Меню Рубрики

Результаты пцр на электрофорезе

Полимеразная цепная реакция (ПЦР)— экспериментальный метод молекулярной биологии, который представляет собой специфическую амплификацию нуклеиновых кислот, индуцируемую синтетическими олигонуклеотидными праймерами in vitro.

Идея разработки метода ПЦР принадлежит американскому исследователю Kary Mullis, который в 1983 г. создал метод, позволивший амплифицировать ДНК в ходе циклических удвоений с помощью фермента ДНК-полимеразы в искусственных условиях. Через несколько лет после опубликования этой идеи, в 1993 г., К. Mullis получил за нее Нобелевскую премию.

В начале использования метода после каждого цикла нагревания- охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она быстро инактивировалась при высокой температуре. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. ее существенно модифицировали за счет использования ДНК-полимеразы из термофильных бактерий. Эти ферменты способны выдерживать множество циклов реакции, что позволяет автоматизировать проведение ПЦР. Одна из наиболее часто использовавшихся термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq-ДНК-полимеразой.

Суть метода.Метод основан на многократном избирательном копировании определенного участка ДНК при помощи фермента Taq- ДНК-полимеразы. Полимеразная цепная реакция позволяет получить амплификаты длиной до нескольких тысяч пар нуклеотидов. Для увеличения длины ПЦР-продукта до 20-40 тыс. пар нуклеотидов применяют смесь различных полимераз, но все равно это значительно меньше длины хромосомной ДНК эукаротической клетки.

Реакция проводится в программируемом термостате (амплификаторе) — приборе, который может проводить достаточно быстро

охлаждение и нагревание пробирок (обычно с точностью не менее 0,1 °С). Амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта» и последующего хранения. Для ПЦР в режиме реального времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Обычно при проведении ПЦР выполняется 20-45 циклов, каждый из которых состоит из трех стадий: денатурации, отжига праймеров, элонгации (рис. 6.1 и 6.2). На рис. 6.1 представлена динамика изменения температуры в пробирке при проведении цикла ПЦР.

Рис. 6.1.График изменения температуры в пробирке в течение одного цикла полимеразной цепной реакции

Денатурация ДНК-матрицыпроводится с помощью нагревания реакционной смеси до 94-96 °С на 5-90 с, чтобы цепи ДНК разошлись. Следует отметить, что перед первым циклом осуществляют предварительный прогрев реакционной смеси в течение 2-5 мин для полной денатурации исходной матрицы, что позволяет снизить количество неспецифичных продуктов реакции.

Рис. 6.2.Схема первого цикла полимеразной цепной реакции

Стадия отжига праймеров.При плавном снижении температуры праймеры комплементарно связываются с матрицей. Температура отжига зависит от состава праймеров и обычно она на 4-5° ниже расчетной температуры плавления. Длительность стадии — 5-60 с.

Во время следующей стадии — элонгации— происходит синтез дочерней цепи ДНК на матрице материнской. Температура элонгации зависит от полимеразы. Часто используемые ДНК-полимеразы Taq и Pfu наиболее активны при 72 °С. Время элонгации, в основном зависящее от длины ПЦР-продукта, обычно составляет 1 мин на каждую тысячу пар оснований.

После проведения ПЦР проба инкубируется при температуре 72 °С в течение 10 мин. Количество специфического продукта реакции (ограниченного праймерами) при 100% эффективности теоретически возрастает в геометрической прогрессии по формуле Р = 2 n , где Р — количество специфического продукта, а η — число циклов реакции. Практически эффективность ПЦР меньше 100%, поэтому в действительности P = (1 + E) n ,где P — количество продукта; Е — средняя эффективность цикла; а n — число циклов реакции.

При большем, чем указано, количестве циклов реакции происходит накопление неспецифических продуктов последней. Рост требуемого продукта в геометрической прогрессии ограничен числом реагентов, присутствием ингибиторов и побочных продуктов реакции. На последних циклах рост замедляется, это называют «эффектом плато» (рис. 6.3). Кинетика ПЦР имеет экспоненциальный характер только на начальном этапе, после чего начинается выход на плато в силу истощений в реакции компонентов (dNTP, праймеров) и нарастающего температурного повреждения Таq-ДНК-полимеразы, конкуренции за фермент амплификонов.

Компоненты полимеразной цепной реакции.Компоненты, используемые в ПЦР, следующие: Taq-ДНК-полимераза, дезоксирибонуклеотидтрифосфаты, буферный раствор, «прямой» и «обратный» праймеры, а также ДНК-матрица.

Фермент Taq-ДНК-полимераза. При оптимальных условиях в реакционной смеси ПЦР (50-100 мкл) фермент содержится в количестве 0,5-2 единиц на пробу. Taq-ДНК-полимераза синтезирует цепь ДНК до 1000 пар оснований в минуту. Увеличивая время полимеризации и подбирая новые разновидности ДНК-полимеразы, обладающие и экзонуклеазной (редактирующей) активностью, вырезающей ошибочные (некомплементарные) нуклеотиды, удалось получить очень

длинные амплифицированные ДНК — до 42 тыс. пар оснований (Лонг-ПЦР). Избыток Таq-ДНК-полимеразы увеличивает образование неспецифических продуктов ПЦР.

Рис. 6.3.Динамика накопления продукта при полимеразной цепной реакции

dNTP. Дезоксирибонуклеотидтрифосфаты (dNTP), используемые в ПЦР, следующие: dATP, dGTP, gTTP, dCTP. dNTP содержатся в реакционной смеси в эквивалентных концентрациях от 200 до 500 мкм, так как избыток какого-либо из них увеличивает ложное спаривание нуклеотидов в ПЦР.

Праймеры. Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами, каждый из последних комплементарен одной из цепей двухцепочечной матрицы, обрамляет начало и конец амплифицируемого участка (рис. 6.4).

Поскольку праймеры каждый раз встраиваются в амплифицируемые фрагменты ДНК-матрицы (амплификоны), то они должны в реакционной смеси ПЦР присутствовать в избытке, и концентрация их составляет 0,5-1 мкМ. Специфичность получаемого продукта

ПЦР в значительной степени определяется так называемой температурой отжига праймеров, при которой они взаимодействуют с комплементарными участками ДНК-матрицы, образуя двухцепочечные структуры.

Рис. 6.4.Пример «прямого» и «обратного» праймеров

Буферная система. 10-кратный буфер для ПЦР чаще всего имеет состав: 0,5 М KCl; 0,2 М Трис-HCl, pH 8,4; 25 мМ MgCl2; 1 мг/мл бычьего сывороточного альбумина (БСА) — пример стандартной прописи буферной системы.

Tris Cl.Высокое значение рН нужно из-за того, что при повышении температуры рН Tris-буфера падает и при 72 °С составляет

KCl.Средние концентрации KCl стимулируют на 40-60% активность Taq-ДНК-полимеразы (но 0,2 M полностью ингибирует полимеразную активность).

MgCl2.Диапазон рабочих концентраций: 0,5-5 мМ. Увеличение концентрации Mg 2+ оказывает очень резкое влияние на специфичность и эффективность ПЦР: увеличивается выход, но более высокими темпами уменьшается специфичность. Оптимум зависит от последовательностей матрицы и праймеров.

Таким образом, слишком низкая концентрация Mg 2+ — низкий выход, слишком высокая — неспецифическая амплификация.

На молекулярном уровне: Mg 2+ образует комплексы с dNTP’s. Именно эти комплексы являются субстратом для Taq-ДНК- полимеразы. C Mg 2 + стехиометрически связываются dNTP’s, PPi, EDTA, PO4. Повышение концентрации Mg 2+ вызывает повышение температуры плавления ДНК.

