Меню Рубрики

Электрофорез на полосках ацетата целлюлозы

ОФС.1.8.2.0009.15 Определение однородности лекарственных препаратов из сыворотки крови человека и животных методом электрофореза на плёнках из ацетата целлюлозы

Содержимое (Table of Contents)

ОФС.1.8.2.0009.15 Определение однородности лекарственных препаратов из сыворотки крови человека и животных методом электрофореза на плёнках из ацетата целлюлозы

Настоящая общая фармакопейная статья распространяется на метод электрофореза на пленках из ацетата целлюлозы, который предназначен для определения однородности (идентичности) иммунобиологических лекарственных препаратов (иммуноглобулинов). Метод основан на различной скорости перемещения белков в электрическом поле в зависимости от соотношения основных и кислотных групп белка, рН, ионной силы буферного раствора, величины заряда и молекулярной массы частиц.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Определение однородности ОФС.1.8.2.0009.15

лекарственных препаратов

из сыворотки крови человека

и животных методом

электрофореза на плёнках

из ацетата целлюлозы Вводится впервые

Настоящая общая фармакопейная статья распространяется на метод электрофореза на пленках из ацетата целлюлозы, который предназначен для определения однородности (идентичности) иммунобиологических лекарственных препаратов (иммуноглобулинов). Метод основан на различной скорости перемещения белков в электрическом поле в зависимости от соотношения основных и кислотных групп белка, рН, ионной силы буферного раствора, величины заряда и молекулярной массы частиц.

Белки движутся в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, движутся к аноду (+), а положительно заряженные – к катоду (–). По скорости движения в электрическом поле белки делятся на 5 основных фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины. Наименьшей скоростью продвижения обладают γ – глобулины (молекулярная масса 150-160 тыс. кДа); они практически остаются на линии старта, т.к. их заряд близок к нейтральному. Альбумины обладают выраженным отрицательным зарядом и меньшей молекулярной массой (67-70 тыс. кДа), поэтому в электрическом поле они движутся с наибольшей скоростью и в результате обнаруживаются дальше других белковых фракций от линии старта. С меньшей скоростью, чем альбумины, в электрическом поле перемещаются α1-, α2- и β-глобулины.

На увлажнённую плёнку из ацетата целлюлозы размером 90х90 мм, заправленную в специальную рамку, наносят 2-4 мкл исследуемых образцов (5 образцов в 2-х параллельных определениях) и для идентификации контрольный образец – сыворотка для контроля качества электрофоретического разделения белковых фракций. Определение проводят в 2-х параллельных определениях. Предварительно в электродные секции камеры (аппарат для электрофореза на плёнках из ацетата целлюлозы) наливают барбиталовый буферный раствор (рН 8,4). Вместо барбиталового буферного раствора можно использовать любой подходящий коммерческий буферный раствор с указанным значением рН.

Рамку с пленкой из ацетата целлюлозы помещают в разделительную камеру, закрывают крышкой, включают источник питания (сила тока 8-10 мА, напряжение 100-129 В). Разделение проводят в течение 30-40 мин. После проведения электрофореза снимают крышку разделительной камеры, не допуская попадания конденсационной воды на пленку. Рамку с плёнкой извлекают из камеры, избегая контакта с участками, где происходил электрофорез испытуемых образцов. Пленку достают из рамки пинцетом и дают подсохнуть на воздухе. Затем плёнку обрезают с обоих концов (около 2,5 мм), помещают в кювету с 50 мл раствора красителя и выдерживают в течение не более 5 мин (контакт с красителем в течение более длительного времени может деформировать плёнку). Плёнку вынимают из кюветы и после стекания избыточной жидкости помещают на 5 мин поочерёдно в 3 кюветы, со 100 мл отмывочной жидкости (для ускорения процесса отмывки кювету покачивают). После отмывки фон плёнки должен приобрести бледно-голубое окрашивание или стать почти прозрачным. Далее плёнку тщательно промывают водой, помещают между листами фильтровальной бумаги и слегка промокают.

Идентификацию белковых фракций проводят путём сравнения электрофореграммы испытуемых образцов с электрофореграммой контрольной сыворотки для контроля качества электрофоретического разделения белковых фракций. Сыворотка должна разделиться не менее, чем на 5 фракций: альбумин, α1- и α2-глобулины, β-глобулин и γ-глобулин. После проведения электрофореза проводят количественное определение фракций иммуноглобулина путём извлечения краски из плёнки элюирующим раствором с последующим колориметрированием или путём денситометрии электрофореграмм.

Колориметрическое определение. Извлечение краски каждой фракции проводят в 3 мл элюирующего раствора с 2-х параллельных электрофореграмм. Элюцию проводят в течение 40 мин при многократном встряхивании. Оптическую плотность полученного элюата измеряют на спектрофотометре при длине волны 620 нм в кюветах с толщиной слоя 10 мм по отношению к элюату неокрашенного участка электрофореграммы. Сумму оптических плотностей всех белковых фракций принимают за 100 % и рассчитывают процентное содержание каждой фракции препарата иммуноглобулина.

Денситометрическое определение. Электрофореграммы исследуемых образцов высушивают между листами фильтровальной бумаги в полиэтиленовом пакете (такие условия высушивания исключают деформацию плёнки). Высушенные плёнки просветляют вазелиновым маслом, пропитывая их таким образом, чтобы в плёнке не остались пузырьки воздуха. Для этого плёнку следует держать горизонтально и нижней поверхностью осторожно касаться масла. Избыток вазелинового масла удаляют, промокая плёнку между листами фильтровальной бумаги.

Фракции иммуноглобулина записываются денситометром в виде пиков. Величина площади каждого пика пропорциональна количеству краски, соединившейся с белком. С помощью автоматического интегратора площадь каждого пика вычисляют по формуле площади прямоугольника

(h ∙ d, где h – максимальная высота пика, d – ширина пика). Сумма площадей всех пиков фракций иммуноглобулина принимается за 100 % и вычисляется процентное содержание каждой фракции в испытуемом препарате иммуноглобулина.

  1. Подготовка плёнки из ацетата целлюлозы. Плёнку смачивают в барбиталовом буферном растворе и гладкой стороной помещают в кювету на поверхность буферного раствора на 2 мин, а затем пинцетом погружают на дно кюветы и выдерживают 5 мин. После этого плёнку вынимают пинцетом, избыток влаги удаляют между листами фильтровальной бумаги и заправляют в рамку, избегая неравномерного натяжения и провисания.
  2. Подготовка испытуемых образцов. Испытуемые образцы предварительно обрабатывают 0,05% раствором красителя – бромфенолового синего, используемого для отслеживания продвижения и распределения белковых фракций препарата иммуноглобулина в процессе электрофореза. В пробирку типа Эппендорф помещают 100 мкл испытуемого образца и 10 мкл 0,05% раствора бромфенолового синего и перемешивают. Окрашенные испытуемые образцы в объеме 2-4 мкл помещают в каждую лунку лотка.
  3. Приготовление барбиталового буферного раствора (рН 8,4)*. В мерную колбу вместимостью 1000 мл помещают 8,5 г натрия барбитала, растворяют в 600-700 мл воды очищенной, прибавляют 11 мл 1М раствора хлористоводородной кислоты, доводят объём раствора водой до метки и перемешивают.

*Вместо барбиталового буферного раствора можно использовать любой другой коммерческий буферный раствор с известным значением рН.

4.Приготовление 1 М раствора хлористоводородной кислоты. В мерную колбу вместимостью 1000 мл помещают 85 мл хлористоводородной кислоты концентрированной, доводят объём раствора до метки и перемешивают.

  1. Приготовление красителя. К 0,5 г амидочёрного 10 Б прибавляют 10 мл уксусной кислоты ледяной, 3 г трихлоруксусной кислоты и 90 мл этилового спирта и перемешивают. Для полного растворения краситель оставляют на 24 ч. Перед использованием раствор красителя перемешивают и фильтруют через бумажный фильтр.
  2. Приготовление раствора для отмывки электрофореграмм. В мерный цилиндр вместимостью 1000 мл помещают 40 мл уксусной кислоты ледяной, прибавляют 700 мл воды очищенной и перемешивают. Затем объём раствора доводят водой очищенной до метки и вновь перемешивают.
  3. Приготовление элюирующего раствора. Смешивают 10 мл 1 М раствора натрия гидроксида с 1 мл 1 М раствора натрия эдетата (трилон Б).

