Меню Рубрики

Значение электрофореза белков на бумаге

Общие сведения. Электрофорезом называют движение заряженных коллоидных частиц в постоянном электрическом поле к противоположно заряженному электроду.

Явление электрофореза было открыто профессором Московского университета Ф. Ф. Рейссом в 1807 г.

В молекулах белковых веществ возникновение электрических зарядов зависит от группировок, обладающих кислотными и основными свойствами. Кислотные свойства обусловлены карбоксильными и сульфгидрильными группами, а также фенольными гидроксилами. Основные свойства характерны для амино-, имино- и гуанидиновых групп.

Как известно, белки и аминокислоты являются биполярными ионами.

Процесс диссоциации белков во многом зависит от их изоэлектрической точки. Чем дальше будет отстоять значение pH среды от изоэлектрической точки, тем макромолекулы белка будут обладать большим зарядом и с большей скоростью передвигаться к положительному или отрицательному полюсу. Если в растворе находятся несколько белков, которые различаются своими изоэлектрическими точками, то скорость их перемещения в электрическом поле будет неодинаковой. Это явление положено в основу метода электрофоретического исследования биологических жидкостей, который находит широкое применение при анализе свойств белков и аминокислот, а также для диагностических целей.

Для практических работ используют различные варианты метода электрофореза на бумаге.

Основу аппарата составляет ванна из толстого стекла, в которую помещены две кюветы (анодная и катодная) с электродами, приспособления для размещения и закрепления полосок хроматографической бумаги (рамка, лабиринт, пружины) и некоторые вспомогательные части (рис. 5). Применяются платиновые или угольные электроды. Кюветы разделяются перегородками на два отделения — наружное и внутреннее, чтобы предотвратить попадание продуктов электролиза (что связано с изменением pH) на полоски бумаги. В наружных отделениях кювет располагаются электроды, во внутренние погружаются концы полосок бумаги, на которые наносится исследуемая

жидкость. Внутреннее и наружное отделения каждой кюветы соединяются посредством кусочков фильтровальной бумаги, которые кладутся на перегородки. Кюветы заполняются буферным раствором (боратным, фосфатным, вероналовым) с определенным значением pH и ионной силы. Одинаковый уровень жидкости в кюветах поддерживают с помощью сифона.

Рис. 5. Камера аппарата для электрофореза на бумаге (по В. И. Добрыниной и Е. Я. Свешниковой): 1 — ванна из толстого стекла; 2 — стеклянная крышка, пришлифованная к ванне; 3 — электродные кюветы (свободно вынимаются); 4 — продольная перегородка, разделяющая кювету пополам; угольные электроды; — бумажные полосы, концы их опускаются во внутреннее отделение кюветы; 7 — съемные пластинки, на которых укрепляются электроды (присоединяются К вание при помощи двух пружинок); 8 — рамка, на которой укрепляются и натягиваются бумажные полосы; Р—лабиринт для укрепления бумажных полос; 10 — пружины для натягивания бумажных полос; 11 — подставка для ванны; на подставке; 13 — установочные винты.

Для предотвращения испарения жидкости камеру (ванну) закрывают пришлифованной стеклянной крышкой.

В комплект аппарата входит также стабилизатор и выпрямитель.

В Советском Союзе аппараты для электрофореза на бумаге выпускает фрунзенский завод «Физприбор».

Разделение глютамина и глютаминовой кислоты с помощью электрофореза на бумаге (по прописи В. И. Добрыниной и Е. Я. Свешниковой).

Если на полоску фильтровальной бумаги нанести раствор смеси глютамина и глютаминовой кислоты, то после электрофореза при pH 8,0 в течение 1,5-2 ч и последующей окраски электрофореграммы можно наблюдать, что глютамин остается на месте нанесения капли раствора, а глютаминовая кислота передвигаетя к аноду на 3—4 см. Это обусловлено

тем, что молекулы глютамина при pH 8,0 электронейтральны и не передвигаются в электрическом поле, а молекулы глютаминовой кислоты при указанном pH имеют преобладающую диссоциацию карбоксильных групп, несут отрицательные заряды и поэтому передвигаются к аноду.

Реактивы: а) раствор глютаминовой кислоты: в 10 мл воды растворяют 50 мг глютаминовой кислоты; б) раствор глютамина: в 10 мл воды растворяют 50 мг глютамина; в) фосфатная буферная система. Готовят два раствора: Для получения фосфатного буфера pH 8,0 смешивают 945 мл I раствора с 55 мл II раствора; г) нингидрин, 0,2%-ный раствор в этиловом или бутиловом спирте.

В обе кюветы аппарата наливают фосфатный буфер (pH 8,0, ионная сила 0,05). На перегородки между наружным и внутренним отделениями кюветы кладут по кусочку фильтровальной бумаги для установления электрической связи. Одинаковый уровень жидкости в обеих кюветах устанавливают при помощи резинового или стеклянного сифона, наполненного тем же буферным раствором. Полоску фильтровальной бумаги (лучше брать ватман № 2 или хроматографическую ленинградскую) размером см берут двумя пинцетами (во избежание загрязнения), помещают на лист бумаги и в центре проводят карандашом поперечную линию, вдоль которой штриховыми движениями наносят из микропипетки 0,02 мл смеси растворов глютамина и глютаминовой кислоты. Каждую новую порцию наносят после того, как подсохнет предыдущая. На другую полоску наносят 0,02 мл раствора глютаминовой кислоты, на третью — столько же раствора глютамина. Полоски поочередно смачивают буферным раствором (в чашечке). Избыток влаги удаляют, раскладывая полоски на листе фильтровальной бумаги. Полоски переносят в прибор и концы их погружают в кюветы. В камеру можно уложить 6 полосок. Они должны лежать горизонтально и не провисать.

Камеру для электрофореза закрывают крышкой, и зажимы электродов фиксируют на выпрямителе — стабилизаторе тока. Выпрямитель подключают к электросети и постепенно увеличивают напряжение. Электрофорез проводят при напряжении 200—300 В и силе тока 1,5-2 мА

в течение 1,5-2 ч, после чего снижают напряжение до нуля и выключают прибор.

Полоски электрофореграмм вынимают чистыми пинцетами и с концов, погруженных в буферный раствор, удаляют избыток влаги фильтровальной бумагой. Полоски накалывают в горизонтальном положении на гвоздики рамы и помещают для фиксации в сушильный шкаф при температуре 100—105° С в течение 10—15 мин. Сухие полоски вынимают из шкафа и опрыскивают раствором нингидрина, после чего для проявления пятен снова помещают в тот же сушильный шкаф на 3—5 мин.

Кроме электрофореза на бумаге, в последнее время широкое распространение получили методы электрофоретического разделения веществ на полиакриламидном, агаровом, геле, крахмале и т. д.