В полимеразной цепной реакции используется вода высокой очистки (MQ). В зависимости от конструкции прибора (если «крышка» амплификатора не нагревается) в реакцию бывает необходимым на ПЦР-смесь наслаивать стерильное минеральное масло для предотвращения испарения пробы.

ДНК-матрица. Общее количество ДНК, вносимой в пробирку для ПЦР, не должно превышать 1 мкг, ибо большой избыток неспецифической ДНК снижает специфичность и чувствительность ПЦРамплификации ДНК-матрицы. Подготовка пробы материала (выделение ДНК или РНК) должна проводиться в условиях, исключающих перекрестное загрязнение исследуемых проб выделяемыми нуклеиновыми кислотами.

Чтобы ПЦР прошла успешно, должна произойти гибридизация праймеров с нужной последовательностью-мишенью. Если эта последовательность слегка различается у разных индивидуумов или у микроорганизмов из разных изолятов (т.е. имеет место полиморфизм), может произойти ее неполное спаривание с амплимером и нарушение нормальной амплификации, что приведет к получению ложноотрицательного результата. Следует отметить: у человека большая часть геномных последовательностей консервативна и не различается у разных индивидуумов, а потому обычно в таких случаях для работы подходят одинаковые наборы «консервативных» праймеров.

Контаминация.Для исключения ложноположительного результата необходимо обязательное использование чистых перчаток, одноразовых пробирок и наконечников к автоматическим пипеткам, проведение предварительной ультрафиолетовой обработки помещения и рабочих поверхностей столов и приборов. Подчеркнем: ДНКматрицы генов клеток, вирусов и бактерий пригодны для ПЦР в течение десятков лет даже после замораживания, высушивания, температурной или химической денатурации белков и др.

Чувствительность ПЦР порой достигает математически возможного предела (детекции 1 копии ДНК-матрицы), поэтому существует высокая степень опасности получения ложноположительного результата в силу переноса через предметы и реагенты как самой ДНКматрицы (реже), так и амплификонов (очень часто), получаемых в больших количествах во многих пробирках в течение ежедневной работы.

Причинами ложноположительных результатов являются следующие 3 вида контаминаций.

1. Контаминация от пробы к пробе (в процессе обработки клинических образцов или при раскапывании реакционной смеси), приводящая к появлению спорадических ложноположительных результатов.

2. Контаминация рекомбинантными плазмидами, содержащими клонированные последовательности детектируемого гена.

3. Контаминация продуктами амплификации (амплификонами). Она — наиболее частая причина ложноположительных результатов, поскольку в процессе ПЦР-генодиагностики амплификоны накапливаются в больших количествах и очень легко переносятся с аэрозолями и через приборы. Поэтому детекция продуктов ПЦР должна проводиться в изолированной комнате сотрудником, не производящим обработку клинических образцов и не готовящим реактивы для ПЦР. Приготовление основных растворов также должно производиться в отдельной чистой комнате. Все растворы следует хранить и использовать небольшими порциями.

Необходимо постоянно осуществлять собственные виды лабораторного контроля и периодически применять зашифрованные отрицательные и положительные контрольные образцы для оценки специфичности и чувствительности ПЦР-генодиагностических исследований. Неуклонно выполняя эти требования и выполняя в каждой ПЦР отрицательный контроль разных типов (на процедуру обратной транскрипции, буферный раствор, праймеры), можно практически исключить ложноположительные результаты ПЦР.

Очень важен для правильной интерпретации результатов выбор способов контроля. Положительный и отрицательный контроль должен быть хорошо охарактеризован. Часто используют ДНК из клеточных линий, заведомо содержащих или не содержащих последовательность-мишень. В каждом анализе нужны как минимум три вида контроля:

1) положительный контроль (образец заведомо содержит последовательность-мишень);

2) отрицательный контроль (образец заведомо не содержит последовательность-мишень);

3) бланк-контроль (реакционная смесь, в которой присутствуют все компоненты за исключением ДНК; бланк-контроль является индикатором загрязнений).

Один тип положительного контроля должен содержать максимальное число последовательностей-мишеней, другой — небольшое их число. Это позволяет определить чувствительность и эффективность ПЦР.

Детекция.Для анализа ПЦР-амплифицированной ДНК существуют разные методы: гель-электрофорез, дот-блот-гибридизацию и блот-гибридизацию по Саузерну. С их помощью можно анализировать большинство ПЦР-продуктов, но абсолютно точные результаты получают только при секвенировании. Следует отметить: в дальнейших главах будет описана модификация ПЦР — полимеразная цепная реакция в режиме реального времени, в которой детекция возрастания количества ПЦР-продуктов осуществляется непосредственно в пробирке при прохождении реакции (см. ниже).

Рис. 6.5.Фотография электрофоретического геля с ПЦР-продуктами

Присутствие специфического ПЦР-продукта (амплификона) в подавляющем большинстве случаев детектируют электрофоретическим разделением ПЦР-амплификационной смеси на окрашенных бромистым этидием агарозном или полиакриламидном гелях. Для такого выявления необходимо не менее 20 нг ДНК. Специфичность полосы амплифицированной ДНК подтверждается ее положением (размерами) по отношению к маркерным фрагментам и ДНКстандарту. Дополнительные доказательства специфичности амплификона получают путем расщепления специфическими рестриктазными

ферментами или путем гибридизации со специфическим радиоактивным или флуоресцентным олигонуклеотидным зондом.

Рис. 6.6.Устройство горизонтальной электрофоретической камеры

Электрофорез в агарозном геле позволяет легко, без применения радиоизотопов, обнаружить амплифицированную ДНК и определить ее размер (рис. 6.5 и 6.6). Остановимся на некоторых ее особенностях применительно к анализу ПЦР-амплифицированной ДНК:

а) 10-20 мкл амплифицированной ДНК разделяют в 2% агарозном геле вместе со стандартными фрагментами размером 50-1000 пар нуклеотидов;

б) электрофорез проводят при высоком напряжении (10-15 В/см), поскольку образующиеся при ПЦР небольшие фрагменты сложно детектировать после электрофореза в течение ночи при небольшом напряжении вследствие их интенсивной диффузии.

Разрешение можно повысить, используя полиакриламидные или агарозные гели с высокой концентрацией агарозы (3-4%). Впрочем, если анализ нужно провести быстро и с небольшими затратами, вполне приемлемы 2% агарозные гели. Обычно при амплификации ДНК, выделенной из фиксированных тканей, выход ПЦР-продуктов ниже, и они менее специфичны, чем в случае амплификации высокоочищенной ДНК.

Метод гибридизации ПЦР-амплифицированной ДНК (по Саузер- ну) позволяет идентифицировать полосы в геле, наблюдаемые после электрофореза амплифицированной ДНК. Для гибридизации используются как изотопно, так и неизотопно меченые зонды.

Дот-блот-гибридизация дает простой ответ по типу «да-нет» и особенно полезна в тех случаях, когда проводится анализ большого числа образцов.

Прямое секвенирование амплифицированной ДНК — также высоконадежный метод доказательства ее специфичности, но применяется в основном для определения точечных мутаций генов. В последние годы для детекции и одновременно количественной оценки амплифицированной ДНК все больше начинают применять гибридизационно-ферментный метод на микропланшетах. Но существуют и другие варианты: используются олигонуклеотидный зонд, его метят дигоксигенином или флуоресцеином с последующим проявлением моноклональными антителами к дигоксигенину или флуоресцеину; меченные ферментами моноклональные антитела к двухцепочечной ДНК; зонд, меченный рутением (электрохемилюминесцентный метод). Весьма перспективна для количественных детекций амплификонов на гель-электрофореграммах миниатюрная видеокамера, передающая на экран монитора интенсивность флуоресценции полос ДНК-амплификонов, что позволяет одновременно получить соотношение полос ДНК-стандарта и ДНК-амплификонов исследуемого гена.