Если условия проведения анализа и реагенты отличаются от приведенных в данной статье, они должны быть указаны в соответствующей фармакопейной статье или нормативной документации с изложением иной валидированной методики анализа.

источник

Используя ацетат целлюлозу, можно разделить сывороточные белки на 5 фракций: альбумин и 4 глобулиновых группы

— альфа 1, альфа 2, бета (часто подразделяются на 2 различные группы

Рис.1 Нормальная электрофореграмма сывороточных протеинов

Электрофорез с иммунофиксацией — один из современнейших методов в кинической лаборатории для получения характеристик моноклональных иммуноглобулинов. Моноклональная гаммопатия характеризуется неконтролируемой пролифирацией одного клона плазменных клеток за счет других клеток. Эта дисфункция часто приводит к синтезу большого количества одного иммуноглобулина или его субъединицы со снижением нормальных уровней иммуноглобулинов. При этом на электрофореграмме выявляется один резко увеличенный пик в бета-гамма-области

Большинство моноклональных гаммопатий являюттся доброкачественными и не проявляют себя клинически. Однако, высокие уровни моноклонального протеина на фоне сниженных уровней других иммуноглобулинов могут быть ассоциированы с малигнизацией.

В последние годы участились парапротеинемические гемобластозы (миеломная болезнь, лимфоцитомия, лейкозы), когда на электрофореграмме может наблюдаться присутствие двух (и очень редко трех) моноклональных протеинов. Анализ протеинов абсолютно необходим в диагностике и мониторинге лимфопролиферативных заболеваний. При этом если иммуннохимический метод может выявить количественные отклонения протеиновой продукции, отмечая наличие расстройства в этой среде, то электрофорез в состоянии продемонстрировать моноклональную сущность этих нарушений. Однако, выявление того или иного варианта парапротеинемии на электрофоретической картине недостаточно для полной идентификации патологического процесса. В таких случаях необходимо использовать иммуноэлектрофорез .

Поликлональные гаммопатий в общих чертах характеризуются диффузным увеличением уровня протеина в гамма-регионе на электрофоретической пластине. Обычно концентрации трех главных иммуноглобулинов (IgG, IgA, IgM) соответственно увеличены

Обычно поликлональная гаммопатия наиболее часто встречаемое в клинике отклонение после гипоальбуминемии.

Сохраняющаяся поликлональная гаммопатия имеет определенную прогностическую значимость при ряде заболеваний: хроническая патология печени, коллагенозы, хронические инфекции, метастатистическая карцинома, ожоговая болезнь.

Снижением большинства или даже всех иммуноглобулинов характеризуется гипогаммоглобулинемия и агаммоглобулинемия

Рис.4 Гипогаммаглобулинемия и агаммаглобулинемия

Чаще всего это связано с наследственной патологией и проявляется уже в раннем детстве (синдром Вискотт-Алдриха, болезнь Брутона, атаксия).

Приобретенная недостаточность иммуноглобулинов во взрослом возрасте может быть вторичной, в виде моноклональной гаммопатии или быть индуцированной иммуносупрессивной терапией. Остановимся на электрофоретических характеристиках сывороточных протеинов при некоторых клинических проявлениях.

Острое воспаление. характеризующееся локализованным биохимическим ответом (активация комплемента) и реакцией на клеточном уровне (мобилизация фагоцитов, увеличение синтеза протеинов), дает при электрофорезе белков сыворотки увеличение уровней альфа 1-й альфа 2-глобулинов, фибриногена (рис.5).

Хроническое воспаление ассоциируется с увеличением фракций белков, рассматриваемых как «белки хронической фазы». Электрофоретически это будет проявляться умеренным увеличением альфа 2-глобулинов и легким увеличением бета-глобулинов. Альбумин может быть слегка подавлен на фоне поликлонального увеличения гамма глобулинов (рис.6).

Рис.6 Хроническое воспаление

Такие отклонения, характеризующие хроническое воспаление, могут проявляться при хронических инфекциях (бруцеллез, туберкулез и др.), коллагенозах, аллергиях, аутоиммунных процессах, а также при малигнизации.

Заболевание печени. В связи с тем, что в печени синтезируются альбумин и альфа-глобулин, заболевания этого органа, затрагивающие белковосинтезирующую функцию могут сопровождаться снижением их уровней в крови, что соответственно отразится на электрофореграммах (рис.7).

Следует однако помнить, что печень обладает значительными резервами синтезирующей способности, поэтому выявление данных нарушений будет свидетельствовать о глубоких гепатоцеллюлярных нарушениях

Дата добавления: 2014-01-05 ; Просмотров: 579 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Принцип метода: Белки являются амфотерными электролитами. Направление движения белков в электрическом поле зависит от рН среды. Коллоидные частицы белка перемещаются в электрическом поле постоянного тока к аноду – в щелочной среде, к катоду – в кислой среде.Разделение белков сыворотки обычно проводят в буферном растворе при рН 8,6 – 8,9. В качестве носителя используют пленки из ацетата целлюлозы. В этих условиях заряженные белки сыворотки крови перемещаются по смоченным пленкам из ацетата целлюлозы в направлении анода со скоростью, зависящей от величины заряда и относительной молекулярной массы белка. Этот след представляет собой дорожку, на которой после окрашивания ясно видны места концентрации белков различных фракций. Наиболее быстро движутся альбумины, затем a1-, a2-, b-глобулины, и, наконец, g-глобулины. По этим следам (дорожкам) можно определить содержание белка в различных белковых фракциях пробы. Методом электрофореза на пленках из ацетата целлюлозы можно получить 5 и более белковых фракций.

Нормальные величины белковых фракций зависят от вида применяемого красителя:

Белковые фракции Окраска электрофореграммы
Пунцовый С Амидо черный
1. Альбумины 52% (46,9-61,4) 60,2% (50,3-70,1)
2. a1-Глобулины 3,3% (2,2-4,2) 4,4% (2,7-6,1)
3. a2-Глобулины 9,4% (7,9-10,9) 12,3% (9,4-15,2)
4. b-глобулины 14,3% (10,2-18,3) 13,0% (7,7-18,0)
5. g-Глобулины 21,4% (17,6-25,4) 20,1% (15,2-25,0)

Оборудование и реагенты:

1) Аппарат для электрофореза;

2) Источник постоянного тока;

4) Веронал-мединаловый буфер, рН 8,6;

5) Раствор амидо черного для окрашивания электрофореграммы (амидо черный 250 мг в 100 мл 7% уксусной кислоты);

6) Раствор для отмывания (5-7% уксусная кислота)

7) Раствор для просветления пластинок из ацетата целлюлозы (смесь этанола, уксусной кислоты и глицерина);

Просветления пластинок из ацетата целлюлозы можно достигнуть также, погрузив пластинки на 2-3 минуты в глицерин или вазелиновое масло.

Проведение анализа

1. Сухие пластинки из ацетата целлюлозы помечают карандашом, а затем осторожно кладут на поверхность буфера для электрофореза так, чтобы они поглощали жидкость только снизу с помощью капиллярных сил. При быстром погружении пластинки в буфер в порах ацетата целлюлозы может остаться воздух.

2. Извлекают пластинки из буферного раствора и аккуратно зажимают их между листами плотной фильтровальной бумаги, не допуская высыхания пластинок. О высыхании свидетельствует появление белых пятен на поверхности пластинки. В этом случае пропитывание буфером следует повторить (см. пункт 1).

3. Влажную пластинку закладывают в рамку и помещают в электрофоретическую камеру.

4. С помощью апликатора на поверхность пластинки с катодного краю наносят образец – 0,2-0,4 мл сыворотки крови.

5. Сразу после нанесения образцов включают электрический ток.

Для кратковременного электрофореза на пленках из ацетата целлюлозы лучшие результаты получаются при стабильном напряжении. Как правило, для пластинок толщиной около 120 мкм сила тока не должна превышать 0,5 мА на 1 см ширины пластинки. Для более толстых пластинок (250-300 мкм) сила тока может достигать 1мА на 1 см ширины пластинки. Применив высокий градиент напряжения (30-40 В на 1 см) можно получить четкое разделение фракций белка за короткий промежуток времени (20-30 минут).

6. После отключения тока пластинки осторожно переносят в красящий раствор на 5 минут.