источник

Лабораторная работа №8

ЭЛЕКТРОФОРЕТИЧЕСКОЕ РАЗДЕЛЕНИЕ БЕЛКОВ

Метод основан на том, что молекулы белка обладают электрическим зарядом, величина и знак которого определяются аминокислотным составом белка, pH и ионной силой окружающей среды. Под влиянием внешнего электрического поля заряженные молекулы передвигаются в растворе к противоположно заряженному полюсу. Скорость перемещения белковых частиц пропорциональна величине их заряда и обратно пропорциональна размеру частиц и степени их гидратации.

Широкое распространение в настоящее время получил так называемый «зональный электрофорез» — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, амидовым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково.

ЭЛЕКТРОФОРЕЗ HA БУМАГЕ

Разделение анализируемой смеси происходит на определенных сортах хроматографической бумаги, пропитанной буферным раствором, в приборах для электрофореза. Белки разделяют при напряжении до 500 B.

Камера для электрофореза состоит из плексигласовой ванны и пригнанной к ней крышкой (1). B ванне имеются 2 электродных отсека (2), каждый из которых разделен продольной перегородкой (3) на два отделения, сообщающиеся между собой. Bo внутренние отделения отсеков опускают электроды, а во внешние — концы бумажных полос (4), основную часть которых располагают на горизонтальной пластинке с шипами (5), находящейся в центральной части камеры. Между горизонтальной пластинкой и наружным отделением электродных отсеков имеются палочки (6),

Рис.2. Схема прибора для низковольтного электрофореза

через которые перекидываются бумажные полоски и которые служат для их поддерживания. Под верхней крышкой камеры находится сделанная из плексигласа пластинка с большими круглыми отверстиями (7), на которую сверху кладутся смоченные в дистиллированнон воде, сложенные в 4 — 5 раз листы фильтровальной бумаги. Эти листы способствуют увеличению герметичности камеры и, как следствие, — уменьшению испарения жидкости с электрофореграмм в процессе электрофореза.

Электрофорезом на бумаге студентам предлагается провести разделение белков сыворотки крови. Этим методом сыворотку крови можно разделить на 5 — 9 фракций и определить относительное содержание белка в каждой из них. Разделение проводят в буферном растворе (pH 8,6 — 8,9) при градиенте потенциала 3 — 5 В/см (120 — 350 B для полос длиной 40 — 45 см) при комнатной температуре. Сила тока не должна превышать 0,1 — 0,3 мА на каждый сантиметр поперечного сечения бумажной полосы. Увеличение силы тока более чем в 2 раза недопустимо, так как при этом происходит чрезмерное нагревание, значительное увеличение испарения и в конечном итоге — прогорание бумаги

1. Буферный раствор. Можно использовать:

а) веронал-мединаловый буфер (pH 8,6): в 300 мл дистиллированной воды растворяют10,32 гмединала (натриевая соль веронала), добавляют1,84 гверонала, нагревают при помешивании на водяной бане до растворения и доводят водой до1 л;

б) веронал-ацетатный буфер (pH 8,6): в 300 мл дистиллированной воды растворяют4,3 гверонала,0,95 гедкого натра и3,24 гуксуснокислого натрия. K раствору приливают 30 мл0,1 Mраствора HCl и доводят водой до1 л;

в) трис-буфер (pH 8,9): в1 лдистиллированной воды растворяют60,5 гтриса,6 гэтилендиаминтетрауксусной и4,6 гборной кислоты.

2. Растворы для окраски электрофореграмм:

а) кислый сине-черный краситель (аналогичный амидовому черному 10 Б) —0,2 гв смеси: уксусная кислота (ледяная) — 100 мл + метиловый спирт — 900 мл;

б) бромфеноловый синий —0,5 г, сулема —10 г, уксусная кислота (ледяная) — 20 мл, дистиллированная вода — 980 мл;

в) бромфеноловый синий — 0,1 г, ZnSO4·7H2O —50 г, уксусная кислота (ледяная) 50 мл, дистиллированная вода — 900 мл.

3. Растворы для отмывания электрофореграмм от несвязавшейся с белком краски и закрепления красителя на белке:

а) уксусная кислота — 2 %-й раствор;

б) уксуснокислый натрий — 2 %-й раствор, приготовленный на 10 %-м растворе уксусной кислоты.

4. Растворы для элюции окрашенных продуктов с электрофореграмм:

а) для извлечения бромфенолового синего —0,01 Mраствор NaOH;

б) для извлечения кислого сине-черного красителя —0,1 Mраствор NaOH.

Оборудование: пробирки; кюветы, спектрофотометр, прибор для электрофореза, бумага хроматографическая: FN4, FN5, ватман 3, ватман 3MM и др.

Получение сыворотки крови. 2 — 3 мл крови набирают в сухую центрифужную пробирку и оставляют на 1/2 — 1 ч. Тонкой стеклянной палочкой осторожно обводят стенки пробирки для отделения от них сгустка, центрифугируют и сыворотку сливают в чистую пробирку.

Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Bo внутренние части электродных отсеков погружают электроды. Ha листе хроматографической бумаги (18×45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4 —5 см) на расстоянии15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2 х0,3 см), большие стороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграммы —2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6 —8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между двумя-тремя листами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги.

Проведение электрофореза. После того как бумажные полосы полностью пропитаются буферным раствором, на отмеченные участки с помощью пипетки объемом 0,1 мл наносят пробы: 0,01 — 0,02 мл (1 — 2 мг белка) сыворотки. Камеру закрывают крышкой и включают ток. Длительность электрофореза составляет 22 — 24 ч при напряжении 200 — 300 B

Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 ºC в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем и оставляют на 2 — 3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3 — 4 раза 2 %-м раствором уксусной кислоты, каждый раз на 5 — 10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2 %-м раствором уксуснокислого натрия и сушат на воздухе под тягой.

Определение соотношения отдельных фракций белка. При pH 8,6 белки сыворотки крови заряжены отрицательно и перемещаются в электрическом поле к аноду. Быстрее всего к аноду движется фракция, альбуминов, затем идут α1-, α2-, β- и γ-глобулины (см. Рис. 3). Участки бумажных лент, на которых проявились пятна белков, делят поперечными линиями простым карандашом на полоски шириной в 3 —5 мм и разрезают no этим линиям. Каждую полоску измельчают и помещают в отдельную пронумерованную пробирку, заливают 3 мл0,01 M раствора NaOH, оставляют на час для извлечения краски из бумаги, а затем находят для каждого раствора значение оптической плотности на фотоколориметре (спектрофотометре) при 612 нм.

Читайте также:  Методика электрофореза глюконата кальция

Рис. 3. Электрофореграмма сыворотки крови человека и кривая распределения белковых фракций

Параллельно обрабатывают контрольную пробу. Для нее вырезают полоску из неокрашенных участков электрофореграммы.