Результат ПЦР можно квалифицировать как положительный или отрицательный в зависимости от того, обнаружена в образце интересующая вас последовательность-мишень или нет. Однако нарушение нормального хода амплификации, недостаточная чувствительность метода и непредвиденный полиморфизм последовательности-мишени в области связывания праймеров или гибридизационного зонда порой обусловливают ложноотрицательный результат. При загрязнении образцов и случайной гомологии между зондом, праймерами и последовательностью, сходной с мишенью, получаются ложноположительные результаты.

Модификации.В последние годы широко используется такой простой прием, как «горячий старт ПЦР», который заключается в предварительном прогревании пробирок с ПЦР-амплификационной смесью при температуре 95 °С в течение 3-5 мин. Такой прием предупреждает амплификацию неспецифических ДНК-фрагментов

Читайте также:  Электрофорез для артроза стопы как делать

вследствие низкотемпературного, неспецифического спаривания праймеров.

При использовании РНК в качестве матриц для ПЦР предварительно на этой РНК-матрице посредством фермента РНК-зависимой ДНК-полимеразы (обратная транскриптаза, ревертаза) синтезируют комплементарную ДНК (кДНК), затем использующуюся в качестве матрицы в ПЦР. ПЦР с обратной транскриптазой (ОТ-ПЦР) широко применяется для детекции РНК вирусов, определения экспрессии вирусных, бактериальных и клеточных генов по их РНК.

Существуют различные модификации ПЦР, использующиеся в зависимости от конкретных целей проведения реакции или от характера последующего молекулярного анализа амплификатов. Так, для трудноамплифицируемых участков ДНК (содержащих различные повторяющиеся последовательности или необычные структурные элементы), а также в тех случаях, когда матричная ДНК присутствует в следовых количествах, ПЦР проводят в два этапа, используя в качестве матричной ДНК на втором этапе амплификации продукты ПЦР, синтезированные на первом этапе. Часто в этих случаях для повышения специфичности посадки праймеров применяют систему так называемых вмонтированных праймеров, т. е. при доамплификации в качестве праймеров выбирают последовательности, локализованные внутри амплифицированного на первом этапе участка ДНК.

В ряде случаев удобно проводить мультиплексную ПЦР, т.е. одновременную амплификацию нескольких участков матричной ДНК. Можно получать меченые продукты ПЦР, добавляя в реакционную смесь меченые dNTP. Особого внимания заслуживает возможность проведения ПЦР с молекулами кДНК. На основе этой реакции разработаны методы анализа экспрессии генов и получения больших количеств кДНК. Реакция амплификации осуществима не только в растворах, но и непосредственно на хромосомных препаратах, при этом в случае использования меченых нуклеотидов продукты амплификации гибридизуются и выявляют комплементарные им участки ДНК на хромосомах. До настоящего времени доступными амплификации были участки ДНК, не превышающие по длине 5 тыс. пар оснований. В последнее время благодаря внесению ряда кардинальных усовершенствований (особый подбор праймеров, использование сразу двух различных ДНК-полимераз, специального температурного режима полимеразных циклов) возможно про-

ведение амплификации фрагментов ДНК, достигающих 35 тыс. пар оснований.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

ПЦР-реакция и электрофорез

Может возникнуть необходимость увеличить количество индивидуальной кДНК до ее введения в плазмиду с помощью какого-то процесса ее воспроизводства. Такой процесс разработан и широко применяется не только для решения этой частной задачи, но и во всех случаях, когда необходимо умножить количество определенных фрагментов ДНК. Например, фрагментов, содержащих изучаемый ген и его регуляторное окружение.

Процесс этот получил название ПЦР-реакция, что расшифровывается как полимеразная цепная реакция. (В английском названии PCR — polymerasechainreaction.) Невольно напрашивается сопоставление с реакцией атомного взрыва. И, пожалуй, оно не лишено смысла — нарастание количества нужной ДНК происходит чрезвычайно быстро, даже бурно.

Рассмотрим эту реакцию для общего случая — наработки множества копий некоего фрагмента ДНК, содержащего в какой-то своей части интересующую нас последовательность пар оснований. Итак, допустим, что нам известна последовательность нуклеотидов на достаточно большом протяжении некой ДНК и есть основания предполагать, что внутри этой последовательности лежит интересующий нас участок. Рассмотрим серию операций, ведущих к его выделению и умножению.

Сначала в местах, лежащих близко, но заведомо за пределами интересующего нас участка ДНК, выберем две последовательности — по 20 пар нуклеотидов, лежащих по обе стороны от этого участка. Исходя из этих последовательностей синтезируем химически два однонитевых праймера на основе дезоксирибонуклеотидов. Первый — комплементарно к условно «первой» нити ДНК с ее Законна, второй — комплементарно ко «второй» нити с ее Законна. Очевидно, что праймеры будут разные.

Теперь добавим в буфер, где растворено малое количество исходной ДНК оба праймера в большом избытке, нагреем смесь до температуры 94°, а потом быстро охладим до 50°. ДНК денатурируется при 94°, ее нити расходятся. При 50° оба праймера гиб-ридизируются с выбранными для них участками однонитевых ДНК. Это произойдет быстро, так как праймеры имеются в избытке и, кроме того, вследствие своей малости они подвижны и легко «найдут» свои посадочные места. Ренатурация ДНК происходит медленно. За те 2 минуты, что будет продолжаться этот этап, ДНК практически не ренатурируется, а праймеры успеют надежно гибридизоваться с комплементарными для них участками обеих нитей. Такая ситуация отражена на рисунке 35 (1). Праймеры, как обычно, садятся с 3″-конца матричной нити ДНК и направляют движение будущей ДНК-полимеразы к ее 5′-концу. Это направление указано стрелками. Для удобства описания дальнейших событий, присвоим праймерам названия «левый» (стрелка зачернена) и «правый» (стрелка не зачернена).

Теперь быстро поднимем температуру смеси до 72 °С. при этой температуре нити ДНК заведомо не сойдутся, а праймеры еще удержатся на своих местах. Внесем в раствор ДНК-полимеразу. Вообще-то говоря, она там была с самого начала!

Но что это за фермент, который не денатурируется при 94°, а при 72° сейчас начнет вести комплементарный синтез ДНК? К счастью, такая ДНК-полимераза существует. Ее называют «Taq ДНК-полимераза» и выделяют из очень термофильных бактерий «Thermusaquaticus», прекрасно размножающихся при температуре 85 °С.

Итак, переходим к этапу 2, где изображен процесс матричного синтеза комплементарной нити ДНК, начинающийся от праймера и продолжающийся без других ограничений (что отмечено стрелой), кроме ограничения длительности этого этапа (3 минуты). Мы будем для простоты рисунка рассматривать события, начинающиеся с копирования только одной нити, хотя, конечно, будут копироваться обе. Они совершенно равноправны, и в заключение нашего анализа надо будет просто удвоить полученный результат. Через 3 минуты оканчивается 2-й этап и температура снова скачком поднимается до 94°, а еще через одну минуту быстро снижается до 50°. Эта ситуация отражена на этапе 3. При 94° новосинтезированная нить ДНК отделилась от материнской нити. (Последнюю, для ясности, я здесь и всюду далее изображаю жирной линией.) В составе новосинтезированной копии я больше не изображаю «левый» праймер, поскольку он был комплементарен материнской нити ДНК и потому вместе с участком, синтезированным ДНК-полимеразой, вошел в состав копии. Зато на эту копию с ее 3′-конца при 50° на предназначенный для него участок (ведь копия тождественна «второй» материнской нити) уже сел «правый» праймер. На освободившуюся материнскую нить с ее З*-конца тоже сел праймер — «левый», но, конечно, не тот, что ушел с копией, а другой, точно такой же. Благо праймеры имеются в избытке.

