно такие же клинические исследования.

Если человек страдает серьёзным, например, онкологическим, заболеванием, он может попасть в группу плацебо только если на момент исследования нет других, уже доказавших свою эффективность препаратов или методов лечения. При этом нет уверенности в том, что новый препарат окажется лучше и безопаснее плацебо.

Согласно Хельсинской декларации, организаторы исследований должны предпринять максимум усилий, чтобы избежать использования плацебо. Несмотря на то что сравнение нового препарата с плацебо считается одним из самых действенных и самых быстрых способов доказать эффективность первого, учёные прибегают к плацебо только в двух случаях, когда: нет другого стандартного препарата или метода лечения с уже доказанной эффективностью; есть научно обоснованные причины применения плацебо. При этом здоровье человека в обеих ситуациях не должно подвергаться риску. И перед стартом клинического исследования каждого участника проинформируют об использовании плацебо.

Обычно оплачивают участие в I фазе исследований — и только здоровым людям. Очевидно, что они не заинтересованы в новом препарате с точки зрения улучшения своего здоровья, поэтому деньги становятся для них неплохой мотивацией. Участие во II и III фазах клинического исследования не оплачивают — так делают, чтобы в этом случае деньги как раз не были мотивацией, чтобы человек смог трезво оценить всю возможную пользу и риски, связанные с участием в клиническом исследовании. Но иногда организаторы клинических исследований покрывают расходы на дорогу.

Если вы решили принять участие в исследовании, обсудите это со своим лечащим врачом. Он может рассказать, как правильно выбрать исследование и на что обратить внимание, или даже подскажет конкретное исследование.

Клинические исследования, одобренные на проведение, можно найти в реестре Минздрава РФ и на международном информационном ресурсе www.clinicaltrials.gov.

Обращайте внимание на международные многоцентровые исследования — это исследования, в ходе которых препарат тестируют не только в России, но и в других странах. Они проводятся в соответствии с международными стандартами и единым для всех протоколом.

После того как вы нашли подходящее клиническое исследование и связались с его организатором, прочитайте информационный листок и не стесняйтесь задавать вопросы. Например, вы можете спросить, какая цель у исследования, кто является спонсором исследования, какие лекарства или приборы будут задействованы, являются ли какие-либо процедуры болезненными, какие есть возможные риски и побочные эффекты, как это испытание повлияет на вашу повседневную жизнь, как долго будет длиться исследование, кто будет следить за вашим состоянием. По ходу общения вы поймёте, сможете ли довериться этим людям.

Если остались вопросы — спрашивайте в комментариях.

источник

Волнующая новость для поклонников ультразвукового комбайна La Mente Aurora Ceutical — в декабре выходит версия с частотой уже не 7, а 7,5 MHz. Начинали они вообще с необъявляемой частоты, затем было 5, и это был прорыв, потом 7, и вот 7,5. скоро в космос полетят наверное 🙂 Новый агрегат, в отличие от предшественников, будет оснащен проводом — либо таким образом исправили слабое место-батарею, либо только так можно поддерживать нужный уровень мощности. Прибор не подорожает, в Японии он по-прежнему стоит 500 долларов.

Я уже писала о том, что никак не могу найти внятную инфу о том, какая же частота на самом деле эффективна для процедур на лице. Свою частоту La Mente несет как флаг победителя, но на самом деле нужна ли она, такая? Эффективность Авроры сомнений не вызывает, я регулярно допрашиваю свою свекровь, и она говорит, что косметолог смотрит на нее волком, а с регулярными домашними процедурами кожа выглядит более наполненной, упругой и гладкой (ультразвук стимулирует собственную выработку коллагена кожей). Но может быть дело в общем принципе ухода, а не в цифрах 7,5, 7 или 5. По-прежнему я не прояснила для себя этот вопрос. Но недавно мне написала одна из клиенток, Галина, которая является массажистом и по совместительству владельцем похожего аппарата (Жезатон). Она поделилась очень полезной информацией из справочника по врачебной косметике 20-летней давности, которая многое проясняет. Надеюсь, кому-нибудь она пригодится. Я для себя сделала открытие, что, оказывается, проводящий гель для ультразвука вовсе не необходимость. Кроме того, поняла, что ионофорезным Каррионом надо пользоваться более системно и не бояться лить на него разные витамины и экстракты, чтобы воспользоваться «коридором», который микротоки открывают в коже.
В общем, по порядку! Кому надо — конспектируйте 🙂