Ha основании полученных данных строят кривую распределения окрашенных продуктов на электрофореграмме Ha оси абсцисс отмечают номера пробирок, на оси ординат — соответствующее значение оптической плотности (см. Рис.3). Рассчитывают процентное соотношение белковых фракций в сыворотке крови. Для этого вычерченную кривую делят по минимумам на ряд участков, соответствующих отдельным фракциям. Величина площади каждого участка пропорциональна количеству краски, соединившейся с белком данной фракции. Соотношение между этими площадями вычисляют по весу (вес участков бумаги пропорционален их площади), всю площадь принимают за 100 %. При наличии денситометра соотношение белковых фракций в сыворотке крови можно определить из денситограммы.

Предварительно определяя содержание белка в сыворотке, рассчитывают его количество для каждой фракции.

источник

Этот анализ является исследованием, которое позволяет определить их количественные и качественные показатели по тому, как белки распределяются в электрическом поле. Исследование основано на том, что белковые молекулы несут заряды, положительные или отрицательные в зависимости от того, какой кислотностью будет обладать среда, в которой будет проводиться непосредственно электрофорез. Молекулы, которые окажутся положительно заряженными, будут адсорбироваться лучше, нежели чем те, которые несут отрицательный заряд.

Носителями, которые будут применяться для электрофореза, могут быть хроматографическая бумага, агаровый гель, полиакриловой гель, ацетатцеллюлозная бумага или акриловый гель. Значительно реже применяется капиллярный электрофорез.

Во время анализа белки разделяют на 5 или 6 фракций, в зависимости от применяемого метода. Это будут гамма-глобулины, которые делятся на бета-1 и бета-2, альбумины — альфа-1 и альфа-2, а также бета-глобулины.

Имеются установленные нормы белковых фракций, которые должны присутствовать в крови. Отклонение их от показателей является признаком нарушения в организме, что требует проведения обследования для выявления причины.

Фракция Норма в г/л
Альбумин 35-44
Глобулин альфа-1 1-3
Глобулин альфа-2 5-8
Бета-глобулин 4-10
Гамма-глобулин 5-12

Значения показателей, в зависимости от того какие реактивы применяются в конкретной лаборатории, могут несколько изменяться. Поэтому в бланке результатов исследования в каждом медицинском учреждении обязательно указываются значения нормы, которые приняты в нем. На них будет ориентироваться врач при расшифровке анализа.

Электрофорез белков крови назначают не очень часто, так как сегодня современные лабораторные исследования позволяют провести анализ на определенный белок, что ускоряет процесс диагностики. Абсолютным показанием к электрофорезу является наличие монолокальной гаммапатии. Также иногда анализ может быть показан в таких случаях:

  • чрезмерно высокая скорость оседания эритроцитов, когда она превышает 50 мм/ч;
  • значительно повышенный уровень гамма-глобулинов;
  • скрининговое обследование для контроля эффективности лечения миеломной болезни;
  • чрезмерно высокий общий белок в крови;
  • ряд аутоиммунных заболеваний, поражающих печень и почки;
  • слабость, для которой нет выраженной причины;
  • развитие патологических переломов костей и постоянные боли в костях;
  • частые рецидивы инфекционных заболеваний;
  • нарушения, обнаруженные в прочих анализах, указывающие на то, что у человека могут развиваться анемии, лейкемии, гиперкальциемия или гипоальбуминемия.

При общей диспансеризации и получении медицинских справок для трудоустройства данное исследование крови не осуществляется. Не требуется оно и в процессе подготовки человека к хирургическому вмешательству.

Для получения наиболее точных результатов рекомендуется соблюдение правил подготовки к анализу. Они включают в себя голодную диету в течение 15 часов до того как будет взята кровь, когда пациент может употреблять только чистую не газированную воду. За 90 минут до проведения исследования необходимо полностью исключить нагрузки как эмоциональные, так и физические, и курение в активной или пассивной форме. Чтобы не допустить искажение данных, забор материала не проводят сразу после того, как был осуществлен гемодиализ или проведена процедура, при которой использовались радиоконтрастные составы. Важно также, чтобы за несколько дней до исследования полностью было исключено лечение пенициллином, так как он вызывает расщепление амбулина, что исказит результат.

Фракция Повышение Понижение
Амбулин Злоупотребление алкоголем, период вынашивания ребёнка, дегидрация Холецистит в острой форме, лейкоз, миелома, саркоидоз, пневмония, остеомиелит, системная красная волчанка, лимфома
Глобулин альфа-1 Цирроз печени, стрессовые состояния, лимфогранулематоз, период вынашивания ребёнка, язва желудка, острое или хроническое воспаление Гепатит вирусной природы в острой форме
Глобулин альфа-2 Сахарный диабет, остеомиелит, гломерулонефрит в острой форме, стрессовые состояния, системная красная волчанка, узловатый полиартрит, цирроз Гипертиреоз, гепатит вирусной природы в острой форме, гемолиз интраваскулярный
Бета-глобулин Сахарный диабет, саркоидоз, ревматоидный артрит, беременность, гломерулонефрит, желтуха подпеченочная, нефротический синдром Лейкоз, цирроз, склеродермия имеющая системный характер, лимфома, системная красная волчанка
Гамма-глобулин Цирроз, склеродермия системного характера, ревматоидный артрит, лимфолейкоз в хронической форме, муковисцидоз, синдром Шегрена Лейкоз, склеродермия, гепатит вирусной природы в острой форме, лимфома, гломерулонефрит

Исказить показатели, кроме неправильной подготовки к проведению анализа, могут 2 фактора: недавно проведенная процедура гемодиализа, из-за которой произошло разрушение эритроцитов в крови, и повышенный уровень билирубина в организме. В любом из этих случаев потребуется пересдача анализа через некоторое время, которое определит врач.

источник

Для разделения белков сыворотки крови на их составляющие используют метод электрофореза, основанный на различной подвижности белков сыворотки крови в электрическом поле.

Принцип разделения белков сыворотки крови на фракции состоит в том, что в электрическом поле белки сыворотки крови движутся по смоченной буферным раствором хроматографической бумаге (ацетатцеллюлозной пленке, крахмаловому, агаровом гелям) со скоростью, зависящей в основном от величины электрического заряда и молекулярной массы частиц.

Вследствие этого белки сыворотки крови разделяются обычно на пять основных фракций: альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины, гамма-глобулины, содержание которых определяется с помощью фотометрии или денситометрии.

Электрофорез в агаровом, крахмальном и особенно полиакриламидном геле дает лучшие результаты: четкое разделение и большое количество белковых фракций сыворотки. Недостатки метода: сложность процедуры приготовления геля (дороговизна готовых гелевых пластин).

Преимущества электрофореза на ацетатцеллюлозной пленке:

1. Химическая однородность пленки и одинаковый размер пор

2. Требует малый объем пробы (0,2-2 мкл) для разделения

3. Быстрота разделения и окраски белков, легкость отмывания фона

В сыворотке крови здорового человека при электрофорезе можно обнаружить шесть белковых фракций: преальбумины, альбумины, альфа-1-глобулины, альфа-2-глобулины, бета-глобулины и гамма-глобулины.