На этапе 4 (при 72°) показаны два новых комплементарных синтеза. Тот, что идет по материнской нити, по-прежнему, пространственно не ограничен. А вот тот синтез, что начинается от правого праймера, сидящего на новосинтезированной копии окончится там, где в этой копии «спрятан» весь бывший «левый» праймер — ведь с него эта копия начиналась. В результате здесь впервые появляется выбранный для умножения участок ДНК, ограниченный двумя праймерами, включая и их самих. Это хорошо видно на этапе 5, когда после нагрева до 94° все двойные нити разошлись и на рисунке оказываются уже 4 одинарных нити, на которые, туда «где им положено» село 4 праймера (два «левых» и два «правых»). Этап 6 — синтез 4-х копий, начинающихся от этих праймеров. В трех случаях из четырех он ограничен длиной нужного отрезка ДНК. (Материнская нить здесь, как и всюду дальше копируется без ограничения справа.) Вместе с образованным на 4-м этапе и уже обрезанным с обеих сторон участком мы получаем 4 фрагмента исходной ДНК нужного размера. Это хорошо видно на этапе 7, где все четыре пары нитей ДНК разошлись и на них уже сидят 8 праймеров.

Если у читателя хватило терпения разобраться во всей этой «механике», то он согласится, что после синтеза на этапе 8 получится уже 11 отрезков ДНК нужной длины. Заметим попутно, что хотя мы рассматриваем «потомство» одной только «первой» материнской нити, среди полученных отрезков будут копии участков как «первой», так и «второй» материнской нити, поскольку мы уже не один раз вели комплементарный матричный синтез.

Проследим теперь закономерность, отраженную в цифрах, стоящих справа от рисунка, около изображений 3-го, 5-го, 7-го и 8-го этапов. Перед скобкой каждый раз стоит число одиночных нитей ДНК после нагревания до 94°. Легко заметить, что оно неизменно удваивается. Что и следовало ожидать, поскольку на каждом из предыдущих четных этапов все имеющиеся в наличии нити ДНК так или иначе копируются.

Но вот что может показаться неожиданным, и в чем состоит вся суть ПЦР-реакции. Число фрагментов нужного размера, указанное в скобках, нарастает несравненно быстрее: 0-1-4—11 штук. Так будет и далее. Каждый укороченный отрезок будет копироваться в том же размере. И число их будет непрерывно пополняться за счет не сразу укороченных отрезков ДНК. Через 30 циклов, подобных рассмотренным (а каждый цикл — это два этапа) количество нитей ДНК достигнет огромной цифры. Притом практически все они уже будут нужной длины — и выделение фрагмента, и его умножение состоялось! Вспомним, что у нас исходно было две нити. Таким образом написанное число надо удвоить.

Что это означает не в штуках, а в весовых единицах? Можно подсчитать, что если имелось изначально всего 10 молекул ДНК, длиной в 1000 пар оснований каждая, то в результате 30-ти циклов ПЦР-реакции должно получиться около 2-х микрограммов необходимого генетического материала. Для современных методов исследования это весьма значительное количество.

На самом деле в таких подсчетах конечный выход ДНК получится значительно завышенным, потому что Taq ДНК-полимера-за изнашивается, а после 30 циклов и вовсе перестает «работать». Но ведь можно внести новую порцию фермента и запустить еще 30 циклов. (Замечу попутно, что Taq ДНК-полимераза не очень «строга». После 30 циклов в среднем 1 нуклеотид из 400 оказывается включенным ошибочно.)

Разумеется, все эти циклы осуществляются не вручную, а в специальном приборе, от которого, впрочем, требуется не многое. Только очень быстро по обозначенной выше программе менять температуру весьма малого объема жидкости (защищенной от испарения тонким слоем минерального масла). Что же касается продолжительности 30-ти циклов, то даже, если учесть, что длительность синтеза приходится по указанной выше причине постепенно увеличивать от 3-х до 10-ти минут, то на один цикл прибор будет затрачивать в среднем 12 минут. А на 30 циклов — 6 часов.

От экспериментатора требуется только правильно составить рабочую смесь. Разумеется, если праймеры уже выбраны и синтезированы в достаточном количестве. Taq ДНК-полимераза и нуклеозидтрифосфаты имеются в продаже. Наработку большого количества определенного гена при помощи ПЦР-реакции часто называют «клонированном» этого гена. Описанную здесь ПЦР-реакцию с двумя праймерами иногда именуют «симметричной», в отличие от другой тоже ПЦР-реакции, но с одним начальным праймером, которую называют «ассиметричной».

ПЦР-реакцию надо включить в описанную там последовательность операций между получением кДНК и включением ДНК в плазмиду. В этом случае последовательность 21-го нуклео-тида для праймеров придется выбирать не свободно, а точно по концам гена, кодирующего наш белок. Эти оба конца можно установить, как это было описано с помощью ЧИП-метода. Для этого даже не надо знать всю аминокислотную последовательность белка, а только концевые участки — по 7 аминокислот с каждого конца. (Благо, как упоминалось, секвенирование белка теперь можно начинать с любого конца.) При синтезе концевого праймера надо только добавить концевой кодон УГА, который не транскрибируется в иРНК. Кроме того к «наружным» концам обоих праймеров имеет смысл уже на этом этапе добавить небольшие последовательности нуклеотидов, которые, не будучи комплементарны ни к какому участку гена, не будут и гибридизоваться. Но могут образовать два «липких» конца для последующего включения размноженной кДНК в разрезанные плазмиды. На рис. 35 эти дополнительные последовательности изображены в виде «хвостиков» у праймеров. Напомню, что эта размноженная кДНК нам потребовалась для того, чтобы добиться достаточно эффективного включения содержащих ее плазмид в бактерию, которая, размножаясь, будет нарабатывать в большом количестве нужный нам белок.

источник

Для визуализации результатов операций, проводимых с ДНК,таккак выделение, рестрикция,полимеразная цепная реакция(ПЦР),молекулярное клонирование, наиболее частоиспользуютэлектрофорез.

Электрофорез — метод разделения макромолекул (в том числе
молекул и фрагментов ДНК) в геле по размеру и заряду в постоянном электрическом поле. Существует два вида электрофореза: горизонтальный и вертикальный.

Для проведения горизонтального электрофореза используют пластину агарозного геля необходимой концентрации с добавлением специального красителя ДНК, например бромида этидия.

На скорость движения ДНК в геле в процессе электрофореза влияют несколько факторов.

Концентрация агарозы в геле.Агарозный гель — пористая струк-
тура, причем увеличение концентрации агарозы в геле приводит к
уменьшению размеров его пор. Это позволяет при помощи геля с
разной концентрацией агарозы разделять линейные молекулы
ДНКв широком диапазоне их размеров, вплоть до 60 тыс. пар
нуклеотидов (п. н.).

Существует зависимость длины разделяемых фрагментов ДНК
от концентрации агарозы в геле;

Концен- 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,5 2,0

Длина 5-60 1-30 1-20 0,8-12 0,6-10 0,5-8 0,5-7 0,4-6 0,2-3 0,1-2

Заряд молекулы.Поскольку каждый из нуклеотидов молекулы
ДНК несет остаток ортофосфорной кислоты со свободной гидроксильной группой, в нейтральной и особенно в слабощелочной
среде молекула ДНК приобретает отрицательный заряд и способность перемещаться в электрическом поле в направлении от катода (отрицательный электрод) к аноду (положительный электрод). Электрофоретическая подвижность молекулы ДНК существенно снижается с увеличением ее длины.