Ультразвуковые волны — это механические колебания среды с частотой свыше 20 000 Гц. Ультразвуковые волны — это чередующиеся области сжатия и разрежения среды. Чем более упругие связи в среде, тем быстрее распространяются колебания. Расстояние между соседними областями сжатия или разрежения называется длиной звуковой волны. Чем выше частота колебаний, тем короче длина волны.

Зависимость глубины проникновения ультразвука от частоты

Ультразвук представляет собой высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний 20 000 в секунду не воспринимается человеческим ухом, то есть выше порога слышимости. 20 000 колебаний в секунду называется 20 кГц. Для лечебных целей применяется ультразвук с частотой от 800 000 (800 кГц) до 3 000 000 (3 000 кГц = 3 МГц) колебаний в секунду.

Читайте также:  Аппарат для физиотерапии при лор заболеваниях

Глубина проникновения ультразвука зависит от его частоты и от особенностей (акустической плотности) самих тканей. В организме ультразвук частотой 800 — 1000 кГц распространяется на глубину 8-10 см, а при частоте 2500-3000 кГц — на 1,0-3,0 см.

Ультразвук поглощается тканями не равномерно: чем выше акустическая плотность, тем меньше поглощение (кожей будет поглощаться больше, чем костной тканью). При патологических процессах поглощение ультразвука изменяется. В случае отека ткани коэффициент поглощения уменьшается, а при инфильтрации клеточными элементами — увеличивается. По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Общепринятая терапевтическая ультразвуковая частота 1 МГц в физиотерапии используется для воздействия на более глубоко расположенные структуры: суставы, сухожилия. Ультразвук оказывает выраженное влияние на систему соединительной ткани, в результате чего при хронических воспалительных процессах предотвращается образование спаек и рубцов, размягчается грубоволокнистая ткань, повышается ее эластичность. Эти качества лежат в основе лечебного применения его при спаечных и рубцовых процессах, контрактурах, анкилозах. Ультразвук стимулирует регенерацию тканей, улучшает их кровоснабжение, ускоряет заживление ран, обеспечивает обезболивающий эффект, «размягчение спаек», и повышает гормональную активность яичников.

Показания к проведению ультразвуковой терапии:

— неврологические проявления остеохондроза позвоночника (корешковые и рефлекторно-тонические синдромы, миелопатия и др.), последствия заболеваний и травм периферической нервной системы, нейропатии, невралгии, ганглиониты,травмы позвоночника и спинного мозга, рассеянный склероз;
— заболевания и последствия травм суставов, мышц, сухожилий, сумочно-связочного аппарата;
— хронические неспецифические воспалительные заболевания бронхов и легких (хронический бронхит, хроническая пневмония, бронхиальная астма);
— профессиональные заболевания легких, туберкулез легких и внелегочных локализаций (за исключением активного прогрессирующего туберкулезного процесса);
— заболевания органов пищеварения (хронический гастрит, язвенная болезнь желудка и двенадцатиперстной кишки, хронический холецистит, дискинезия кишечника, хронический гепатит);
— заболевания кожи, ЛОР-органов;
— заболевания и последствия операций и травм глаза;
— хронические воспалительные заболевания женских и мужских половых органов;
— стоматологические заболевания;
— послеоперационные и постинъекционные инфильтраты, мастит, гидроаденит, келоидные рубцы, начальные стадии облитерирующих заболеваний сосудов конечностей, синдром Рейно и др.