Это исследование в диагностическом отношении более информативно чем определение только общего белка или альбумина. При многих заболеваниях изменяется процентное соотношение белковых фракций, хотя общее содержание белка в сыворотке крови остается в пределах нормы.

Анализ фореграммы белков позволяет установить, за счет какой фракции происходит увеличение или дефицит белка, а также судить о специфичности изменений, характерных для данной патологии. Исследование белковых фракций, позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Белковые фракции сыворотки крови в норме:

Фракции Содержание, %
Преальбумины 2-7
Альбумины 52-65
Альфа-1-глобулины 2,5-5,0
Альфа-2-глобулины 7,0-13,0
Бета-глобулины 8,0-14,0
Гамма-глобулины 12,0-22,0

При анализе результатов исследования сыворотки крови на белковые фракции выявляются три типа нарушений:

1. Диспротеинемия (изменение соотношения белковых фракций)

2. Генетические дефекты синтеза белков

3. Парапротеинемия (аномальные белки в крови)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10527 — | 7315 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Электрофорез

2. Электрофорез с подвижной границей.

4. Изоэлектрическая фокусировка.

Белки, нуклеиновые кислоты, полисахариды, находясь в растворе несут определенный электрический заряд благодаря наличию групп, способных к электролитический диссоциации. Общий заряд данной частицы определяется, прежде всего, концентрацией Н + -ионов в среде. Под действием электрического тока заряженные частицы перемещаются к катоду или аноду в зависимости от знака их суммарного заряда. Такое явление носит название электрофореза. Скорость движения частиц (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью.Она имеет размерность см 2 /с -1 ·в -1 .

Различия в подвижности частиц служат основой для разделения смесей веществ.

Если приложить к электропроводящему раствору равномерное электрическое поле (Е), то на частицу будет действовать сила ускорения:

где d– расстояние между электродами, q – заряд молекулы. Так как молекула перемещается не в вакууме, то на неё действует противоположно направленная сила трения, которая зависит от размеров, формы молекулы, вязкости среды и описывается уравнением Стокса:

где f– коэффициент трения, v скорость движения молекулы. Для сферических частиц коэффициент трения равен 6πηr, где r – радиус частиц и η – коэффициент вязкости растворителя. В растворе силе ускорения противодействует сила трения, поэтому:

Е/d·q = 6πηrv, преобразуя выражение, получим:

Таким образом, скорость молекулы (v) пропорциональна напряженности электрического поля Е/d и заряду молекулы и обратно пропорциональна размеру молекулы и вязкости среды. Заряд и размер являются строго индивидуальными характеристиками молекулы. Следовательно, и путь, который пройдет та или иная молекула при электрофорезе за определенный интервал времени, тоже будет характерен для данной молекулы.

Существуют три основных типа электрофоретических систем – электрофорез с подвижной границей, зональный электрофорез и стационарный электрофорез.

Элекрофорез с подвижной границей

Электрофорез макромолекул, растворенных в буфере с соответствующим значением рН, проводится в V-образной кювете с прямоугольным поперечным сечением. Раствор макромолекул в буфере заливают в нижнюю часть кюветы, доливают оба конца трубки тем же буфером и монтируют в них электроды. Если вести электрофорез в щелочном буфере, то все белки заряжаются отрицательно и начинают перемещаться к аноду: скорость перемещения данного белка зависит от его рН, и от величины суммарного заряда при данном рН буфера. Как видим, в данном методе электрическое поле прикладывается к исходно разной границе между раствором молекул и буфером. Скорость миграции заряженных частиц определяется путем наблюдения за перемещением этой границы. Если раствор содержит гетерогенную смесь ионизированных макромолекул, то можно увидеть множество движущихся границ. Способы наблюдения за пограничными изменениями концентрации вещества основаны на измерении градиента показателя преломления, который пропорционален градиенту концентрации.

Сконструирование Филпонтом и Свенссоном астигматической фотокамеры со специальной оптической системой, называемой шлирен-оптикой, позволяет непосредственно регистрировать градиент показателя преломления вдоль кюветы.

Электрофорез по методу подвижной границы нашел широкое применение при исследовании белков. Этот метод в основном используется для определения подвижностей и изоэлектрических точек белков, т.к. количественно трудно оценить подвижности. Метод электрофореза с подвижной границей используется редко.

Зональный элекрофорез

В зональном электрофорезе пятно или тонкий слой раствора, нанесенного на полутвердый или гелеобразный материал, помещают в электрическое поле, в результате чего молекулы перемещаются по или через материал носитель. В первую очередь функцией носителя является предотвращение механических воздействий и конвекции, которая происходит в результате температурных или высокой плотности концентрированных растворов.

Однако, носитель может действовать в качестве молекулярного сита, приводя тем самым к хроматографическим эффектам, что может или улучшить разделение, или ухудшать его.

а) электрофорез на бумаге.

В качестве носителя здесь используется фильтровальная бумага, которая должна содержать 96% α-целлюлозы, нерастворимой в концентрированном растворе NaOH. Приборы для электрофореза состоят из двух электродных сосудов и устройства для поддержания полосок фильтровальной бумаги. В качестве электродов обычно применяются платиновые проволоки. Можно использовать и угольные электроды. Для предотвращения чрезмерного испарения всю систему помещают в закрытую камеру, что обеспечивает создание влажной атмосферы.

Перед анализом электрофоретическую бумагу погружают в буферный раствор, слегка промокают между чистыми листами промокательной бумаги, а затем помещают на подставку.

Пробу наносят либо капиллярной пипеткой с закрученным носиком, либо с помощью различных аппликаторов, обеспечивающих быстрое и равномерное нанесение исследуемого раствора.

После нанесения проб к кювете подключают напряжение. Для наблюдения за ходом электрофореза на бумагу наносят пятно определенного стандартного вещества. По окончании процедуры бумагу высушивают при 105-110°С. Макромолекулы затем можно обнаружить при помощи соответствующего метода окрашивания.

Б) электрофорез в ПААГ.

В качестве среды для электрофоретического разделения макромолекул наиболее широкое распространение получил ПААГ, обладающий рядом преимуществ. Среди них можно отметить химическую стабильность, инертность, прозрачность в широком диапазоне длин волн, возможность получения пор с заданной величиной, отсутствием адсорбции. С помощью ПААГ можно разделить вещества с молекулярной массой от 2500 до 2000000 дальтон.

Системы электрофореза в ПААГ можно разделить на две группы по применяемым буферным системам. К первой относятся системы вертикального и горизонтального электрофореза, в которых применяется один тип буфера в электродных камерах и геле. Ко второй группе относятся системы вертикального «диск-электрофореза»: в них используются разные виды буферов (2-3) и гели разной концентрации. Название данного метода происходит от английского слова discontinuty (прерывистый), обозначающего в данном контексте неоднородность электрофоретической среды. Для диск-электрофореза характерны скачкообразные изменения рН, концентрации геля и градиента напряжения.