Читайте также:  Когда нужно делать массаж до или после электрофореза

Напряженность электрического поля.На скорость движения заряженных молекул ДНК в геле влияет напряженность электрического поля, определяемая напряжением постоянного электрического поля, подаваемого на электроды. Данные, приведенные на
рисунке 1, свидетельствуют о наличии обратно пропорциональной зависимости между длиной пробега ДНК в геле и напряженностью электрического поля. Число полученных электрофореграмм различно, поэтому разделение фрагментов ДНК для
аналитических целей (только с целью детекции ДНК) с максимальным разрешением рекомендуют проводить при напряжении 10—15 В/см, а для препаративных (если ДНК будет в дальнейшем выделена из геля и использована, например, для клони-
рования) — при

Линейные молекулы ДНК одного размера движутся в геле с
одинаковой скоростью. Однако подвижность суперспирализованных и кольцевых молекул ДНК отличается от подвижности линейных молекул того же размера. Таким образом, методом элект-рофореза можно фракционировать три формы молекул ДНК бактерий:

• суперспирализованную (нативная молекула, стабилизированная белками);

•линейную (расщепленная рестриктазой кольцевая молекула).
Разделение трех типов молекул ДНК в одном геле выглядит следующим образом (по подвижности от катода к аноду):

Кольцевая молекула ДНК
Линейная молекула ДНК
Суперспирализованная молекула ДНК

При постановке электрофореза можно определить размер (молекулярную массу) только линейной ДНК. Для этого в одну из лунок геля наносят стандарт, в качестве которого используют специальные маркеры молекулярной массы (смесь фрагментов ДНК с
известными значениями молекулярных масс).

Для контроля скорости движения ДНК в геле, а также для определения времени окончания процесса электрофореза применяют краску-лидер (специальный краситель, например бромфеноловый синий), которая перемещается в геле, немного опережая макромолекулы ДНК, двигающиеся в процессе электрофореза.

Для визуализации результатов электрофореза используют краситель бромид этидия, который вносят в процессе приготовления геля. Данное вещество встраивается (интеркалирует) в молекулы ДНК плоскими ароматическими группами. После окончания
электрофореза, продолжающегося от 10 мин до 1 ч, гель помещают на светофильтр трансиллюминатора, пропускающего свет в диапазоне 254—400 нм. Краситель начинает флуоресцировать в оранжево-красной области видимого спектра (590 нм), при этом
становится видна ДНК.

Внимание! Используемый в качестве красителя бромид этидия является мутагенным веществом. При работе с ним необходимо использовать резиновые или латексные перчатки.

Методы вертикального и горизонтального электрофореза
принципиально сходны, однако в последнем случае вместо агарозного используют полиакриламидный гель (ПААГ) и процесс электрофореза проходит вертикально. Электрофорез в ПААГ характеризуется высокой разрешающей способностью.

Кроме того,акриламид является токсичным веществом. Приготовить ПААГ
значительно сложнее, чем агарозный гель. В связи с этим в работе
с ДНК преимущественно используют метод горизонтального
электрофореза в агарозном геле.

Цель работы. Ознакомиться с методом горизонтального электрофореза ДНК в агарозном геле.

Оборудование и материалы.1. Прибор для горизонтального электрофореза.
2. Источник постоянного тока. 3. Электрическая плитка или СВЧ-печь. 4. Гельдокументирующая видеосистема. 5. Автоматические дозаторы переменного объема с наконечниками. 6. Колба мерная вместимостью 1 л. 7. Колба коническая
вместимостью 0,5 л. 8. Цилиндр мерный вместимостью 250 мл. 9. Кристаллизатор.
10. Набор реагентов для электрофореза (например, производимый ООО «КОМПАНИЯ «БИОКОМ»)включает: смесь для приготовления электродного буфера;
навеску агарозы; раствор бромида этидия; раствор краски-лидера (бромфеноловый синий). 11. Проба исследуемой плазмидной ДНК. 12. ДНК-маркер молекулярных масс. 13. Перчатки резиновые или латексные неопудренные. 14. Теплоизолирующая рукавица. 15. Вода дистиллированная.

Ходработы.Приготовлениерабочегобуферногораствора для электрофореза. Содержимое пакета «Буфер для электрофореза» полностью переносят в мерную колбу, раство-ряют в 600—800 мл дистиллированной воды (для более быстрого
растворения следует подогреть раствор до 40—45 «С при постоян-
ном помешивании) и доводят объем полученного раствора до 1 л
дистиллированной водой.

Подготовка прибора для электрофореза к работе. Пользуясь встроенными уровнями и винтовыми ножками,
прибор устанавливают строго горизонтально. В рабочую камеру
наливают буфер для электрофореза. Для формирования гелевой
пластины собирают кювету, в нее помещают аппликатор (гребенку) для формирования лунок в толще геля (рис. 2). Регулируемую

высоту аппликатора выставляют таким образом, чтобы расстояние
от дна кюветы до каждого из зубцов составляло 1—2 мм. В зависимости от числа анализируемых проб одновременно можно установить одну, две или три гребенки.

Приготовление агарозного геля. Навеску агарозы,
необходимую для приготовления 1%-ного геля, полностью переносят в коническую стеклянную колбу вместимостью 250—500 мл,
добавляют 150 мл рабочего раствора буфера для электрофореза и
перемешивают. Суспензию агарозы в колбе доводят до кипения в
СВЧ-печи или на электроплитке, периодически помешивая (колбу
держать, только надев на руку теплоизолирующую рукавицу).
Продолжают нагревание до тех пор, пока содержимое колбы не станет
совершенно прозрачным (обычно еще 1 мин). Расплав охлаждают
до 55—60 °С, добавляют 10 мкл раствора бромида этидия, перемешивают (работу проводят в латексных или резиновых перчатках) и
наливают на столик для заливки геля (см. описание к прибору для
электрофореза), не допуская образования воздушных пузырьков,
так, чтобы толщина слоя была не менее 5 мм, а зубцы гребенок
были погружены в гель не менее чем на 4 мм. Гель полностью застывает через 15—20 мин. Столик с готовым агарозным гелем и гре-
бенками переносят в камеру для электрофореза, в которую нали-
вают рабочий раствор буфера для электрофореза так, чтобы по-
крыть гелевую пластину слоем в 2—3 мм. Извлекают гребенки из
агарозного геля легким и плавным движением вверх, стараясь не
повредить образовавшиеся лунки.

Проведение электрофореза. В лунки застывшего агарозного геля осторожно вносят по 3 мкл раствора исследуемых образцов ДНК. В соседнюю лунку геля вносят 3 мкл маркера молекулярных масс фрагментов ДНК. В одну или
две (по краям пластины геля) свободные лунки вносят 2—3 мкл
краски-лидера. Закрывают крышку прибора для электрофореза и
подключают его к источнику постоянного тока, строго соблюдая
полярность электродов и учитывая, что движение фрагментов
ДНК происходит в направлении от катода к аноду (от «минуса» к
«плюсу»). На вольтметре источника постоянного тока устанавли-
вают напряжение 120—150 В. В таком режиме процесс электрофо-
реза продолжают около 30 мин, ориентируясь на фронт пробега
краски-лидера (приблизительно на 3 см). По окончании электро-
фореза источник напряжения отключают, снимают крышку при-
бора, пластину агарозного геля осторожно переносят на свето-
фильтр (просмотровый столик) УФ-трансиллюминатора для де-
текции Включают трансиллюми-
натор. Зоны ДНК, окрашенные бромидом этидия, светятся при
УФ-облучении.