7. Затем пластинки отмывают до отбеливания фона в 5-7% растворе уксусной кислоты дважды по 3 минуты. Промывают 3 раза дистиллированной водой. Просушивают между листами фильтровальной бумаги.

8. Проводят просветление пластинок. Для этого помещают пластинки на 30 секунд в 90° этиловый спирт. Затем помещают их в осветляющий раствор на 30 секунд. Наклеивают на стекло и помещают в сухожаровой шкаф на 5 минут при температуре 100°С.

Читайте также:  Портативные аппараты для электрофореза

9. Высушенную пластинку сканируют на денситометре придлине волны 600 нм, характерной для красителя амидо черного.

Данные о содержании белка в белковых фракциях сыворотки крови могут быть представлены как в форме процентного распределения белка по фракциям, так и в форме содержания белка в отдельных фракциях в г/л (для этого предварительно в крови определяют содержание общего белка биуретовым методом).Результаты измерения заносят в таблицу:

Белковые фракции Нормальные величины, % Полученные величины, % Полученные величины, г/л
1. Альбумины 60,2% (50,3-70,1)
2. a1-Глобулины 4,4% (2,7-6,1)
3. a2-Глобулины 12,3% (9,4-15,2)
4. b-глобулины 13,0% (7,7-18,0)
5. g-Глобулины 20,1% (15,2-25,0)
Концентрация общего белка в сыворотке крови – ______ г/л

Клинико-диагностическое значение: Электрофорез белков сыворотки крови имеет диагностическое значение в наблюдении за динамикой патологического процесса и оценке эффективности медикаментозного лечения.

Увеличение содержания a-глобулинов в сыворотке характерно для острых воспалительных заболеваний, так ка в данную фракцию входят белки острой фазы.

Во фракцию a-глобулинов входит также и большинство гликопротеинов крови. Поэтому ее содержание увеличивается при различных хронических заболеваниях, раке, травмах, ревматизме и инфаркте миокарда.

Повышение b-глобулинов в сыворотке чаще наблюдается при гиперлипопротеинемиях различного происхождения, так как в эту фракцию входят липопротеины.

Фракция g-Глобулинов состоит из иммуноглобулинов и увеличивается при заболеваниях, связанных с интенсивными иммунными процессами, а также при миеломных болезнях.

Гипогаммаглобулинемия может носить врожденный характер или быть обусловленной истощением иммунной системы (рак, хронические воспалительные процессы, аллергические заболевания, СПИД).

ТЕМА 2. ФЕРМЕНТЫ

Лабораторная работа № 3.

Последнее изменение этой страницы: 2016-12-28; Нарушение авторского права страницы

источник

Основные требования к технологическим системам и процедуре осуществления зонального электрофореза (на хроматографической бумаге, ацетатцеллюлозной пленке, гелях) белков плазмы (сыворотки) крови

Принцип фракционирования ( электрофореза) основан на том, что в электростатическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровому гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц. Вследствие этого белки сыворотки крови разделяются обычно на 5 основных фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины, содержание которых определяется с помощью фотометрии или денситометрии. При обработке красителями белки связываются с ними пропорционально своей концентрации. Определив интенсивность окрашивания, можно вычислить концентрацию белковых фракций.

Основные требования к приборам, реагентной базе и процессу осуществления электрофореза

Система для электрофореза. Блок питания должен давать стабилизированный ток силой 50—100 мА при напряжении 180— 600 В.

Электрофоретическая камера . Для предохранения полосы носителя от высыхания в камере должна поддерживаться определенная влажность воздуха. При нагревании бумаги уси­ ленно испаряется буферный раствор в середине полосы и с краев ленты, что обусловливает его движение (реофорез) и вследствие этого изменение формы пятен фракций белков в процессе их электрофоретического разделения; поэтому отдельные конструк­ ции электрофоретических камер располагают системой охлажде­ ния полосок носителя.

В разных отделах камеры буферный раствор должен иметь одинаковый уровень, чтобы избежать его перелива через ленту в результате сифонного действия. Концы полосок носителя не сле­дует погружать в буферный раствор, в котором находятся элек­троды. Электрическую связь между лентами и электродами уста­навливают посредством фитильков из бумажных полосок (ваты, марли), смоченных буферным раствором; этим устраняется пере­дача изменений рН буфера в то пространство, в которое погруже­ ны ленты.

Поскольку полоса ацетатцеллюлозной пленки (бумаги) может быть расположена как горизонтально, так и под углом к горизон­тали (вертикально), соответственно различают горизонтальный и вертикальный электрофорез. Первый из них позволяет получить более точные результаты. Важно, чтобы полоска носителя (хроматографической бумаги, ацетатцеллюлозной пленки) была хо­рошо натянута. Желательно, чтобы она располагалась как бы в «подвешенном» состоянии, поддерживаемая вертикально распо­ложенной перегородкой, системой натянутых капроновых нитей, а связывающий обе ванны мостик имел шипы для укладывания на них полосок. Это предотвращает образование тонкого капил­лярного слоя буферного раствора между полоской ацетатцеллю­лозной пленки, хроматографической бумаги и пластиной; капил­лярный слой буферного раствора в значительной мере ухудшает качество электрофоретического разделения.

Большое значение имеют свойства носителя , исполь­ зуемого для электрофореза. Ацетатцеллюлозная пленка, как и хроматографическая бумага, должна быть однородной и плотной. Поскольку в отдельных лабораториях все еще используют хроматографическую бумагу, в отношении ее как носителя необходимо отметить следующее.

Избранный сорт бумаги: «хроматографическая быстрая» или «хроматографическая медленная» — нельзя менять, так как от этого в определенной мере зависят получаемые результаты. Если хроматографическая бумага подлежит денситометрии, то реко­ мендуется быстро впитывающий сорт, в остальных случаях пред­ почтительнее пользоваться бумагой для медленного впитывания (марки «М»). Бумага марки «М» имеет гладкую лицевую и рубча­ тую обратную стороны. При внимательном рассмотрении обрат­ной стороны можно заметить грубые и крупные штрихи, идущие параллельно более длинной стороне листа. Эти штрихи отражают ход волокон целлюлозы. Применяемые для электрофореза бу­мажные полоски, размером 3,5 х 40 см (или другого формата, со­ответствующего габаритам электрофоретической камеры), наре зают таким образом, чтобы волокна целлюлозы шли вдоль поло­сок. Благодаря этому каждая полоска бумаги представляет собой систему продольно идущих капилляров, что способствует прод­вижению белков (и других веществ) и препятствует их растека­нию к краям полоски. Кроме того, полученная лента, в отличие от аналогичной с поперечным ходом волокон целлюлозы, мень­ше деформируется при увлажнении и высыхании. На одном из концов каждой полоски простым карандашом отмечают номер анализа и дату взятия крови для исследования.

Направление хода волокон целлюлозы в бумаге можно опре­ делить и по растеканию на ней капли воды, принимающей форму эллипса, длинник которого и соответствует распространению во­локон целлюлозы.

Подготовка к электрофорезу и процедура его проведения. Пе ред электрофорезом камеру устанавливают строго горизонталь­но. Кюветы заполняют буферным раствором таким образом, что­ бы уровень жидкости в них был одинаков. Оба отделения каждой кюветы соединяют друг с другом полоской фильтровальной бу­маги. Полоски ацетатцеллюлозной пленки (хроматографической бумаги) равномерно натягивают между кюветными отделениями. Необходимо, чтобы концы увлажненных буфером полос (мем­бран) были погружены в буферный раствор внутренних отделе­ний (если таковые имеются) электродных кювет. Затем на зара­ нее отмеченные у катода участки полосы носителя наносят сыво­ ротку (иногда на расстоянии 2 см от середины полоски в сторону катода).

Наилучшие результаты дает метод пропитывания хроматогра­фической бумаги буферным раствором. Однако на практике в це­лях экономии времени ленты обычно смачивают в буфере и слег­ ка высушивают, отжимая между листами фильтровальной бумаги.

Нанесение на полоску носителя биологического матери­ала осуществляется с помощью аппликатора (специального или импровизированного) либо микропипетки (автоматической, обычной). При первом способе на узкий край шлифованного стекла (покровного, предметного) или полоски отмытой рентге­новской пленки наносят 0,1-миллилитровой микропипеткой 10 мкл (0,01 мл) свежеполученной (негемолизированной) сыворот­ ки.