Читайте также:  Электрофорез и массаж для детей для чего

Прибор для диск-электрофореза состоит из верхнего и нижнего резервуара для электродного буфера и вертикальной стеклянной трубки. Нижняя часть трубки заполняется разделяющим гелем с мелкими порами, которые действуют как молекулярное сито по отношению к изучаемым макромолекулам. Над разделяющим гелем находится концентрирующий гель, имеющий крупные поры и поэтому не обладающий свойствами молекулярного сита, а еще выше расположен стартовый гель, содержащий пробу и краситель, используемый в качестве свидетеля.

Принцип диск-электрофореза основан на эффекте подвижной границы Кольрауша, суть которого состоит в использовании двух разных буферов: в электродных камерах трис-глициновый буфер (рН 8,3) , а в концентрирующих(рН 6,7) и разделяющем гелях(рН 8.9) – трис-НСl. В электродном буфере рН на 1,5-2 единицы выше, чем в концентрирующем. Образец растворяется в том же буфере, который используется в концентрирующем геле. При рН 8,3 глицин находится в виде цвиттериона:

После включения тока все ионы (в том числе белки и краситель) начинают двигаться к аноду в следующей последовательности: Сl — > бромфеноловый синий > белки > глицинат.

Рис. 1. Прибор для диск-электрофореза.

Между ионами хлора и глицината образуется граница раздела. Так как оба эти иона принадлежат к одной и той же электрической системе, то в области глицинатных ионов напряжение, а следовательно, и их скорость, возрастают, а в области ионов хлора напряжение и скорость уменьшаются. Следовательно, замыкающие глицинатные ионы будут стремиться догнать ведущие ионы хлора, а зона белков и красителя, находящаяся между ними, будет сужаться (концентрироваться). Этот процесс происходит в концентрирующем (крупнопористом) геле.

Когда подвижная граница доходит до мелкопористого геля (рН 8,9), то, с одной стороны, подвижность глицинатных ионов возрастает, а с другой – на белки начинает действовать эффект молекулярного сита, и они отстают от подвижной границы. Таким образом, белки попадают в более щелочной трис-глициновый буфер, их отрицательный заряд возрастает, и они разделяются согласно своим индивидуальным характеристикам (заряду, форме молекул, молекулярному весу).

При проведении электрофореза гель полимеризуется непосредственно в стеклянной трубке, которую потом соединяют с сосудами с буфером. Образец суспендируют в концентрированном растворе сахарозы и наносят на поверхность геля в виде тонкого слоя с помощью пипетки. Электрофорез прекращают, когда зона красителя (подвижная граница) проходит 0,8-0,9 длины геля. Затем гель извлекают из трубки и окрашивают специальными красителями обнаружения зон. Каждую зону можно характеризовать по значениям их Rf или по площади пика после денсатометрирования. Диск-электрофоретический метод особенно часто используется для разделения белков.

источник

Что такое клинические исследования и зачем они нужны? Это исследования, в которых принимают участие люди (добровольцы) и в ходе которых учёные выясняют, является ли новый препарат, способ лечения или медицинский прибор более эффективным и безопасным для здоровья человека, чем уже существующие.

Главная цель клинического исследования — найти лучший способ профилактики, диагностики и лечения того или иного заболевания. Проводить клинические исследования необходимо, чтобы развивать медицину, повышать качество жизни людей и чтобы новое лечение стало доступным для каждого человека.

У каждого исследования бывает четыре этапа (фазы):

I фаза — исследователи впервые тестируют препарат или метод лечения с участием небольшой группы людей (20—80 человек). Цель этого этапа — узнать, насколько препарат или способ лечения безопасен, и выявить побочные эффекты. На этом этапе могут участвуют как здоровые люди, так и люди с подходящим заболеванием. Чтобы приступить к I фазе клинического исследования, учёные несколько лет проводили сотни других тестов, в том числе на безопасность, с участием лабораторных животных, чей обмен веществ максимально приближен к человеческому;

II фаза — исследователи назначают препарат или метод лечения большей группе людей (100—300 человек), чтобы определить его эффективность и продолжать изучать безопасность. На этом этапе участвуют люди с подходящим заболеванием;

III фаза — исследователи предоставляют препарат или метод лечения значительным группам людей (1000—3000 человек), чтобы подтвердить его эффективность, сравнить с золотым стандартом (или плацебо) и собрать дополнительную информацию, которая позволит его безопасно использовать. Иногда на этом этапе выявляют другие, редко возникающие побочные эффекты. Здесь также участвуют люди с подходящим заболеванием. Если III фаза проходит успешно, препарат регистрируют в Минздраве и врачи получают возможность назначать его;

IV фаза — исследователи продолжают отслеживать информацию о безопасности, эффективности, побочных эффектах и оптимальном использовании препарата после того, как его зарегистрировали и он стал доступен всем пациентам.

Считается, что наиболее точные результаты дает метод исследования, когда ни врач, ни участник не знают, какой препарат — новый или существующий — принимает пациент. Такое исследование называют «двойным слепым». Так делают, чтобы врачи интуитивно не влияли на распределение пациентов. Если о препарате не знает только участник, исследование называется «простым слепым».

Чтобы провести клиническое исследование (особенно это касается «слепого» исследования), врачи могут использовать такой приём, как рандомизация — случайное распределение участников исследования по группам (новый препарат и существующий или плацебо). Такой метод необходим, что минимизировать субъективность при распределении пациентов. Поэтому обычно эту процедуру проводят с помощью специальной компьютерной программы.

  • бесплатный доступ к новым методам лечения прежде, чем они начнут широко применяться;
  • качественный уход, который, как правило, значительно превосходит тот, что доступен в рутинной практике;
  • участие в развитии медицины и поиске новых эффективных методов лечения, что может оказаться полезным не только для вас, но и для других пациентов, среди которых могут оказаться члены семьи;
  • иногда врачи продолжают наблюдать и оказывать помощь и после окончания исследования.
  • новый препарат или метод лечения не всегда лучше, чем уже существующий;
  • даже если новый препарат или метод лечения эффективен для других участников, он может не подойти лично вам;
  • новый препарат или метод лечения может иметь неожиданные побочные эффекты.

Главные отличия клинических исследований от некоторых других научных методов: добровольность и безопасность. Люди самостоятельно (в отличие от кроликов) решают вопрос об участии. Каждый потенциальный участник узнаёт о процессе клинического исследования во всех подробностях из информационного листка — документа, который описывает задачи, методологию, процедуры и другие детали исследования. Более того, в любой момент можно отказаться от участия в исследовании, вне зависимости от причин.

Обычно участники клинических исследований защищены лучше, чем обычные пациенты. Побочные эффекты могут проявиться и во время исследования, и во время стандартного лечения. Но в первом случае человек получает дополнительную страховку и, как правило, более качественные процедуры, чем в обычной практике.