Внимание! Во избежание повреждения сетчатки глаз ультрафиолетовым излучением наблюдать зоны ДНК следует только через за-щитное стекло из комплекта трансиллюминатора или защитные (стеклянные) очки. Полученные результаты регистрируют визуально или с использованием гель-документирующей видеосистемы,пользуясь инструкцией к ней.

Контрольные вопросы.1. Какой принцип лежит в основе метода электрофоре-
за? 2. Какая масса агарозы необходима для приготовления 150 мл 2,5%-ного геля?
3. Какой концентрации агарозный гель нужно использовать для разделения мето-
дом электрофореза фрагментов ДНК размером 350 и 150 п.н.? 4. В каком направ-
лении и почему движутся молекулы ДНК при проведении электрофореза? 5. От
каких факторов зависит скорость движения молекул ДНК в агарозном геле в про-
цессе электрофореза? 6. Почему нужно избегать образования в геле пузырьков
воздуха? 7. За счет чего происходит визуализация ДНК в геле? 8. Каким образом
можно контролировать движение молекул ДНК в геле во время электрофореза?
9. На каких этапах проведения электрофореза необходимо работать в перчатках и
почему?

Задания.1. Поместить схему или фотографию электрофореграммы в рабочий журнал, пронумеровать дорожки и сделать подписи к ним. 2. Определить и подписать размеры фрагментов ДНК-маркера (согласно описанию к нему). 3. По электрофореграмме определить электрофоретическую подвижность и рассчитать примерную молекулярную массу исследуемой плазмидной ДНК, используя маркеры молекулярных масс. 4. Определить, какой из ДНК нижеперечисленных плазмид соответствует исследуемая ДНК, если ДНК плазмиды РСЕМ-2Гимеет размер 3000 п.н.ДНК плазмиды рВК322 — 4361,а ДНК плазмидыр РСУ002—8560 п.н.

источник

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

источник

В результате ПЦР получается множество копий одного или нескольких фрагментов ДНК. Для дальнейшей работы эти фрагменты надо каким-то способом зарегистрировать или сделать видимыми — визуализировать. Регистрировать ПЦР-продукт можно на протяжении всей реакции («ПЦР в реальном времени»), либо только после ее завершения (метод «FLASH-PCR» или визуализация в геле) (см. параграф 5.4.4). В настоящем параграфе обратимся к визуализации результатов ПЦР при электрофоретическом разделении молекул ДНК по размеру.

Для этого готовят пластину агарозного геля, представляющего собой застывшую после расплавления в электрофорезном буфере агарозу в концентрации 0,7—2,5% с добавлением специального интеркалирующего (т.е. способного встраиваться в молекулу ДНК между парами оснований и флуоресцирующего только после встраивания в двунитевую молекулу ДНК) красителя ДНК, например бромистого этидия (можно использовать и другие подобные красители, например «SYBR Green I»). При заливке в геле формируют лунки (с помощью специальных гребенок, помещаемых в гель перед заливкой), в которые в дальнейшем вносят продукты амплификации. Пластину геля помещают в аппарат для горизонтального гель-электрофореза и подключают источник постоянного напряжения. Отрицательно заряженная ДНК начинает двигаться в геле от минуса к плюсу. При этом более короткие молекулы ДНК движутся быстрее, чем длинные. На скорость движения ДНК в геле влияет концентрация агарозы (с повышением концентрации скорость замедляется), напряженность электрического поля, температура, состав электрофорезного буфера. Молекулы ДНК одного размера движутся с одинаковой скоростью. Краситель соединяется с молекулами ДНК. После окончания электрофореза, продолжающегося, как правило, от 10 мин до 1 ч, гель помещают на фильтр трансиллюминатора, излучающего свет в ультрафиолетовом диапазоне. Энергия ультрафиолета, поглощаемая интеркалирующим красителем в области 260 нм (для бромистого этидия), передается на краситель, заставляя его флуоресцировать в оранжево-красной области видимого спектра (590 им для бромистого этидия). Пример электрофореграммы, показывающей идентификацию гриба Altemana altemata в пробах пораженных листьев томата с помощью ПЦР, приведен на рис. В.11.

По яркости полос на геле можно приблизительно оценить количество ДНК в ПЦР-продукте. Для этого обычно используют стандартный маркер длин фрагментов. Концентрация фрагментов определенной длины известна из инструкции к маркеру, поэтому сравнивая яркость полученных фрагментов с яркостью фрагментов маркера, можно приблизительно оценить концентрацию ПЦР-продукта.

Существует также метод оценки концентрации ДИК в исходной матрице (очень приблизительный). Для этого используют фрагмент ДНК (внутренний стандарт), который, как и фрагмент определяемой ДНК, содержит участки отжига тех же праймеров. Этот фрагмент амплифицируют одновременно с образцом определяемой ДНК. Количество ДНК внутреннего стандарта известно. При одновременной амплификации «внутренний стандарт» дает продукт иного размера, чем целевой фрагмент. «Внутренний стандарт» часто используют в диагностических системах для контроля прохождения ПЦР («внутренний контроль»).

Для разделения близких по размеру фрагментов используют метод вертикального электрофореза в полиакриламидном геле. Для работы с полиакриламидными гелями применяют специальные камеры для вертикального электрофореза. Электрофорез в полиакриламидном геле имеет большую разрешающую способность по сравнению с агарозным электрофорезом и позволяет различать молекулы ДНК разных размеров с точностью до одного нуклеотида. Приготовление полиакриламидного геля несколько сложнее приготовления агарозного. Кроме того, акриламид является токсичным веществом. Поскольку необходимость определить размер продукта амплификации с точностью до одного или нескольких нуклеотидов возникает редко, то в рутинной работе этот метод обычно не используют.

Модификации метода ПЦР, используемые при идентификации фито- патогенов.

ПЦР с применением обратной транскрипции (ОТ-ПЦР; RT-PCR, от англ. reverse transcription polymerase chain reaction). Обычный метод ПЦР применим для анализа только ДНК-содержащих организмов. Его нельзя использовать для выявления РНК-содержащих организмов, среди которых встречаются высокопатогенные вирусы и вироиды. Используемая при классическом ПЦР Год-полимераза не способна обеспечивать синтез ДНК на РНК-матрице. При диагностике РНК-содержащих организмов используют дополнительный фермент — РНК-зависимую ДПК- полимеразу, или обратную транскриптазу (reverse transcriptase). Реакция с участием обратной транскриптазы приводит к образованию одноцепочечной кДНК, комплементарной имеющейся РНК. В дальнейшем фрагмент кДНК амплифицируется с участием ДНК-полимеразы.

Читайте также:  Методика электрофореза глюконата кальция

У метода ОТ-ПЦР есть другое полезное применение. Как известно, мРНК (матричная РНК) может образовываться только живым организмом, в то время как ДНК может сохраняться и в мертвых. Поэтому с помощью ОТ-ПЦР можно одновременно проводить идентификацию и оценку жизнеспособности патогенов в пробе.

ОТ-ПЦР также широко используется для оценки экспрессии генов: чем активнее ген, тем больше производится мРНК, что можно оценить с помощью ОТ-ПЦР. Для оценки количества ПЦР-продукта лучше использовать Real-Time ПЦР (см. параграф 5.4.4).