Этот импровизированный аппликатор приставляют нижним ребром к увлажненной бумаге и после впитывания сыворотки сразу же отнимают (нужно следить за тем, чтобы между боковыми гранями аппликатора и краями полос оставался промежуток ши­ риной 5—6 мм). Наносить сыворотку на бумагу можно и непос­ редственно из пипетки — таким образом, чтобы след сыворотки составил поперечную (по отношению к длиннику бумаги) полоску.

В том и другом случаях нужно соблюдать следующие правила: если используют микропипетку на 0,1 мл, в нее насасывают сы­воротку до метки 0,085. Пипетку зажимают между пальцами в вертикальном положении, причем верхнее ее отверстие не следу­ ет закрывать пальцем. Небольшое количество сыворотки, нахо­ дящееся в пипетке, не вытекает из нее, так как жидкость удержи­ вается капиллярными силами. Слегка касаясь бумаги (материала ацетатцеллюлозной пленки) нижним краем пипетки, ее переме­щают по полосе в поперечном направлении (не доводя пипетку на 2 мм до каждого края), пока мениск сыворотки не опустится до метки 0,095. Удобно пользоваться и автоматической микропи­ петкой.

Допустимо окрашивание сыворотки перед ее нанесением на полосу хроматографической бумаги. Для этого к 0,5 мл сыворот­ки добавляют несколько крупинок (проще всего на кончике стек­ лянной иглы) порошка бромфенолового синего. По перемеще­нию пятна красителя, связывающегося, прежде всего с альбуми­ном, можно визуально следить за миграцией пятен.

Затем крышку камеры плотно закрывают и включают прибор.

Электрофоретическое разделение белков сыворотки крови осуществляют при комнатной температуре и градиенте потенциала от 3 до 8 В на 1 см длины полоски носите­ля. Сила тока, зависящая от величины подаваемого напряжения, разновидности, особенностей состава и рН буферного раствора, толщины полоски носителя (хроматографической бумаги или ацетатцеллюлозной пленки), температуры, при которой происхо­дит разделение, не должна превышать 0,1—0,3 мА на 1 см попе­речного сечения хроматографической бумаги или ацетатцеллю­лозной пленки . Оптимальное время электрофореза подбирают опытным путем. Обычно оно составляет 20—40 мин при электрофорезе на ацетатцеллюлозной пленке и 7—12 ч при электрофорезе на хроматографической бу­маге. По окончании электрофореза отключают источник посто­янного тока, из камеры извлекают бумажные полоски и прикрепляют их на деревянные рамки или развешивают на стеклянных палочках, затем бумажные полоски помещают в горячий сушиль­ ный шкаф так, чтобы они не касались ни друг друга, ни металли­ческих стенок и деталей шкафа (это предохраняет электрофореграммы от смазывания фракций).

Бумажные ленты высушивают в шкафу при 95—105 0 С в тече­ ние 10—15 мин, но не более 20—30 мин. Поскольку связывание индикатора (красителя) белками при последующей обработке за­ висит от условий фиксации (температуры, времени прогрева­ния), необходимо строго соблюдать их постоянство.

Полоски ацетатцеллюлозной пленки (мембраны) не высушивают и далее обрабатывают влажными.

Для окраски электрофореграмм сухие бумажные ленты или увлажненные буферным раствором ацетатцеллюлозные пленки кладут в развернутом виде на дно плоских эмалиро­ванных кювет и осторожно, медленно приливают красящий рас­твор. В процессе обработки реагентами электрофореграммы нельзя накладывать друг на друга и сворачивать.

1. Буферные растворы. На электрофоретическое фракционирование белков большое влияние оказывает рН бу­ ферных растворов, состав и концентрация составляющих их реа­гентов, так как от кислотности (щелочности) среды, ионной силы буферной смеси и некоторых других факторов во многом зависят знак и величина электрического заряда молекул белков.

В качестве электролита чаще всего применяют веронал-мединаловый, веронал-ацетатный, мединаловый, трис-буфер. Реже используют боратный и фосфатный буфер.

Наиболее хорошо зарекомендовали себя следующие буфер­ные растворы:

ü Вероналовый (веронал-мединаловый) буфер с рН 8,6.

ü Веронал-ацетатный буфер с рН 8,6.

ü Мединаловый буфер с рН 7,6.

ü Трис-буфер с рН 8,9 (о чень хорошо разделяются белки сыворотки крови (с выделе нием до 9 фракций) при использовании трис-буфера с рН 8,9).

2. Окрашивающие реагенты. Основным их компонентом явля­ ются индикаторы (бромфеноловый синий, кислотный сине-чер­ ный, амидо черный 10 В и некоторые другие), представляющие собой красители, характерно связывающиеся с белком.

Сухие бумажные ленты выдерживают в этих красителях в те­ чение 30 мин. Входящие в состав красящих растворов сулема, сульфат цинка и уксусная кислота выступают в роли фиксаторов, способствующих улучшению связывания красителя с белком.

3. Отмывающие растворы. Для удаления не связавшегося с б елком красителя электрофореграммы обрабатывают в несколь­ких (обычно 3—5) сменах отмывающего раствора — до тех пор, пока фон лент не сделается светлым (белым), а промывная жид­ кость не перестанет окрашиваться в желтый цвет. Состав отмыва­ ющего раствора во многом зависит от природы применявшегося для окрашивания белков индикатора. Так, при окраске бромфе­ ноловым синим используют раствор уксусной кислоты, получае­мый добавлением к 20 мл ледяной уксусной кислоты 980 мл дис­ тиллированной (или водопроводной) воды; в случае применения амидо черного 10 В или кислотного сине-черного не связавшиеся с белком красители отмывают смесью следующего состава: уксус­ ной кислоты (ледяной) — 100 мл, фенола (расплавленного) — 40 мл, воды водопроводной — 860 мл.

Подготовка электрофореграмм к учету результатов способами денситометрии и фотометрии. Бумажные ленты, отмытые от избытка красителя, высушивают на воздухе при комнатной температуре, притом в затемненном месте, если в качестве красителя использовался бромфеноловый синий. Сухие и окрашенные электрофореграммы хранятся в темноте.

Дальнейшая количественная обработка электрофореграмм состоит либо в элюции (извлечении) красителя из участков бумаги с располагающимися на них окрашенными белковыми фракциями с последующим фотометрическим измерением оптической плотности растворов, либо непосредственной записи электрофореграмм с помощью денситометра – прибора, позволяющего регистрировать (сканировать) картину разделения фракций анализируемых веществ в отраженном или проходящем монохроматическом световом потоке.

При денситометрии в проходящем свете предварительно обесцвечивают фон ацетатцеллюлозных пленок и бумажных лент (последние для этого пропитывают просветляющей жидкостью либо обесцвечивают материал носителя другим способом). Полосу располагают в перемещающем ее устройстве таким образом, чтобы против щели освещения находился неокрашенный участок. Записанная прибором кривая позволяют судить о числе фракций и о содержании в них белка. С помощью интегрального устройства осуществляется количественная обработка картины разделения фракций белков, осуществляемая в автоматическом режиме.

Количественную обработку денситограмм можно выполнить и ручным способом. Для этого кривую делят на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству красителя, соединившегося с белком данной фракции. Соотношение между этими площадями вычисляют, например, по массе вырезанных участков бумаги, определенной на торсионных весах. Общую массу всех участков принимают за 100% (1,0) или же за содержание общего белка в плазме (в г/л) и вычисляют, какой процент по отношению к нему составляет масса каждого участка (фракции).

Для просветления электрофореграмм (перед «сканированием» в проходящем свете на денситометре) применяют: вазелиновое масло и раствор альфа-бромнафталина в вазелиновом масле – для обесцвечивания фона бумажных лент, а также смеси: ледяная уксусная кислота – ацетон (1:1); пропиловый (изопропиловый) спирт – ледяная кислота – глицерин (85:12:3) – используют для просветления материала ацетатных полос.

Метод элюирования состоит в том, что сначала электрофореграммы разрезают по числу фракций, ориентируясь на самый светлый участок между ними. Каждую фракцию помещают в отдельную пробирку и заливают, например, 3 мл элюирующего раствора. К альбуминовой фракции добавляют двойной (или тройной) его объем, на основании чего величину оптической плотности для альбуминовой фракции умножают на 2 (или на 3). Контролем служит участок фореграмм, не содержащий белка. Пробирки осторожно встряхивают и оставляют в затемненном месте на 30 минут (лучше на 40 минут – 1 час). Плотность испытываемых растворов определяют на фотоэлектроколориметре любого типа с зеленым (красным) светофильтром. В качестве контрольного используют элюирующий раствор, по которому устанавливают «электрический нуль» прибора.