Клинические исследования — это далеко не первые тестирования нового препарата или метода лечения. Перед ними идёт этап серьёзных доклинических, лабораторных испытаний. Средства, которые успешно его прошли, то есть показали высокую эффективность и безопасность, идут дальше — на проверку к людям. Но и это не всё.

Сначала компания должна пройти этическую экспертизу и получить разрешение Минздрава РФ на проведение клинических исследований. Комитет по этике — куда входят независимые эксперты — проверяет, соответствует ли протокол исследования этическим нормам, выясняет, достаточно ли защищены участники исследования, оценивает квалификацию врачей, которые будут его проводить. Во время самого исследования состояние здоровья пациентов тщательно контролируют врачи, и если оно ухудшится, человек прекратит своё участие, и ему окажут медицинскую помощь. Несмотря на важность исследований для развития медицины и поиска эффективных средств для лечения заболеваний, для врачей и организаторов состояние и безопасность пациентов — самое важное.

Потому что проверить его эффективность и безопасность по-другому, увы, нельзя. Моделирование и исследования на животных не дают полную информацию: например, препарат может влиять на животное и человека по-разному. Все использующиеся научные методы, доклинические испытания и клинические исследования направлены на то, чтобы выявить самый эффективный и самый безопасный препарат или метод. И почти все лекарства, которыми люди пользуются, особенно в течение последних 20 лет, прошли точно такие же клинические исследования.

Если человек страдает серьёзным, например, онкологическим, заболеванием, он может попасть в группу плацебо только если на момент исследования нет других, уже доказавших свою эффективность препаратов или методов лечения. При этом нет уверенности в том, что новый препарат окажется лучше и безопаснее плацебо.

Согласно Хельсинской декларации, организаторы исследований должны предпринять максимум усилий, чтобы избежать использования плацебо. Несмотря на то что сравнение нового препарата с плацебо считается одним из самых действенных и самых быстрых способов доказать эффективность первого, учёные прибегают к плацебо только в двух случаях, когда: нет другого стандартного препарата или метода лечения с уже доказанной эффективностью; есть научно обоснованные причины применения плацебо. При этом здоровье человека в обеих ситуациях не должно подвергаться риску. И перед стартом клинического исследования каждого участника проинформируют об использовании плацебо.

Обычно оплачивают участие в I фазе исследований — и только здоровым людям. Очевидно, что они не заинтересованы в новом препарате с точки зрения улучшения своего здоровья, поэтому деньги становятся для них неплохой мотивацией. Участие во II и III фазах клинического исследования не оплачивают — так делают, чтобы в этом случае деньги как раз не были мотивацией, чтобы человек смог трезво оценить всю возможную пользу и риски, связанные с участием в клиническом исследовании. Но иногда организаторы клинических исследований покрывают расходы на дорогу.

Если вы решили принять участие в исследовании, обсудите это со своим лечащим врачом. Он может рассказать, как правильно выбрать исследование и на что обратить внимание, или даже подскажет конкретное исследование.

Клинические исследования, одобренные на проведение, можно найти в реестре Минздрава РФ и на международном информационном ресурсе www.clinicaltrials.gov.

Обращайте внимание на международные многоцентровые исследования — это исследования, в ходе которых препарат тестируют не только в России, но и в других странах. Они проводятся в соответствии с международными стандартами и единым для всех протоколом.

После того как вы нашли подходящее клиническое исследование и связались с его организатором, прочитайте информационный листок и не стесняйтесь задавать вопросы. Например, вы можете спросить, какая цель у исследования, кто является спонсором исследования, какие лекарства или приборы будут задействованы, являются ли какие-либо процедуры болезненными, какие есть возможные риски и побочные эффекты, как это испытание повлияет на вашу повседневную жизнь, как долго будет длиться исследование, кто будет следить за вашим состоянием. По ходу общения вы поймёте, сможете ли довериться этим людям.

Если остались вопросы — спрашивайте в комментариях.

источник

Фракций сыворотки крови методом электрофореза на бумаге.

Принцип метода. Электрофорез – это движение заряженных частиц в поле постоянного электрического тока. Скорость перемещения молекул белков в электрическом поле зависит от величин заряда, молекулярной массы, pH, ионной силы раствора.

Белки сыворотки крови помещают на полоску бумаги, смоченную буферным раствором, через которую пропускают постоянный электрический ток. При pH 8,6 белки сыворотки крови заряжаются отрицательно и под воздействием электрического поля перемещаются к аноду.

Сыворотка крови человека содержит различные белки. С помощью электрофореза на бумаге выделяются 5 фракций — альбумины, α1-, α2-, β-, γ-глобулины.

Клинико-диагностическое значение.Многие патологические состояния сопровождаются количественными изменениями соотношения белковых фракций крови – диспротеинемиями. Уменьшение содержания фракции альбуминов характерно для заболеваний печени за счет снижения белок-синтезирующей функции гепатоцитов. Гипоальбуминемия также сопровождает заболевания почек вследствие потери белка с мочой. Увеличение содержания фракций α1— и α2-глобулинов наблюдается при стрессе, наличии воспалительных процессов за счет белков «острой фазы», при коллагенозах и метастазировании злокачественных новообразований. Фракция β-глобулинов растет при гиперлипопротеинемиях. Фракция γ-глобулинов повышается при иммунных реакциях, вызванных вирусными и бактериальными инфекциями. Снижение γ-глобулиновой фракции может иметь место при первичном и вторичном иммунодефиците.

Порядок выполнения работы

1. Устройство прибора для электрофореза. Прибор состоит из выпрямителя, подающего постоянный ток необходимого напряжения, и камеры для электрофореза. Сама камера состоит из 2-х ванн; в одной из них имеется неподвижная перегородка, куда помещается платиновый электрод (+ анод), а в другой находится электрод из нержавеющей стали (- катод). Между ваннами, заполненными соответствующим буфером, имеется соединительный мост, на который помещают полоски специальной фильтровальной бумаги.

2. Проведение электрофореза. Заполнить обе ванны камеры раствором вероналового буфера с pH 8,6. Буферного раствора в ваннах должно быть столько, чтобы он покрывал неподвижную перегородку, но был ниже подвижных перегородок.

Вставить в ванны электроды. Вырезать из фильтровальной бумаги полосы необходимого размера в зависимости от величины камеры (обычно шириной 4-6 см) и простым карандашом отметить место, на которое впоследствии будет наноситься сыворотка (старт). Смочить эти полоски в вероналовом буфере. Вставить в ванны-камеры соединительный мост. Поместить полоски бумаги на сухие пластинки щипцами, погрузив концы полосок в ванны с буфером, и на заранее отмеченные участки бумаги нанести сыворотку по 0,025-0,005 мл на расстоянии 5-6 см от края моста. Нанесение сыворотки производится со стороны катода.