ПЦР с вложенной парой праймеров (гнездовая ПЦР, Nested PCR). Характерной особенностью данного варианта ПЦР является то, что в реакции последовательно участвуют две пары праймеров, при этом вторая пара праймеров участвует в амплифицикации фрагмента ДНК внутри продукта, полученного после завершения цикла реакций с парой внешних праймеров.

Существуют две технические альтернативы проведения ПЦР с вложенной парой праймеров. Согласно первой, в реакционной пробирке после проведения 15—30 циклов амплификации получают базовый фрагмент ДНК с участием внешних праймеров. Затем переносят аликвоту содержимого в другую пробирку, в которой находится реакционная смесь с внутренними праймерами, взаимодействующими с нуклеотидными последовательностями внутри полученного фрагмента, и проводят вторую амплификацию (реамплификацию), также включающую 15—30 циклов.

Альтернативный вариант гнездовой ПЦР предполагает подбор такой температуры отжига для первой стадии, при которой вложенная пара праймеров не взаимодействует с ДНК. В этом случае температуру амплификации с внутренними праймерами поддерживают на 10—15°С ниже, чем при реакции с внешними праймерами.

Увеличение числа копий ПЦР-продукта после первой реакции позволяет существенно увеличить чувствительность и специфичность диагностики. Перенесение продукта после первого цикла реакций во вторую пробирку может способствовать снижению концентрации ингибиторов полимеразной реакции, которые иногда присутствуют в препарате. Однако, с другой стороны, в этом случае возрастает вероятность получения ложноположительных результатов из-за возможного загрязнения пробы.

ПЦР в комбинации с ELISA (Enzyme-LinkedImmunoSorbent Assay) (ПЦР с иммунным захватом, Immunocapture PCR). ПЦР с иммунным захватом является примером совместного использования иммунохимических (см. параграф 5.6.2) и основанных на ПЦР методов диагностики фитопатогенов.

Образец, подлежащий исследованию (например, экстракт, содержащий детектируемый вирус), добавляют в микропробирку или в лунки микропланшета, на поверхности которых сорбированы антитела, специфически связывающие искомые вирусные частицы. Это позволяет захватить из раствора нужные вирусные частицы и увеличить концентрацию ДНК- матрицы. На следующей стадии из этих частиц освобождают вирусную ДНК или РНК и проводят, соответственно, НЦР или ОТ-ПЦР.

Обычно ПЦР с иммунным захватом усиливает специфичность и чувствительность диагностики фитопатогенов. Он также полезен в случае, если в образце присутствуют компоненты, ингибирующие полимеразную реакцию, поскольку снижает или устраняет их влияние.

Метод БИО-ГЩР (BIO-PCR) совмещает в себе культивирование микроорганизмов из пораженной пробы па селективной среде и последующее проведение ПЦР с целью идентификации определенных патогенов, накопившихся во время инкубации. Этот метод, широко применяемый для обнаружения фитопатогенных бактерий, может быть использован и для грибов.

При проведении анализа с помощью БИО-ПЦР исследуемый образец помещают на агаризованную или в жидкую селективную среду и инкубируют при оптимальных для выявляемого патогена условиях внешней среды. После инкубации определяемые бактерии накопятся в количестве, достаточном для диагностики. Затем их смывают с поверхности агара или осаждают из жидкой среды центрифугированием и отбирают от 1 до 10 мкл образца для ПЦР.

Этот метод отличается высокой чувствительностью и особенно подходит для быстро растущих видов. Метод БИО-ПЦР позволяет выявлять даже единичные экземпляры искомого фитопатогена в пробе.

источник

Сущность метода электрофореза. В настоящее время фракционирование и детекция флуоресцентно меченых продуктов ПЦР проводятся в автоматизированных системах (секвенаторах или генетических анализаторах). В этих системах автоматизированы этапы электрофореза, детекции флуоресцентно меченых фрагментов ДНК и учета результатов электрофореза (рис. 4.11).

4. В « В Е F Й
Рис. 4.11. Электрофорез различных фрагментов ДНК

Используя метод электрофореза, фрагменты ДНК различной длины могут быть фракционированы. Этот метод является важнейшим методом исследования ДНК и широко используется в криминалистическом ДНК-анализе.
Средой для электрофореза служит среда на основе полиакриламида, формирующая сетчатую структуру с величиной ячеек, соизмеримой с величиной молекулы ДНК. Исследуемые пробы ДНК вносят в среду для электрофореза и накладывают электрическое поле. Фрагменты ДНК (имеющие отрицательный заряд) начинают перемещаться к аноду (положительно заряженному электроду), испытывая сопротивление сетчатой среды геля. Чем короче фрагмент, тем меньшее сопротивление он испытывает и тем быстрее он движется (скорость миграции обратно пропорциональна логарифму
длины фрагмента). В результате электрофореза в среде образуются участки, содержащие фрагменты ДНК. Те области, которые располагаются ближе к аноду, соответствуют меньшим по длине фрагментам, а те, которые дальше, — большим (см. рис. 4.11).
В автоматизированных приборах электрофорез проводят до тех пор, пока все фрагменты ДНК не пересекут область детекции, которая располагается со стороны анода (рис. 4.12). В этой области среда электрофореза освещается лазером, который возбуждает свечение флуоресцентных меток продуктов ПЦР. Цифровая камера фиксирует свечение меток, которое сохраняется на компьютере.
Электрофорез

Энергия , Г Возбужденный Компьютер ‘ |’ свет
’S-

РИС. 4.12. Схема электрофореза ДНК с автоматизированной детекцией флуоресцентных меченных продуктов П11Р
В результате фракционирования продуктов ПЦР STR-локусов ДНК на приборах получают первичные графические данные элек- трофореграмм. Эти данные представляют собой график измерений детектором интенсивности свечения флуоресцентных меток (рис. 4.13).
Для определения длины исследуемых фрагментов ДНК перед электрофорезом каждую исследуемую пробу смешивают с денатурирующим реагентом формамидом и специальным маркером — внутренним стандартом, содержащим смесь фрагментов известной длины (рис. 4.14).


Рис. 4.13. Первичные данные электрофореза продуктов ПЦР STR-локусов ДНК

alt=»Рис. 4.14. Электрофорез фрагментов внутреннего стандарта» />

Рис. 4.14. Электрофорез фрагментов внутреннего стандарта

Фрагменты внутреннего стандарта содержат флуоресцентную метку, отличающуюся от флуоресцентных меток продуктов ПЦР.

После электрофореза по расположению исследуемых фрагментов относительно фрагментов внутреннего стандарта, используя специальный компьютерный анализ, имеется возможность с высокой точностью установить величины исследуемых фрагментов ДНК.
Виды автоматизированных систем для электрофореза ДНК. В настоящее время существует два основных варианта автоматизированных систем: для электрофореза в денатурирующем полиакриламидном геле; для электрофорез в капилляре в среде специального полимера при денатурирующих условиях (капиллярный электрофорез).
Примером прибора, позволяющего проводить фракционирование и детекцию флуоресцентно меченых продуктов секвенирую- щих реакций по первому варианту является секвенатор ABI Prism 377 DNA Sequencer, производства фирмы Applied Biosystems, США. Примером приборов, работающих по второму варианту — ABI Prism 310 Genetic Analyzer, 3100 и 3130 Genetic Analyzer, производства фирмы Applied Biosystems, США (рис. 4.15).