Ультразвуковая частоты 3 МГц более эффективна при терапии поверхностных слоев биологических тканей. Данная возможность очень важна для занимающихся патологией кожи и подкожных слоев (дерматологов, косметологов) — а в особенности для терапии прогрессирующей степени целюлита. Ультразвуковые волны терапевтических частот (800-3000 кГц) осуществляют микромассаж тканей, воздействуя особенно на плотную рубцово-волокнистую ткань, которая всегда выражена в III — IV стадиях целлюлита. При воздействии ультразвуком повышение температуры в мышцах незначительное, а в подкожно-жировой клетчатке еще меньше, однако поглощение его на границе сред: мышца — подкожно-жировая клетчатка, подкожно-жировая клетчатка — дерма, эпидермис — дерма усиливает интенсивность обменных процессов.

Для лечения кожных болезней используют частоту 2640 кГц. Использование ультразвуковых колебаний с частотой 3 МГц – методика, дающая возможность сконцентрировать воздействие только в пределах кожи (глубина воздействия не более 1 см), что вызывает наиболее сильный лифтинговый эффект.

Мощность ультразвуковой энергии

Мощность — общая энергия со всей поверхности излучателя в одну секунду. Мощность акустического излучения (вт) определяется интенсивностью ультразвука (вт/см), умноженной на площадь вибратора (см2).

Биологическое действие ультразвука зависит от его дозы, которая может быть для тканей стимулирующей, угнетающей или даже разрушающей. Существуют различные диапазоны интенсивности лечебного действия ультразвука. При воздействии ультразвуковых колебаний частотой 880 кГц интенсивностью 0,2 Вт*см(-2) происходит генерация возбуждения электронных орбиталей молекул воды; 0,1-0,5 Вт*см(-2) — изменение поверхностных свойств клеточных мембран; 0,2-0,5 Вт*см(-2) — деполяризация клеточных мембран, изменение мембранного потенциала, активация ионных каналов; 0,2-0,6 Вт*см(-2) — повышение проницаемости мембран и гистогематических барьеров, активация микроциркуляции; 0,4-0,6 Вт*см(-2) — усиление перекисного окисления липидов; 0,3-0,8 Вт*см(-2) — разобщение клеточного дыхания и окислительного фосфорилирования; 0,8-1,2 Вт*см(-2) — микродеформация клеточных органелл; 1,0-2,0 Вт*см(-2) — хромосомные аббреации; 1,5-3,0 Вт*см(-2) — некроз /Уланщик В.С., Чиркин А.А., 1983/.

Наиболее адекватными для лечебно-профилактических воздействий являются небольшие дозировки ультразвука (от 0,2 до 1,2 Вт/см2), особенно в импульсном режиме. Они способны вызывать болеутоляющее, антиспастическое, сосудорасширяющее, рассасывающее, противовоспалительное, десенсибилизирующее действие.

Формы ультразвукового излучения

Виды излучения: непрерывное (постоянное) и импульсное. При непрерывной форме излучения более выражен тепловой эффект, который желателен при лечении хронических патологий. Для импульсной формы излучения более характерен массажный эффект, поэтому ее используют при терапии острых патологий.

Непрерывный ультразвук или прямое локальное озвучивание осуществляется путем непосредственного воздействия ультразвука на органы и ткани, подлежащие лечению (кожа, мышцы, суставы и др.), либо на накожную проекцию органа. Площадь воздействия не должна превышать 25 см2 у взрослых и 10-15 см2 у детей. При сравнительно большой зоне воздействия ее делят на отдельные поля и при первых процедурах озвучивают 1-2 поля. Затем, при хорошей переносимости процедур, можно увеличить объем озвуивания до 3-4 полей.

Импульсный ультразвук представляет собой прерывистое излучение, то есть ультразвук посылается отдельными импульсами через определенные промежутки времени — паузы (длительность импульсов 10, 4 и 2 мс). Импульсный режим, как более щадящий, используется для воздействия на сегментарные зоны, в педиатрической и гериатрической практике, при сильных болях, в острый период заболевания.

Пpи paбoтe aппapaтa в peжимe пocтoяннoй гeнepaции ультpaзвукoвыx импульcoв ocущecтвляeтcя глубoкoe ввeдeниe кocмeтичecкиx и лeчeбныx пpeпapaтoв внутpь кoжи — ультpaфoнoфopeз.