Читайте также:  Как делать электрофорез при плосковальгусной стопе

Рисунок 1. Схема камеры для электрофореза белков на бумаге:

1-стабилизатор; 2-камера для электрофореза; 3-буферный раствор; 4-поддерживающий соединительный мост-электрод; 5-фильтровальная бумага для электрофореза.

После нанесения на бумажные полоски сыворотки камера герметично закрывается крышкой. На крышке камеры расположен прижим блокировки, служащий для включения камеры. Присоединенный выпрямитель подает к камере постоянный ток от 2 до 4 мА при постоянном напряжении 110-160В. Электрофорез проводят при градиенте потенциала от 3 до 8 В на 1 см полосы при комнатной температуре. Хорошее разделение происходит за 18-20 часов.

3. Выключение прибора и выявление белковых фракций. Выключают прибор. Снимают камеры и извлекают бумажные полоски из прибора. Затем каждую полоску помещают в сушильный шкаф на 20 минут при температуре 105 0 С. При этом происходит фиксация белковых фракций на бумаге. Окраску белков проводят раствором бромфенолового-синего в течение 30 минут, затем промывают электрофореграммы 2% раствором уксусной кислоты. Полученные электрофореграммы сушат на воздухе. Белковые фракции окрашиваются в сине-зеленый цвет.

4. Количественное определение белковых фракций. Окрашенные белковые пятна вырезают, краситель элюируют 0,01 н раствором щелочи. Интенсивность окраски каждой фракции определяют колориметрически на ФЭКе.

Количественное определение белковых фракций на электрофореграмме можно установить двумя способами: путем элюирования краски и фотоколориметрирования и денситометрическим методом.

Содержание белковых фракций сыворотки крови, полученное с помощью электрофореза на бумаге, в среднем составляет у взрослого человека:

Денситометрический метод. В специальном аппарате (денситометре) через электрофореграмму пропускают пучок света, поглощение которого зависит от оптической плотности окрашенных белковых пятен. Свет, прошедший через электрофореграмму, улавливается фотоэлементом и превращается в электрический ток, колебания которого фиксируют на бумажном листе в виде кривой, каждый пик кривой соответствует определенной белковой фракции.

Рисунок 2. Электрофореграмма сыворотки человека.

источник

Метод электрофореза является одним из самых распространенных, мощных и доступных методов исследования белков. Этот метод широко применяется как в научных исследованиях, так и при экспертизе качества продуктов питания и медицинских препаратах, а также в клинических лабораториях.

С помощью метода электрофореза производят:

1) анализ сложных смесей белков (в генетических исследованиях, при выделении и биотехнологической наработке белков)

2) обнаружение определенного белка (при проведении экспертизы, контроле биотехнологических процессов, клинических анализах)

3) определение молекулярной массы белков (в фундаментальных исследованиях)

4) исследование структуры белков (анализ расположения в биологических мембранах, взаимодействия с другими белками, изучение вопросов фолдинга белков)

В основе метода электрофореза лежит тот факт, что молекулы белков в водных растворах заряжены, то есть фактически представляют собой ионы. Как любая частица, несущая электрический заряд, молекулы белков способны перемещаться в электрическом поле. Таким образом, если к раствору белка приложить электрическое поле (опустить в него электроды и подать постоянное напряжение), то все молекулы белков начнут двигаться. Вследствие разницы в аминокислотном составе разные белки заряжены разноименно — положительно или отрицательно. По этой причине различные белки будут двигаться в разных направлениях: положительно заряженные – к катоду (отрицательный электрод), отрицательно заряженные – к аноду (положительный электрод). Кроме того, величина заряда белковых молекул также неодинакова – молекулы одних белков заряжены сильнее, других – меньше. Белки, молекулы которых имеют больший заряд, будут двигаться быстрее, чем те, что несут меньший заряд. Также на разделение белков методом электрофореза большое влияние оказывает размер молекул белков. Более крупные белки движутся медленнее, чем белки небольших размеров, вследствие того, что вода оказывает сопротивление перемещению (является вязкой средой).

По причине того, что аминокислотный состав белков и их масса различаются достаточно сильно, электрофорез позволят анализировать очень сложные смеси белков. Для решения различных исследовательских задач было предложено множество различных вариантов электрофореза.

4.9 Электрофорез по Леммли

Электрофорез по Леммли — один из методов электрофореза в геле, применяемый для анализа сложных белковых смесей. Данный метод позволяет разделять белки по их молекулярной массе. Также электрофорез по Леммли может быть использован для определения молекулярной массы белков.

Белки, подлежащие анализу методом электрофореза по Леммли, предварительно обрабатывают концентрированным 5%-ным раствором додецилсульфата натрия (рис. 15) при 100С в присутствии β-меркаптоэтанола. При этом белковые молекулы приобретают отрицательный заряд, значительно превышающий её собственный. При последующем разделении в полиакриламидном геле белковые зоны распределяются на электрофоре граммах в соответствие с логарифмом их молекулярной массы

Рис. 15. Додецилсульфата-анион, присутствует в растворах додецилсульфата натрия

В качестве геля для электрофореза по Леммли используются полиакриламидные гели, что позволяет достичь высокой разрешающей способности данного метода. Полиакриламидный гель представляет собой продукт сополимеризации акриламида (рис. 16)

и сшивающего агента N,N- метиленбисакриламда (рис. 17)

Рис. 17. N,N- метиленбисакриламид

В результате процесса сополимеризации образуется прочный, упругий, термостабильный гель, обладающий высокими механическими свойствами и химической инертностью. Пространственная структура геля представляет собой сетку со структурой (рис. 18). Пористость геля зависит от концентрации мономеров и её можно варьировать в значительных пределах от 40 до 0,1 нм (2-30% мономеров). Регулярно чередующиеся амидные группы делают гель гидрофильным. Отсутствие ионизирующихся групп существенно снижает эндосмос, а также взаимодействие белков со структурой геля.

Рис. 18. Структура полиакриламидного геля

В качестве катализатора реакции сополимеризации применяют источник свободных радикалов — персульфат аммония или калия. Катализатором реакции выступает N,N,N,N-тетраметилэтилендиамин.

Полимеризацию геля ведут в стеклянных трубочках длиной 70-100 мм с внутренним диаметром 5 мм либо плоских пластинах. Для этого в одной трубке последовательно полимеризуют два геля для электрофореза, располагая их один под другим: 1) верхний – крупнопористый гель в котором образец сжимается в узкую полосу (концентрирующий гель), 2) нижний — мелкопористый гель, в котором происходит разделение белковой смеси на компоненты под действием эффекта «молекулярного сита».

Для проведения электрофореза гелевыми столбиками соединяют расположенные друг над другом резервуары с буферами, в которые введены электроды и подают на электроды напряжение 40-800 вольт.