Рис. 4.15. Генетический анализатор ABI Prism 3130 Genetic Analyzer

Достоинством первого варианта электрофореза являются меньшие требования, предъявляемые к чистоте и качеству реактивов, меньшая стоимость анализа, проведение традиционных для ручного исследования процедур (приготовление полиакриламидного геля, подготовка образцов, их нанесение и т.д.)- Недостатком этого варианта является необходимость проведения значительного количества ручных операций, цикличность работы, требующая накопления объектов исследования.
Приборы капиллярного электрофореза лишены вышеприведенных недостатков, однако для них характерна более высокая стоимость анализа. Важным достоинством этих приборов является значительно более высокая скорость проведения электрофореза, что позволяет оперативно проводить анализ исследуемых объектов. Кроме этого, приборы капиллярного электрофореза могут быть встроены в единую автоматизированную линию исследования ДНК.
В настоящее время в отличие от традиционных систем электрофореза в денатурирующем полиакриламидном геле происходит активное развитие систем капиллярного электрофореза. Их следует рассматривать как основные приборы для криминалистических лабораторий ДНК-анализа.
Расшифровку первичных электрофореграмм проводят с помощью компьютерной программы GeneMapper ID, производства фирмы Applied Biosystems.
Интерпретация результатов электрофореза с помощью программы GeneMapper ID. Интерпретация результатов электрофореза с помощью программы GeneMapper ID заключается в установлении аллелей исследуемых STR-локусов.
Для установления аллелей при электрофорезе продуктов ПЦР исследуемых проб используют также пробу специального аллельного маркера или лэддера. Эта проба содержит фрагменты ДНК, соответствующие по последовательности и размерам всем встречающимся аллелям исследуемых локусов (рис. 4.16). Аллельный лэддер является внешним стандартом исследования. Аллельные лэддеры производятся изготовителями реактивов для амплификации.

Рис. 4.16. Электрофорез фрагментов аллельного маркера

С помощью компьютерной программы GeneMapper ID общая электрофореграмма пробы разделяется на электрофореграммы по отдельным флуоресцентным красителям. Сначала величина исследуемых фрагментов определяется по их расположению относительно фрагментов внутреннего стандарта. Далее полученные величины сравниваются с величинами фрагментов аллельного лэдде- ра. Допустимое отклонение исследуемых фрагментов от фрагментов аллельного лэддера не должно превышать ± 0,5 нуклеотида. При наличии совпадений фрагмент обозначается в соответствии с принятой номенклатурой аллелей, при отсутствии — обозначается как неопределенный.
Все фрагменты, обозначенные как неопределенные или локализующиеся выше и ниже крайних аллелей лэддера, должны быть проанализированы. При необходимости электрофорез повторяют.
При воспроизводимости результатов фрагменты, не совпадающие с фрагментами аллельного лэддера обозначают вручную в соответствии с принятой номенклатурой аллелей. В случае отсутствия воспроизводимости выявленные первоначально фрагменты являются неспецифическими и дальнейшему анализу не подлежат.
При анализе электрофореграмм могут быть обнаружены и другие неспецифические фрагменты, которые необходимо отличать от истинных аллелей. Часто выявляют так называемые статтеры (рис. 4.17) — фрагменты, которые короче истинного аллеля на одну повторяющуюся единицу (т.е. по уровню расположения соответствуют фрагменту лэддера, предшествующему истинному аллелю).
Для статтера характерны два признака, по которым его отличают от истинных аллелей, а также отличают гомозиготный профиль со статтером от гетерозиготного профиля: если появляется статтер, то он всегда ассоциирован с истинным аллелем (он короче истинного аллеля на одну повторяющуюся единицу); интенсивность статтера обычно не превышает 15 % интенсивности истинного аллеля, с которым он ассоциирован.
Другими, часто выявляемыми неспецифическими фрагментами являются так называемые N-фрагменты (рис. 4.18). Их появление связано с тем, что ДНК-полимераза обладает свойством достраивать во вновь синтезированную цепь ДНК один лишний нуклеотид.

200 210 230 2» 240 290 2U />

ogt;
О)

117 (N+Tj]ll8 W-nil
Рис. 4.18. Неспецифические явления — N-фрагменты

В результате этого свойства на основе матричной цепи ДНК синтезируются два типа фрагментов: N+1-фрагменты, которые длиннее на один нуклеотид, и N-фрагменты, соответствующие истинной длине исходной ДНК. Интенсивность N-фрагментов всегда ниже, чем N+1-фрагментов. Присутствие N-фрагментов обычно не усложняет установление истинных аллелей, однако следует особенно внимательно анализировать электрофореграммы локусов, аллели которых могут отличаться на одну пару оснований (например, аллели 9.3 и 10 локуса ТН01).
Особые неспецифические сигналы возникают в случае электрофореза проб с избыточным количеством продуктов ПЦР. В этом случае детекционная система прибора (цифровая камера) оказывается перенасыщенной, и становится невозможно корректно разделить флуоресцентные сигналы, получаемые в результате свечения разных флуоресцентных меток. В итоге на электрофореграммах отдельных флуоресцентных красителей детектируются фрагменты, равные по размеру (рис. 4.19).
Рис. 4.19. Неспецифические явления, возникающие в случае электрофореза проб с избыточным количеством продуктов ПЦР

Истинным фрагментом является только тот, у которого интенсивность свечения (высота пика) является большей. Сигналы других флуоресцентных красителей, равные по размеру, но меньшие по интенсивности следует считать неспецифическими. При неясных случаях следует повторить электрофорез с внесением меньшего количества продуктов ПЦР.
Фрагменты, которые были определены как статтеры или иные неспецифические фрагменты, в дальнейшем исследовании не учитывают.
Экспертный анализ результатов электрофореза начинают с изучения электрофореграмм контролей реакции амплификации и кон- тролей выделения ДНК.
Данные считаются достоверными, если: а) в отрицательных контролях реакции амплификации и контролях выделения ДНК отсутствуют амплифицированные фрагменты; б) профиль ДНК, выявленный в положительном контроле реакции амплификации, соответствует генотипу контрольной ДНК.
После оценки электрофореграмм контролей проводят анализ электрофореграмм исследуемых проб ДНК.
Сравнение установленных генетических признаков по STR- локусам и их интерпретация зависит от задач исследования. При исследовании объектов, содержащих ДНК одного лица, и сравнении их генетических признаков с генетическими признаками определенных лиц возможны два варианта: генетические признаки исследуемых объектов полностью совпадают. генетические признаки исследуемых объектов имеют различия.
В первом случае это означает, что исследуемые объекты могут иметь общий источник происхождения (один и тот же индивидуум или его однояйцовый близнец). Однако не исключается случайное совпадение генетических признаков неродственных лиц.
Контрольные вопросы Перечислите основные этапы исследования ядерной ДНК. Охарактеризуйте объекты исследования.
68
Что влияет на выбор того или иного метода выделения ДНК? С какими основными методами выделения ДНК вы познакомились? Что такое ПЦР? Охарактеризуйте три фазы цикла амплификации. Какие компоненты нужны, чтобы поставить ПЦР? Что такое праймеры? Что такое амплификатор? Какие амплификационные системы используются в настоящее время? Особенности мультипликационных систем. Каков принцип метода RT-PCR? Что такое зонд TaqMan? В каких целях применяют RT-PCR в судебно-генетических исследованиях? Что представляет собой калибровочный график для определения концентрации ДНК? Перечислите возможные варианты контроля ПЦР. Охарактеризуйте метод электрофореза. Что является средой для электрофореза? Как происходит электрофорез в автоматизированных приборах? Что такое внутренний стандарт? Какие варианты автоматизированных систем для электрофореза ДНК существуют в настоящее время? Перечислите достоинства и недостатки каждого варианта. Для чего нужна программа GeneMapper ID? Что такое лэддер? Охарактеризуйте термины статтеры, N-фрагменты. Когда полученные данные считаются достоверными? Как оценивают достоверность события?

источник