Читайте также:  Боли после электрофореза на коленный сустав

При использовании способа элюирования находят величину абсорбции каждой фракции и общую сумму значений оптической плотности, которую принимают за 100% (либо 1,0) или величину содержания общего белка в плазме (сыворотке) крови, представленную в размерности г/л. В первом случае результаты выражают в относительных, во втором – в абсолютных единицах.

Состав элюирующих растворов, применяемых для извлечения красителя из окрашенных фракций электрофореграмм (эстрагирующие реагенты), во многом зависит от природы используемого индикатора. Так, для извлечения бромфенолового синего применяют 0,01Н раствор едкого натра. Для извлечения кислотного сине-черного красителя используют 0,1Н раствор едкого натра.

Приняв сумму показателей оптической плотности отдельных элюатов за 100% (1,0), по простому тройному правилу рассчитывают относительное содержание альбумина и фракций глобулинов.

Пример . Абсорбция фракции альбумина – 0,52, α1-глобулины – 0,02, α2-глобулины -0,05, β-глобулины-0,10, γ-глобулины-0,15. В сумме оптическая плотность отдельных растворов равна 0,84; это значение принимается за 100% (или 1,0).

Тогда содержание альбумина, выраженное в относительных единицах, составит: (0,52 • 1,0)/0,84 = 0,62. Подобным же образом рассчи­тывают относительное содержание всех остальных белковых фракций, выражая его в долях от единицы или процентах. Следу­ ет стремиться к представлению результатов не в относительных, а в абсолютных единицах. Для этого сумму показателей абсорбции всех фракций достаточно отнести к концентрации об­ щего белка сыворотки крови. Тогда, пользуясь аналогичным рас­ четом, легко найти действительную концентрацию альбумина и всех глобулинов.

Пример . Общее количество белка в сыворотке крови — 82 г/л. Сумма абсорбции всех фракций — 0,84. На долю абсорбции фракции альбумина приходится 0,52 ед. Если показатель А, рав­ ный 0,84 ед, соответствует 82 г/л, то 0,52 (А) — х. Отсюда: концен­ трация альбумина в сыворотке крови равна (82 • 0,52)/0,84 = 50,7 (г/л).

Зная содержание общего белка сыворотки (плазмы) крови, легко перевести относительные единицы в абсолютные: 100% со­ответствует 82 г/л, 62,0% — х. Тогда х = (62,0 • 82)/100 = 50,8 (г/л).

Для лучшего запоминания отмечаемых в норме показателей процентного (долевого от единицы) содержания альфа-1 -, альфа- 2-, бета- и гамма-глобулинов сыворотки крови можно ориенти­роваться на следующие средние величины и варианты отклоне­ний: 1 (0,04 + 0,01), 8± 1 (0,08 ±0,01), 10 ± 2 (0,10 ± 0,02), 16 + 4 (0,16 + 0,04) — соответственно. Относительное содержание аль­ бумина составляет, по данным А.А.Покровского (1969), 56—66% (0,56—0,66), многих других авторов: 50—61% (0,50—0,61). У прак­ тически здоровых взрослых людей концентрация альбумина, аль­ фа-1-, альфа-2-, бета- и гамма-глобулинов, выраженная в абсо­лютных единицах, составляет соответственно: 42,0—51,0, 2,0— 5,0, 4,0-7,0, 5,0-9,0, 8,0-17,0 г/л.

Краткая характеристика других носителей.

В последние годы электрофорез на бумаге практически полностью вытеснен предложенным Коном (1958) электрофорезом на ацетатцеллюлозе. Ацетатцеллюлозная пленка в отличие от бумаги лишена эндоосмоса, способности к поглощению отдельных белковых фракций поверхностью волоконец. В результате получается четкое фрак­ ционирование со светлыми промежутками между «пятнами» бел­ ков, а время электрофореза сокращается обычно до 30 мин.

Для разделения фракций белков и липопротеинов широко ис­пользуется метод электрофореза на агаре (агарозе), предложен­ный Гордоном и др. в 1949 г.

Способ электрофореза в крахмальном геле (Смитис, 1955) позволяет получить до 20 фракций вместо пяти, обычно выделя­емых методом электрофоретического фракционирования на бу­маге.

Введенный Грабаром и Вильямсом в 1953 г. иммуноэлектро форез представляет собой комбинацию электрофоретического и иммунологического фракционирования белков. После передви­ жения белковых фракций в геле агара в узкий желобок помешают перпендикулярно к фракционным линиям сыворотку лошади, иммунизированной белковыми компонентами сыворотки чело­века (антисыворотка). Антисыворотке дают возможность диф­ фундировать в геле агара. В месте контакта содержащихся в них антител с электрофоретически разделенными белковыми фрак­циями образуются преципитационные дуги, характерные для со­ ответствующих фракций. При помощи этого метода обнаружива­ ется не менее 25 различных белков.

Структура агарового и крахмального геля такова, что размеры пор в этих носителях, как и в материале бумаги, ацетатцеллюлозной пленки, значительно превосходят размеры макромолекул: белков, липопротеинов и др. Лишь в полиакриламидном геле, формируемом из золя с концентрацией около 7,5%, размеры пор примерно соответствуют размерам молекул белков. Благодаря этому создается молекулярно-фильтрующий эффект, в значительной мере улучшающий качество электрофоретического разделения, с помощью которого выделяется обычно около 30 фрак­ций белков. К тому же перед началом электрофоретического Фракционирования белков все они стартуют с весьма узкой линии, будучи как бы сконцентрированы на ней. Формирование многослойного полиакриламидного геля, отдельные зоны в кото ром отличаются размерами пор, дает возможность эффективно разделять липопротеины разных классов (по Е.Я. Маграчевой, 1979). К тому же полиакриламидный гель отличается большой прозрачностью, термостабильностью. Широкое применение в клинической практике метода электрофореза в полиакриламид­ном геле сдерживается трудностью идентификации и количественного учета отдельных выявляемых фракций.

Определение белковых фракций сыворотки крови методом электрофореза на пленках из ацетата целлюлозы.

Принцип метода: белки сыворотки крови разделяют методом электрофореза с использованием в качестве носителя пленки из ацетата целлюлозы.

Реактивы: 1) барбитал-натриевый буферный раствор (рН 8,6) (иногда применяются другие буферные смеси); 2) бромфеноловый синий (при приготовлении раствора добавляют сульфат цинка и уксусную кислоту для фиксации белков); 3) отмывающий раствор – уксусная кислота, 50 г/л; 4) просветляющий раствор: вазелиновое масло, смесь ледяной уксусной кислоты с ацетоном (1:1).

Ход определения : смачивают пленки буферным раствором (помещают в буферный раствор на 5 минут). Удаляют избыток влаги фильтровальной бумагой. Закрепляют пленку в камере матовой стороной кверху (пленки должны располагаться параллельно друг к другу и строго параллельно стенкам прибора, не должны свисать). Закрывают камеру крышкой и пропускают ток напряжением 150В в течение 5 минут, после чего выключают ток.

источник

загрузка до 144 тестов за смену

Система электрофореза на ацетат-целлюлозных мембранах SCANION

ИСТОЧНИК ПИТАНИЯ КАМЕРЫ ЭЛЕКТРОФОРЕТИЧЕСКОЙ
Основные технические характеристики:
Источник питания работает от сети питания 220 В, частотой 50 Гц, при этом сохраняет работоспособность при изменении напряжения питания в диапазоне от 198 до 242 В.
Установившееся значение потребляемой мощности при напряжении питания 220 В частотой 50 Гц, не более 35 ВА.
Источник питания обеспечивает следующие характеристики:
Выходное напряжение: от 0 до 300 В постоянного тока с шагом установки 1 В;
Выходной ток: от 0 до 50 мА;
Таймер от 0 до 120 минут;
Индикацию установленных параметров;
Отключение выходного напряжения, в случае перегрузки (выходного тока более 50мА);
Габаритные размеры источника (Длина х Ширина х Высота), мм не более: 330 х 240 х150
Масса источника питания не более 5 кг.
Время установления рабочего режима источника не более 1 мин.
Источник обеспечивает продолжительный режим работы не менее 8 часов в сутки.