В качестве отчета о проделанной работе:

1. Зарисуйте структурные формулы додецилсульфата натрия, акриламида, N,N- метиленбисакриламида, структуру полиакриламидного геля

2. Зарисуйте расположение белковых полос, полученных в результате электрофореза по Леммли, сделайте вывод о составе выданного вам раствора белка (количество компонентов, примерная доля главных компонентов и их число, примерная доля минорных компонентов и их число)

Подготовить пробу белка для электрофореза. Для этого в эппендорф объемом 2 мл поместить 100 мкл раствора белка с концентрацией 4 мг/мл и добавить 100 мкл буфера пробы. Содержимое перемешать инжектированием.

Поместить пробирки в поплавок и поместить в водяную баню. Нагреть до кипения и кипятить 5 минут, затем охладить

Растворить навеску персульфата калия в 2,5 мл ДВ. Для этого внести автоматической пипеткой 2,5 мл ДВ и перемешивать инжектированием до полного растворения соли (растворение идет медленно)

Собрать трубку для электрофореза и поместить её вертикально в штатив

В центрифужной пробирке приготовить смесь для разделяющего геля

Раствор Мономеров 1250 мкл

1,5 М Трис-HCl рН8,8 167 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

Смесь для разделяющего геля вносят в трубку для электрофореза тремя порциями по 800 мкл. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 15-20 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации слить воду с геля, остатки жидкости убрать с поверхности геля фильтровальной бумагой, скрученной в трубочку

В центрифужной пробирке приготовить смесь для концентрирующего геля

Раствор Мономеров 340 мкл

0,5 М Трис-HCl рН6,8 125 мкл

р-ра Персульфата калия 20 мкл

После внесения раствора персульфата калия , содержимое пробирки перемешивают инжектированием и немедленно вносят в трубку для электрофореза

250 мкл смеси для концентрирующего геля вносят в трубку для электрофореза. Раствор вносят осторожно, по стенке трубки не вспенивая его.

После внесения в трубку раствора для разделяющего геля поверх него осторожно наслоить примерно 100 мкл ДВ

Оставить трубку на 5-10 мин для полимеризации. Об окончании полимеризации свидетельствует появление четкой границы между раствором для разделяющего геля и наслоенной водой.

По окончании полимеризации геля с трубки снимаю заглушку и устанавливают трубки для электрофореза в катодную камеру прибора (рис. 19) так, чтобы граница концентрирующего и разделяющего геля была видна в верхней (катодной камере)

Рис. 19. Прибор для вертикального гель-электрофореза в трубках.

1- верхняя, анодная камера, 2 – нижняя, катодная камера, 3 – трубки с гелем для электрофореза, 4 – положительный электрод, анод, 5 — отрицательный электрод, катод.

Приготовить 1,2 л анодного буфера. Для этого разбавить исходный анодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л.

Заполнить анодную камеру анодным буфером. Поместить в камеру анод (красный провод). Поместить катодную камеру над анодной и зафиксировать её винтами. При этом нижние концы трубок должны быть погружены в буфер в нижней камере (анодный буфер).

Приготовить 1,2 л катодного буфера. Для этого разбавить исходный катодный буфер в 4 раза ДВ с помощью мерного цилиндра объемом 1 л. заполнить катодную камеру катодным буфером. При этом концы трубок должны оказаться под слоем электродного буфера.

Промыть нижние и верхние концы трубок для удаления остатков растворов для полимеризации гелей и пузырьков воздуха.

60 мкл подготовленного раствора белка в эппендорфе смешивают со 180 мкл ДВ и перемешивают инжектированием. 200 мкл полученной смеси вносят в трубки для электрофореза, осторожно наслаивая на поверхность геля.

Включают напряжение 250 вольт, через 10 минут поднимают его до 300 вольт, а еще через 10 минут до 400.

Примерно через 40 минут, когда фронт бромфенолового синего пройдет практически всю трубку, напряжение выключают, внимают электрод из катодной камеры. Разбирают прибор и выливают катодный буфер. Затем вынимают трубки для электрофореза и выталкивают столбики геля из трубок стеклянным штоком. Концентрирующий гель отрезают скальпелем.

Разделяющий гель окрашивают коллоидным раствором кумасси бриллиантового голубого в течение 20 мин на кипящей водяной бане. Затем переносят окрашенный гель в кипящую воду и отмываю до проявления белковых полос.

Вопросы для самоподготовки

В чем практическое значение электрофореза?

Что можно установить с помощью электрофореза?

В чем суть метода электрофореза?

От каких параметров зависит скорость перемещения молекулы белка?

В чем особенность электрофореза по Леммли?

По какому параметру разделяются белки при проведении электрофореза по Леммли?

Вопросы к коллоквиуму по теме «Белки»

2. Элементный состав белков

3. Какие органические соединения называют аминокислотами, химические свойства аминокислот

4. Кислотно-основные свойства аминокислот (амфотерность аминокислот, биполярные ионы, кривые титрования)

5. Классификация аминокислот (биологическая, физико-химическая, химическая)

6. Физические свойства аминокислот, стереоконфигурация аминокислот

7. Специфические реакции на аминокислоты

8. Связь аминокислот в белках, пептидная связь – структура и свойства

9. Биуретовая реакция. Определение белка биуретовым методом.

10. Аминокислотный анализ. Методы хроматографии аминокислот.

11. Нингидриновая реакция. Практическое значение

12. Первичная структура белка. Методы установления первичной структуры белка

13. Вторичная структура белка, α-спираль, β-слой

14. Третичная и четвертичная структура белка

15. Химические связи, стабилизирующие структуру белка (первичную, вторичную, третичную и четвертичную)

16. Растворимость и осаждение белков. Силы удерживающие белок в растворе, условия осаждения белков.

17. Реакции обратимого и необратимого осаждения белков, их практическое значение.

18. Белки как носители электрических зарядов, кислотно-основные свойства белков, изоэлектрическая точка

19. Диализ. Электрофорез. Изоэлектрическое фокусирование

21. Выделение белков из тканей. Методы выделения и очистки белков

Использованная литература

The protein protocols handbook, 2 nd edition – edited by Walker J.M. – Humana press, 2002

Петров К.П. – Методы биохимии растительных продуктов – Киев: Вища школа, 1978.

Шапиро Д.К. – Практикум по биологической химии, 2-е изд. перераб. и доп. – Минск: Высшая школа, 1976

Практикум по биохимии: учебное пособие, 2-е изд. пререаб и доп. – под ред. Северина — М.: МГУ, 1989

Р.Досон, Д.Элиот и др. – Справочник биохимика, пер. с англ. – М.: Мир, 1991

Скурихин И.М., Нечаев А.П. – Все о пище с точки зрения химика: справочное издание. — М.: высшая школа, 1991

Степин Б.Д. — Техника лабораторного эксперимента в химии: учеб пособи для ВУЗов – М.: Химия, 1999

Химическая энциклопедия ТТ.1-5., гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1988-1998

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с) .

источник