Пpи paбoтe aппapaтa в peжимe импульcнoй гeнepaции ультpaзвукa aктивизиpуeтcя лимфoдpeнaж, удaляютcя oтeки и вывoдятcя тoкcины, a тaкжe cтимулиpуютcя дpяблыe мышцы, пoвышaютcя элacтичecкиe cвoйcтвa кoжи.

Ультразвук оказывает механическое действие на грубоволокнистую соединительную ткань, что может широко применяться во II-III стадиях целлюлита. Целесообразно применятьпульсовую подачу ультразвука, интенсивность ультразвуковой волны повышается, а тепловой эффект будет незначительным и будет отводиться циркулирующей кровью.

ФОНОФОРЕЗ (ИОНОФОРЕЗ, ИОННАЯ ТЕРАПИЯ)

Ультрафонофорез (фонофорез) представляет собой сочетанный метод лечебного применения ультразвука и лекарственного вещества, нанесенного на кожу. Лекарственное вещество при ультрафонофорезе, как и при электрофорезе, проникает в организм через выводные протоки потовых и сальных желез Для фонофореза можно использовать относительно небольшой перечень лекарственных веществ. Непригодность для этого ряда медикаментов связана со значительным изменением их свойств при озвучивании. Ультразвуковое воздействие является потоком сильных механических колебаний малой амплитуды. И далеко не все препараты «выдерживают» такую встряску.
Ультразвук разрушает, инактивирует или изменяет свойства таких лекарственных веществ как аскорбиновая кислота, витамины группы В, кофеин, новокаин. Известно, что ультразвук быстрее разрушает лекарственные вещества с большой молекулярной массой и обладающие высокой биологической активностью. К высокомолекулярным соединениям относят многие белковые препараты, поэтому возможность их использования для фонофореза должна быть особенно тщательно исследована.
Выбирая средства для фонофореза также полезно свериться со справочником по физиотерапии или запросить протоколы испытаний вещества на форетичность.
Лекарственные растворы для фонофореза готовят на воде, этиловом спирте, маслах. Удобнее использовать гели для ультразвуковой терапии, так как гель не растекается по коже во время процедуры.
Средства для ультразвуковой терапии: гели, масла
Ультразвук — это высокочастотные механические колебания частиц среды, которые распространяются в ней в виде попеременных сжатий и разрежений вещества. Выраженное лечебное действие этого фактора разнообразно используется в косметологии. Обычно применяют контактную методику воздействия, когда излучатель, помещённый на определённый участок кожи или слизистойоболочки, плотно прилегает к ним. Контактной средой служат гель, мазь, эмульсия, водный или масляный раствор.
Косметика для ионофореза: гели, средства и препараты
Для ионофореза и гальванизации используют постоянный гальванический ток. Такой ток вызывает направленное движение ионов.
При помощи постоянного тока можно вводить через кожу и слизистые частицы лекарственных веществ, несущие электрический заряд. Вводимые лекарственные ионы проникают в эпидермис и накапливаются в верхних слоях дермы.
Таким образом, средства для ионофореза обязательно должны содержать вещества, способные распадаться на ионы (диссоциировать) в электрическом поле. Для ионофореза используются вещества, форетичность которых доказана экспериментально. Список этих веществ невелик, и будет полезно при покупке препарата сверится со справочником по физиотерапии.
Препараты для ионофореза имеют маркировку (+) или (-) на упаковке. Это значит, что вводить их следует с соответствующего электрода.
С отрицательного электрода вводятся отрицательно заряженные ионы, а с положительного электрода — положительно заряженные.

Наибольшая подвижность у лекарственных веществ, растворённых в воде. При плохой растворимости лекарства в воде в качестве растворителя применяют димексид или этиловый спирт. Для фореза сложных органических соединений (лидаза, ронидаза) используют специальные буферные растворы.

Гальванизация: средства

В процедуре гальванизации используют лечебное действие гальванического тока и раствор или гель в качестве проводящей среды.
В косметологии активно используют растворы коллагена, эластина, травяные сборы. Эти вещества не обладают подвижностью в электрическом поле. Ионофореза, например, коллагена, не происходит. Крупные белковые молекулы заряда не имеют и в кожу проникнуть не способны. Но раствор коллагена хорошо проводит ток. Мы используем раствор коллагена в качестве токопроводящего вещества для проведении гальванизации.
Вещества, не обладающие форетичностью, с успехом используются в процедурах гальванизации. Косметический эффект таких процедур значительно выше эффекта простого нанесения вещества на кожу за счёт активизации сосудов и увеличения проницаемости клеточных мембран.