Комплектность поставки камеры

Таблица 1 Наименование Обозначение документа Количество, шт.
Камера электрофоретическая ХСДИ.941412.001-02 1
Мостик для установки мембраны 3
Шнур питания камеры 1
Принадлежности:
Аппликатор для нанесения 4 проб на мембрану 1
Аппликатор для нанесения 8 проб на мембрану 1
Мембраны для электрофореза белков 3
Эксплуатационная документация:
Руководство по эксплуатации камеры электрофоретической ХСДИ.941412.001-02 РЭ 1

КАМЕРА ЭЛЕКТРОФОРЕТИЧЕСКАЯ
Основные технические характеристики:
Камера работает от источника питания, входящего в комплект поставки, с выходным напряжением от 0 до 300 В постоянного тока.
Камера электрофоретическая имеет возможность:
Одновременной установки не менее трех мостиков мембран
Вмещения не менее 500 мл буферного раствора без образования токопроводящего слоя между электродами.
Габаритные размеры (Длина х Ширина х Высота), не более мм: 350 х 220 х 120
Масса не более 2 кг.
Время установления рабочего режима камеры не более 1 мин.
Камера обеспечивает продолжительный режим работы не менее 8 часов в сутки.

СКАНЕР ЭЛЕКТРОФОРЕГРАММ
Основные технические характеристики:
Установившееся значение потребляемой мощности при напряжении питания (220 В) частотой 50 Гц не более 40 ВА.
Габаритные размеры сканера (Длина х Ширина х Высота), мм не более: 450 х 400 х 200,
Масса сканера не более 10 кг.
Сканер имеет встроенный термопринтер, обеспечивающий печать результатов измерения в виде процентного содержание фракций белков сыворотки крови и спектра их распределения (гистограмма).
Время измерения и печати результатов не более 60 секунд.
Сканер обеспечивает возможность распознавания и измерения до 5 фракций белков, %:
-Альбумин
-α1-глобулин
-α2-глобулин
-β-глобулин
-γ-глобулин

источник

ЭЛЕКТРОФОРЕЗ — направленное перемещение электрически заряженных частиц дисперсной фазы в дисперсионной среде (или ионов в электропроводящем растворе) под действием внешнего электрического поля. Метод электрофореза широко используется в биологии и медицине для выделения и анализа индивидуальных белков (см.), нуклеиновых кислот (см.) и других биополимеров, вирусов, надмолекулярных клеточных структур, а также целых клеток. В иммунологии одним из наиболее употребляемых методов исследования является иммуноэлектрофорез (см.) — электрофоретическое разделение смеси антигенов или антител в геле с последующий их преципитацией. Путем микроэлектрофореза(см. Микроионофорез) в клетку можно ввести или к ней подвести любые вещества, способные диссоциировать на ионы (см.). Микроионофорез является одним из основных современных методов в нейрофизиологических, нейрофармакологических, нейрохимических исследованиях. Большое диагностическое значение имеют электрофоретическое разделение ферментов (см.) на коферменты (см.) и их количественная и качественная оценка. Введение лекарственных веществ в организм путем Э. широко применяется в физиотерапии (см.).

Электрофорез наряду с электроосмосом (см.) был открыт в 1807 году профессором Московского университета Рейссом. Электрокинетические явления (см.), к которым относят электрофорез, обусловлены наличием на границе раздела фаз двойного электрического слоя и способностью диффузной части этого слоя смещаться относительно адсорбционно связанной (неподвижной) его части. Электрический потенциал поверхности, разделяющей подвижную и неподвижную части двойного электрического слоя, носит название электрокинетического или ζ (дзета)-потенциала. Частицы дисперсной фазы, находящиеся в буферном растворе (см. Буферные растворы), несут определенный суммарный электрический заряд, величина и знак которого зависят от величины pH среды (см. Водородный показатель). Если через буферный раствор, заключенный в сосуд с электроизолирующими стенками, например, в стеклянную трубку, пропускать электрический ток, то результатом этого будет появление определенного градиента напряжения (см. Градиент), или электрического поля. Под действием этого поля частицы дисперсной фазы в соответствии со знаком суммарного заряда движутся в направлении катода, то есть происходит катафорез, или анода — анафорез. В зависимости от величины заряда и своих размеров частицы в электрическом поле приобретают разные скорости. Смесь разнородных частиц, внесенная в узкую зону, в этих условиях разделяется на зоны, образуемые частицами, движущимися с одинаковой скоростью, то есть обладающими одинаковой электрофоретической подвижностью.

Электрофоретическая подвижность частиц, имеющих сферическую форму (V), выражается формулой Смолуховского: V = ( ζD)/(4πη), где ζ — электрокинетический потенциал двойного электрического слоя, окружающего частицу, D — диэлектрическая проницаемость и η — вязкость среды. В том случае, когда электрофоретическое разделение смеси частиц (или молекул) производят в буферных растворах с не слишком низкими (например, около 0,1) значениями ионной силы раствора (полусуммы произведений концентраций всех находящихся в растворе ионов на квадрат величины их заряда), частицы группируются по фракциям лишь по величине заряда без учета размеров или молекулярных весов (масс), если речь идет о молекулах.

Использование электрофореза в биологии и медицине началось в 30-е годы 20 века, когда А. Тизелиус разработал метод электрофореза в свободной жидкости и сконструировал прибор для электрофоретического разделения и анализа смеси белков так называемым методом подвижных, или свободных, границ. В медико-биологических исследованиях применяют множество вариантов двух главных модификаций электрофоретического метода — электрофореза в свободной жидкости (свободнопроточный электрофорез) и зонального электрофореза (зонный электрофорез, или электрофорез на инертных носителях). Первым был разработан электрофорез в свободной жидкости (метод подвижных границ, электрофорез по Тизелиусу), который позволял измерять электрофоретическую подвижность испытуемого вещества по перемещению подвижной границы между чистым буферным раствором и буферным раствором, содержащим исследуемое вещество. В приборе Тизелиуса используется оптический метод регистрации положения такой границы по определению показателя преломления среды (см. Нефелометрия, Рефрактометрия), а в некоторых случаях — прямое микроскопирование. При разделении смеси веществ с различными изоэлектрическими точками (см. Изоэлектрическая точка) оптические устройства регистрируют несколько движущихся пиков (рис. 1). Основным недостатком электрофореза в свободной жидкости является ее тепловое движение, мешающее четкому разделению фракций и размывающее границы зон. Этот недостаток частично преодолевается созданием градиентов плотности буферных растворов (например, с помощью сахарозы). При фракционировании низкомолекулярных веществ, чтобы избежать чрезмерного размывания зон, применяют высоковольтный электрофорез, иногда в сочетании с хроматографией (см.) — так называемый метод «отпечатков пальцев».

Зональный электрофорез отличается от электрофореза в свободной жидкости главным образом использованием нейтральной поддерживающей среды (инертных носителей) для жидкой фазы (буферного раствора), что сводит к минимуму эффект теплового движения и позволяет при необходимости выделить тот участок носителя, который содержит индивидуальное вещество. В качестве инертных носителей в зональном электрофорезе используют специальную хроматографическую бумагу, полоски ацетата целлюлозы, тонкие слои силикагеля, порошка целлюлозы или гели сефадексов (см. Декстран). Зональный электрофорез на инертных полимерах-носителях позволяет фракционировать вещества не только по величине заряда, но и по молекулярному весу. Особое место среди таких носителей занимают гели полиакриламида (ПААГ) и агарозы. Преимущество полиакриламидных гелей заключается в возможности изменения диаметра их пор при изменении концентрации полимера, а также в отсутствии явлений адсорбции и электроосмоса при электрофорезе.

При электрофоретическом разделении гетерогенной смеси в полиакриламидном геле колонку небольшого сечения (около 1 см 2 ) заполняют буферным раствором, содержащим растворенный мономер (акриламид; CH2—CH— CONH2, небольшое количество вещества-сшивателя (бис-N-метиленметакриламида — НС(СН2)—CONH—CH2-NHCO-(CH2)CH ) и вещество-инициатор полимеризации. Через некоторое время при комнатной температуре в колонке образуется однородный гель (рис. 2). Если с помощью электрофореза в свободной жидкости по Тиэелиусу в сыворотке крови обнаруживают 5 белковых фракций (см. рис. 1), то при электрофоретическом разделении сыворотки крови в полиакриламидном геле их насчитывают не менее 25 (рис. 3).

Разрешающая способность электрофореза в полиакриламидном геле значительно повышается при использовании в качестве носителя системы гелей (обычно двух — «рабочего» мелкопористого и непосредственно над ним «формирующего» крупнопористого). Кроме степени пористости, эти гели резко различаются по величине pH и молярности буферных растворов, в которых они полимеризуются. Такой электрофорез называют ступенчатым, или дискэлектрофорезом (английский (discontinuous — прерывистый).

Читайте также:  Электрофорез для ушей при тугоухости

Вариантом электрофореза в полиакриламидном геле является электрофорез смеси биополимеров после предварительной обработки денатурирующим агентом с целью изменения конфигурации молекул. Белки в этом случае обрабатывают ионным детергентом (см.) — додецилсульфатом натрия, разрушающим дисульфидные связи в их молекулах и образующим с ними отрицательно заряженные мицеллы, заряд которых пропорционален молекулярному весу белка; нуклеиновые кислоты подвергают электрофорез в присутствии щелочи, мочевины, формамида или других агентов, разрушающих водородные связи в полинуклеотидных цепях нуклеиновых кислот. При этих условиях электрофоретическая подвижность биомолекул начинает строго коррелировать с их молекулярным весом.

Для наблюдения за ходом электрофореза в геле в исследуемую смесь добавляют химически инертный в отношении разделяемых веществ низкомолекулярный краситель (см. Красители), молекулы которого несут электрический заряд того же знака, что и молекулы разделяемых веществ, но обладают электрофоретической подвижностью, которая несколько выше подвижности белковой фракции, продвигающейся первой. Такой краситель называют лидирующим. Чаще всего в щелочных и нейтральных буферных растворах используют бромфеноловый синий, в кислой среде — метиловый зеленый или пиронин. Когда окрашенная зона доходит до конца геля, электрофорез прекращают, после фиксации гель на определенное время погружают в р-р специфического красителя, после чего избыток красителя отмывают (рис. 4) Для выявления на электрофореграмме белков-ферментов иногда пользуются их каталитической активностью в отношении хромогенных субстратов. Широко применяется обнаружение электрофоретических зон по их радиоактивности (см. Авторадиография).

Многие исследователи в качестве инертных носителей предпочитают гели в виде тонких пластин. Электрофорез в гелевой пластине делает более достоверным сравнение отдельных препаратов, позволяет проводить двухмерное разделение и др. Для анализа аминокислот, пептидов и сахаров (в виде их боратных комплексов) используют высоковольтный электрофорез на бумаге, в тонком слое силикагеля, ацетата целлюлозы и других красителей.

Разделение сложной смеси белков не всегда удается осуществить даже при использовании перечисленных выше приемов электрофореза. Поэтому в сложных случаях применяют так называемый двухмерный электрофорез, когда после первого электрофоретического фракционирования смеси белков каждую полосу используют как исходный препарат для электрофореза в перпендикулярном направлении по отношению к направлению первого разделения. В результате на второй пластине появляется большое число зон, соответствующих индивидуальным белкам (иногда их число достигает 2 тысячи).

Существуют методы, объединяющие, например, электрофорез и хроматографию (см.); иногда разделение смеси белков проводят в перпендикулярных направлениях, или в одном направлении белки разделяют электрофорез в полиакриламидном геле с додецилсульфатом натрия, а в перпендикулярном ему — с помощью изоэлектрического фокусирования (см.). Последний метод позволяет на одной гелевой пластине выявить до 7 тысяч индивидуальных белков. Вариантами электрофореза являются также электрофорез в градиенте значений pH и электрофорез в градиенте пористости геля, иммуноэлектрофорез, аффинный электрофорез, сочетающий в себе преимущества электрофореза и аффинной хроматографии, и др.

С помощью электрофореза белков определяют их первичную структуру, молекулярный вес, патогенность и наличие множественных форм. Для электрофореза клеток используют свободнопроточный электрофорез в его аналитических и препаративных вариантах. Так фракционируют бактериальные клетки, вирусы, а также лизосомы, митохондрии, комплексы Глльджи и другие клеточные органеллы. Молекулы нуклеиновых кислот отличаются от молекул белков сильным отрицательным зарядом. Фракционирование их смесей осуществляют за счет различий мол. веса нативных высокомолекулярных ДНК и РНК. Для электрофоретического фракционирования их низкомолекулярных фрагментов используют крупнопористые гели агарозы или гели полиакриламида с концентрацией от 5 до 20%, а также их смеси. Анализ фрагментов нуклеиновых кислот, полученных при расщеплении молекул ДНК нуклеазами и химическими агентами, дает возможность определить первичную структуру этих биополимеров, то есть структуру генов (см. Ген).

Метод электрофореза позволил обнаружить нормальный наследственный полиморфизм белков человека. Стали известны десятки вариантов гемоглобинов (см. Гемоглобин), глюкозо-6-фосфат-дегидрогеназы и других белков. Были получены данные о множественных формах ферментов (см. Изоферменты), последовательно экспрессируемых в ходе онтогенеза и генетически независимых. В результате исследования крови, мочи, цереброспинальной жидкости электрофореза были выявлены изменения нормальной экспрессии генов, кодирующих синтез определенных белков при различных патологических состояниях (рис. 5).

С помощью электрофоретического анализа ферментов (см.) возможна диагностика, в том числе пренатальная, некоторых врожденных заболеваний.

При молекулярной патологии происходит изменение плотности относительного заряда на поверхности клеток, поэтому методом электрофореза можно, например, выявить и разделить субпопуляции B- и Т-лимфоцитов.

Начаты исследования по получению особо чистых препаратов (например, интерферона) методом электрофореза в условиях невесомости при космических полетах.

Лекарственный электрофорез (устаревший ионофорез, ионтофорез, ионотерапия, гальваноионотерапия, ионогальванизация) — метод электролечения, заключающийся в сочетанном воздействии на организм постоянного тока и вводимых с его помощью лекарственных веществ. В лечебную практику лекарственный электрофорез был введен с 1802 году, когда Росси (Rossi) впервые применил для воздействия на организм больного лекарственные вещества в сочетании с постоянным током (см. Гальванизация). Долгое время для лекарственного электрофореза использовали только постоянный непрерывный ток (гальванический). В настоящее время широко применяют диадинамические токи (см. Диадинамоэлектрофорез), синусоидальные модулированные (амплипульсфорез) и флюктуирующие (флюктуофорез) токи в выпрямленном режиме.

Принципиальной основой лекарственного электрофореза является теория электролитической диссоциации (см. Диссоциация в химии, Электролиз). Лекарственные вещества, способные диссоциировать в растворе на положительные (катионы) и отрицательные (анионы) ионы, направленно перемещаются в поле постоянного электрического тока и могут поступать в организм, преодолевая кожный барьер (см. Кожа). При этом с электродной прокладки вводятся лишь те ионы, которые имеют одноименный знак с электродом.

При электрофорезе основными путями проникновения лекарственных веществ в организм через кожу являются выводные протоки потовых и, в меньшей степени, сальных желез. Часть лекарственного вещества проникает в организм через межклеточные пространства и часть — через сами клетки (особенно при электрофоретическом введении лекарственных веществ через слизистую оболочку).

При электрофорезе лекарственные вещества проникают на небольшую глубину: сразу после процедуры они обнаруживаются в основном в эпидермисе и дерме, в небольшом количестве — в подкожной клетчатке. Отсюда введенные путем электрофореза лекарственные вещества поступают в лимфо- и кровоток и разносятся по всему организму, хотя преимущественно они накапливаются в тканях и органах области воздействия.

Электрофорез лекарственных веществ через кожу и слизистые оболочки количественно не подчиняется законам электролиза, так как живые ткани обладают электрокапиллярной активностью (см. Электроосмос) и барьерными свойствами (см. Барьерные функции). При электрофорезе в организм вводится всего от 1 до 10% вещества, находящегося в растворе (на прокладке). На количество вводимого путем электрофореза вещества существенно влияют физико-химические свойства самих лекарственных средств и свойства их растворов (степень диссоциации вещества, размеры, величина и знак заряда иона, возможность и степень его гидратации, используемый растворитель, концентрация и др.), условия проведения физиотерапевтической процедуры (плотность тока, длительность воздействия возраст пациента и др.), функциональное состояние организма в целом и кожи в особенности.