Косметика для микротоковой терапии: гели, лосьоны, препараты

Микротоковая терапия — лечебное действие импульсного тока сверхмалой силы. В некоторых случаях микротоки способны продвигать заряженные частицы лекарственных веществ в кожу (при монополярной форме импульсов). Происходит ионофорез, правда, гораздо менее выраженный, чем при использовании гальванического тока.
Косметические средства для микротоковой терапии должны отвечать точно тем же требованиям, что и средства для ионофореза.

Общие правила при выборе косметики для ионофореза.

Чем «проще» препарат, тем он эффективнее, а результат более предсказуем. По возможности, лучше не делать «коктейли», а использовать препараты в чистом виде. В результате проведения ионофореза отсутствуют побочные эффекты, т.к лекарственные вещества, которые вводятся в ионном виде, не содержат примесей.
При ионофорезе в ткани проникает 5-10% вещества, использованного в процедуре.

С какого полюса вводить: Все металлоиды, кислоты вводятся с отрицательного полюса (-), а все металлы и алкалоиды вводятся с положительного полюса (+).
Проводить курсы лучше отдельно (например, 10 процедур аскорбинки и 10 процедур с гаиалуронкой), не чередуя их в курсе. Т.о., от процедуры к процедуры вы создаете эффект накопления вещества в коже.
Список косметики для ионофореза невелик. Специальная косметика для ионофореза имеют маркировку (+) или (-) на упаковке.

Также для ионофореза можно использовать лекарственные препараты, купленные в аптеке.
Аскорбиновая кислота (витамин С). Решает проблемы фотостарения и гиперпигментации. Дает осветляющий эффект и оказывает омолаживающее действие, стимулирует образование коллагена. Процедуру ионофореза с витамином С можно выполнять в любое время года.
После процедуры нужно обязательно поменять полярность активного электрода на плюс и проработать кожу 1 мин, чтобы закрыть поры.

Никотиновая кислота (ниацин, витамин B3, витамин PP).
Витамин, участвующий в окислительных реакциях клеток. Никотиновая кислота обладает сосудорасширяющим воздействием, улучшает кровообращение.
Вводится с отрицательного полюса.
Для ионофореза нужно приготовить 0,5% водный раствор. Т.е., если у Вас 1% никотиновая кислота в ампулах, нужно развести водой 1:1.

Гиалуроновая кислота.
Связывает и удерживает воду, активирует защитные свойства кожи, стимулирует заживление ран практически без образования шрамов, уменьшает риск появления келоидных рубцов.
Уже после первой процедуры ионофореза с гиалуроновой кислотой заметен эффект разглаживания морщин. И какое-то время после процедуры кожа выглядит более свежей и гладкой.

Кроме того, можно использовать для ионофореза следующие лекарственные препараты и витамины (продаются в аптеке):
Экстракт алоэ или жидкий сок алоэ, разводится 1:3. Полярность +/-
Витамин В1 (тиамина бромид, 2%), «+»
Витамин В12 (цианкобаламин, 100-200мкг), «+» подходит для возрастной кожи
Витамин Е Токоферола ацетат 2% на ДМСО (0,5 мл на процедуру) «+»
Витамин В2 (рибофлавин-мононуклеотид в ампулах)
Витамин Д (аквадетрим)
Медь (меди сульфат 0,2-5%) «+»
Натрий (натрия хлорид, 2-5%) «+»
Салициловой кислоты радикал (натрия солицилат, 1-5%) «-»
Цинк (цинка сульфат 0,5-1%) «+»
Ионы цинка часто используются при угревой сыпи, жирной пористой коже.
Лидаза. Работаем на «+» чтобы избавиться от растяжек.
Кофеин (бензоат натрия). Используют для похудения.

источник