Лекарственное вещество, вводимое методом электрофореза может действовать на организм рефлекторным путем (так называемый понный рефлекс по Щербаку), гуморальным путем и кроме того, оказывать местное действие. Это зависит от типа и количества лекарственного вещества, методики и условий проведения процедуры, параметров физического фактора и др.

Электрический ток, используемый для электрофореза, вызывает в организме разнообразные физико-химические, метаболические и клеточно-тканевые реакции (см. Гальванизация, Диатермия, Диатермоэлектрофорез), на фоне которых действие вводимых с помощью электрофореза лекарственных веществ приобретает ряд особенностей и преимуществ по сравнению с обычными способами фармакотерапии (см.). Наибольшее практическое значение при лекарственном электрофорезе имеют следующие факторы:

  1. более длительное действие лекарственного средства и более медленное выведение его из организма благодаря, прежде всего, образованию в коже депо ионов, обладающих фармакологической активностью;
  2. возможность создания высокой локальной концентрации лекарственного вещества без насыщения им крови и других сред организма;
  3. меньшая вероятность возникновения побочных реакций;
  4. введение лекарственного вещества в наиболее фармакологически активной форме — в виде ионов;
  5. безболезненность введения лекарственных средств и отсутствие деформации тканей, возникающей при других способах фармакотерапии из-за введения растворителя.

Благодаря стимулирующему действию электрического тока отчетливое специфическое и выраженное терапевтическое действие вводимых путем электрофореза лекарственных веществ проявляется при таких концентрациях, которые при обычных способах фармакотерапии оказались бы малодейственными или неэффективными.

Назначение лекарственного электрофореза определяется, с одной стороны, благоприятным лечебным эффектом постоянного непрерывного тока или других видов электрического тока (см. Импульсные токи), а с другой стороны — показаниями к применению соответствующих лекарственных средств.

Лекарственный электрофорез нельзя применить в тех случаях, когда имеются объективные противопоказания к применению электролечения и соответствующих лекарственных средств, а также при их индивидуальной непереносимости.

Техника лекарственного электрофореза сводится к расположению на пути тока (между телом человека и электродами) раствора лекарственного вещества. В зависимости от способа нанесения лекарственного вещества и подведения тока различают несколько вариантов лекарственного электрофореза. Наиболее распространено электрофоретическое введение лекарственных веществ из растворов, которыми смачиваются специальные прокладки между телом пациента и электродом. Техника выполнения лекарственного электрофореза в этой модификации мало отличается от техники гальванизации (см.). Единственное отличие заключается в том, что электродную прокладку смачивают не водопроводной водой, как при гальванизации, а раствором лекарственного вещества. Этот раствор с помощью бюретки или другого дозирующего устройства количественно наносят на гидрофильную прокладку или, чаще, на специальную лекарственную прокладку, располагаемую при процедуре между кожей и защитной прокладкой. Лекарственные прокладки готовят из 1—2 слоев фильтровальной бумаги или 2—4 слоев марли. По форме и площади они должны соответствовать защитной прокладке. Раствором лекарственного вещества смачивают обычно одну прокладку, однако лекарственные вещества, диссоциирующие на ионы с противоположными зарядами, могут наноситься на обе (катодную и анодную) прокладки.

Раствор лекарственного вещества наносят на прокладку электрода (положительно заряженного — анода или отрицательно заряженного — катода), одноименного с подлежащим электрофоретическому введению ионом. При выборе полярности следует учитывать следующее: ионы всех металлов, местноанестезирующие средства, большинство алкалоидов, антибиотиков и сульфаниламидных препаратов имеют положительный заряд, поэтому при электрофорезе они должны вводиться с анода, а ионы всех металлоидов и кислотные радикалы приобретают в растворах отрицательный заряд и, следовательно, должны вводиться в организм с катодного электрода. Суммарный заряд амфотерных соединений (белки, аминокислоты и др.) зависит от их ионного состава и величины pH среды (см. Водородный показатель): при низких значениях pH заряд становится более положительным, при высоких — более отрицательным.

При так называемом ванночковом электрофорезе в ванночку (стеклянную, фаянсовую, пластмассовую) с вмонтированными электродами, заполненную раствором лекарственного вещества, погружают подлежащую воздействию обнаженную часть тела больного.

Полостной лекарственный электрофорез заключается в том, что перед введением электрода, соединенного с соответствующим полюсом аппарата для лекарственного электрофореза, в полость желудка, мочевого пузыря, прямой кишки, влагалища, носа вводят раствор лекарственного вещества.

В медицинской практике, особенно при лечении заболеваний бронхолегочной системы, получает распространение так называемый внутритканевой электрофорез. При этом после введения лекарственного вещества в организм одним из общепринятых способов (внутривенно, подкожно, внутримышечно, ингаляционным путем) проводят гальванизацию области патологического очага при перпендикулярном расположении электродов. Время проведения процедуры должно соответствовать времени достижения максимальной концентрации лекарственного вещества в крови.

При сочетанных способах лечения лекарственный электрофорез можно проводить одновременно с другим физиотерапевтическим воздействием. К таким сочетанным способам относятся ультразвук — электрофорез (электрофонофорез), дозированный вакуум — электрофорез (вакуум-электрофорез), индуктотермия — электрофорез (индуктотермоэлектрофорез), магнитное поле — электрофорез (магнитоэлектрофорез) и др. Сочетание лекарственного электрофореза с другими физиотерапевтическими воздействиями позволяет вводить в организм лекарственное вещество в большем количестве и на большую глубину, чем при одном электрофорезе, и потенцирует его действие.

Для лечебного электрофореза применяют лекарственные средства, относящиеся к самым различным группам. Нам более часто употребляют местноанестезирующие средства, витаминные, ферментные препараты, химиотерапевтические, сосудорасширяющие и сосудосуживающие средства, седативные средства, природные соединения и др. Лекарственные вещества, предназначенные для электрофоретического введения, должны быть чистыми, не содержать наполняющих и связующих соединений, по возможности их растворы надо готовить непосредственно перед применением. В качестве растворителя при приготовлении растворов для лекарственного электрофореза лучше всего использовать дистилированную воду. При плохой растворимости лекарственного вещества в воде в качестве растворителя можно применять спирт, димексид и другие полярные растворители, разрешенные ГФ. Приготовление лекарственных средств на изотоническом растворе натрия хлорида и других растворах электролитов (см.) является нежелательным, так как это резко уменьшает введение в организм лекарственного иона. При электрофорезе ферментов в качестве растворителей используют буферные растворы (см.).

Дозируют лекарственный электрофорез так же, как и гальванизацию: по длительности процедуры от 10 до 30 минут и плотности тока 0,03—0,08 ма/см 2 . Для детей и пожилых людей дозиметрические параметры уменьшают в зависимости от возраста на 25— 30%. На курс лечения назначают от 10—12 до 15—20 процедур, которые проводят ежедневно или через день.

Для лекарственного электрофореза применяют различные аппараты. Источниками гальванического тока (см. Гальванизация) и импульсных диадинамических токов являются аппарат Поток-1, АГН-32, АГП-33, СНИМ-1 Модель-717, Тонус-1 и Тонус-2, синусоидальных модулированных токов — аппараты Амплипульс-ЗТ. Амплипульс-4, флюктуирующих токов — аппарат АСБ-2.

Библиогр.: Бабский В. Г., Жуков М. Ю. и Юдович В. И. Математическая теория электрофореза, Применение к методам фракционирования биополимеров, Киев, 1983; Гааль Э., Медьеши Г. и Верецкси X. Электрофорез в разделении биологических макромолекул, пер. с англ., М., 198* Остерман Л. А. Методы исследования белков и нуклеиновых кислот, Электрофорез и ультрацентрифугирование, 1981; Парфенов А. П. Элестрофорез лекарственных веществ, Л., 1973, ; Улащик В. С. Теория и практика лекарственного электрофореза, Минск, 1976, библиогр.; он же, Физикофармакологические методы лечения и профилактики, Минск, 1979; Cell electroptoresis in cancer and other clinical reearch, ed. by A. W. Preece a. P. Light, Amsterdam, 1981; Dunn M. Affinity electrophoresis, Lab. Pract., 33, p. 13, 1984; Electrophoresis’83, Advanced methods biochemical and clinical applications, ed. by H. Hlrai, B.— N. Y., 1984.

E. В. Раменский; В. С. Улащик (физиотер.).

источник